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Abstract

We propose new unit root tests using stationary instrumental vari-
ables in the framework of the Dickey-Fuller (DF) regression. The most
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1 Introduction

The limiting distributions of the pioneering Dickey-Fuller [1] (DF) unit

root tests are non-standard. They are expressed as functionals of Brownian

motions. The standard model specifications involve a constant and/or a trend

function in the testing regression. However, we often need to allow for various

types of deterministic terms. One popular example includes the models with

break dummy variables. It is well known that the DF test statistics will depend

on the location of breaks in the mean-shift or trend-shift terms. The location

poses a nuisance parameter, and things will become complicated in the pres-

ence of multiple breaks; as the number of breaks increases, it might become

infeasible to obtain the relevant critical values for all possible combinations of

multiple breaks. That is, each of different cases changes the DF distribution

and requires simulating new critical values. The same situation occurs when

stationary covariates are added to the testing regression. The DF tests depend

on the nuisance parameter reflecting the contribution of stationary covariates,

and new critical values should be tabulated. Things become more complicated

when we have mixed cases. For example, consider the case where breaks occur

in the data and stationary covariates are added. In such case, obtaining the

proper critical values would be difficult, if not impossible.

Although it has been common to have non-standard distributions for unit

root tests (also cointegration tests) when we deal with non-stationary data

and test the long-run parameters, the source of the non-standard distributions

is not necessarily non-stationarity of the data. If different estimation strate-

gies were employed, it would be possible to obtain the usual results where the

standard normal distribution or chi-square distribution are utilized in testing

on the long-run parameter when dealing with potentially non-stationary vari-

ables. For example, So and Shin [2] suggest using an instrumental variable

(IV) method using a (nonlinear) sign function as an instrumental variable.

Their IV statistics follow the standard normal distribution. The suggested

idea is intuitive and appealing. Phillips et al. [3] extend the idea further and

consider another types of nonlinear IV tests. These works are enlightening

and they demonstrate that it is possible to perform valid statistical inference

based on the standard distribution theory when testing for a unit root, if we
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use nonlinear instruments.5

In this paper, we suggest new unit root tests that modify the conventional

DF tests. We employ stationary instrumental variables that can be defined

from the Dickey-Fuller type regression. We call these as DF-IV tests since

we utilize IV estimation instead of OLS estimation. We adopt the moment

conditions that are naturally embodied in the DF testing regression. As we

demonstrate, the asymptotic distributions of the new tests are standard nor-

mal, regardless of different deterministic terms in the underlying model. There-

fore, it is possible to use a standard t-test in testing stationarity. What is even

more appealing, our tests have a standard normal distribution regardless of

different deterministic terms (constant, trend, or dummy variables). It is es-

pecially convenient when testing for a structural breaks, because non-standard

test statistics depend on a location of the break. Furthermore, since the in-

struments are naturally given from the regressors in a linear model framework

rather than relying on nonlinear functions, they can be easily extended to more

general models, which might include the models with stationary covariates and

even cointegration models with breaks. In addition, our suggested IV tests do

not require the additional recursive procedure to achieve normality. Indeed,

the underlying scheme to achieve normality is different from other nonlinear

IV tests.

It will be helpful to explain intuitively why the standard normal result

will follow in our IV tests. The moment conditions based on IV estimation

are different from those based on the Ordinary Least Squares (OLS) estima-

tion. Suppose that we have the data {yt : t = 1, 2, ..., T} which follows a pure

stochastic AR(1) process. The conventional DF unit root tests are essentially

viewed as using the moment conditions E(yt−1∆yt) = 0, t = 1, ..., T, under the

null hypothesis, against E(yt−1∆yt) < 0 under the alternative hypothesis. Var-

ious extensions of the existing unit root tests adopt similar moment conditions

when yt−1 is replaced with ỹt−1, where ỹt−1 is the residual from the regression

of yt−1 on certain deterministic terms. Traditional DF tests adopt the OLS

method to utilize these moment conditions. Although the moment E(yt−1∆yt)

5Harris et al. [4] examine the sample autocovariance function E(ytyt−k) and its long-
run variance estimate. It is encouraging to find that the standardized statistic using these
estimates has a standard normal distribution. Their method relies on a nonparametric
approach.
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of the OLS based tests are natural to implement, they result in non-standard

distributions because moment conditions depend on the non-stationary term

yt−1 under the null hypothesis. Thus, the dependency of the moment condi-

tions on yt−1 are the source of the non-standard distributions in the usual unit

root tests. In contrast, the IV tests that we adopt in this paper are based on

moment condition E[(yt−1 − yt−1−m) ∆yt] = 0. We may wish to utilize the term

yt−1−yt−1−m which is a stationary process even when yt−1 is non-stationary. It

is easy to see that the sample moment
√

T
∑T

t=1(yt−1 − yt−1−m)∆yt converges

to the normal distribution. Moreover, this outcome continues to hold when

different deterministic terms are included in the model. Testing can be under-

taken with the usual t-tests from the IV estimation of the DF type regression

using yt−1− yt−1−m as an instrument. Clearly, a standard normal distribution

is free of any nuisance parameters. The normality result also holds in various

extended models with breaks or stationary covariates which can lead to the

dependency on the nuisance parameters otherwise. This is an important fea-

ture of the IV tests. Thus, we do not need to simulate new critical values for

the extended models. This feature can offer a great flexibility in the applied

research.

The remainder of the paper is organized as follows. In Section 2, we provide

test statistics and their relevant asymptotic results in three basic models and

the model with structural breaks. In Section 3, we examine the small sam-

ple performance of the tests via simulations. Section 4 provides concluding

remarks.

2 Stationary IV Test

Suppose we have data yt, for t = 1, 2, ..., T, generated as

yt = dt + xt, (1)

where dt is a deterministic component, and xt is a stochastic component of a

time series. Let xt component follow an autoregressive process

xt = φxt−1 + εt, (2)

where εt is the innovation term which is assumed to have zero mean and satisfy

the following assumption.
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Assumption 1 {εt} is a martingale difference process satisfying

E(εt|εt−1,εt−2,...) = 0, and E(ε2
t |εt−1,εt−2,...) = σ2, for t = 1, 2, ..., . with

0 < σ2 < ∞.

Here, we can consider various models when the deterministic component dt

is properly defined with different types of deterministic functions. We assume

that the initial value y0 is finite such that y0 = Op(1). However, we do not

assume that y0 = 0, and it can take any large value. In general, the initial value

is not a nuisance parameter under the null, but the power of the corresponding

tests can depend on this value. Combining (1) and (2), we have

(1− φL)yt = (1− φL)dt + εt, (3)

and the testing regression model is

∆yt = βyt−1 + (1− φ)dt + φ∆dt + εt, (4)

where β = φ− 1. Interest focus is on testing the null hypothesis β = 0 against

the alternative hypothesis β < 0. We let zt = (dt, ∆dt)
′. Note that the term

∆dt drops out from the regression when dt is a function of a polynomial of t,

but it remains in zt when dt contains dummy variables to capture structural

breaks. In this paper, we examine four different models. In the simplest case,

we consider a model with zero mean and no trend, where dt = 0. Then we

examine models with a non-zero mean and/or a linear trend. We also consider

models with structural breaks.

Model 1 : ∆yt = βyt−1 + εt (5)

Model 2 : ∆yt = βyt−1 + γ0 + εt (6)

Model 3 : ∆yt = βyt−1 + γ0 + γ1t + εt (7)

Model 4 : ∆yt = βyt−1 + γ0 + γ1t + γ2(t×Dt) + γ3∆Dt + εt. (8)

For Model 4, we assume that a break occurs between t = TB and TB + 1,

and introduce a dummy variable as

Dt =





0, t < TB

1, t ≥ TB + 1
(9)
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Model 4 is a general model which allows for shifts in both level and trend.

When γ2 = 0, we have a crash model as a special case, which captures a

shift in the mean. Here, ∆Dt = 1 for t = TB + 1, and zero otherwise. Note

that ∆Dt should not be omitted in the above regression. It is a one-point

dummy variable whose effect can vanish asymptotically. However, if ∆Dt is

excluded in the above regression, the resulting test becomes invalid. Lee and

Strazicich [5] and [6] note that some popular unit root tests can suffer from

spurious rejections when this term is excluded from the testing regression.

One motivation to examine Model 4 is to show the invariance result, implying

that the distribution of the IV unit root test does not depend on the nuisance

parameter indicating the location of a break, λ = TB /T . This result can be

easily generalized to models with multiple structural breaks. This is a very

appealing feature of this test, since applied researchers do not need to simulate

new critical values for different types of structural breaks that can occur at

different locations.

In this section, we consider the DF testing procedure using IV estimation.

We express the DF type regression model as

∆yt = βyt−1 + z′tγ + εt, t = 1, 2, ..., T, (10)

where we let zt = 0, [1], [1, t]′, and [1, t, Dt, tDt, ∆Dt]
′ for Models 1, 2, 3 and

4, respectively. A standard estimation procedure is to adopt the least squares

method. It is well known that the OLS estimator of β and the corresponding

t-statistic will converge to a functional of Wiener processes under the null

hypothesis. Moreover, the asymptotic non-standard distribution depends on

the type of deterministic variables that are included in the regression. To utilize

instrumental variable estimation in regression (10), we define an instrumental

variable for the regressor yt−1 as

wt = yt−1 − yt−1−m, (11)

where m is a finite positive integer. Note that the instrumental variable wt is

stationary. Straightforward algebra shows that

β̂DF−IV =

T∑
t=1

wt∆yt −
T∑

t=1

wtz
′
t

(
T∑

t=1

ztz
′
t

)−1 T∑
t=1

zt∆yt

T∑
t=1

wtyt−1 −
T∑

t=1

wtz′t

(
T∑

t=1

ztz′t

)−1 T∑
t=1

ztyt−1

(12)
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and the corresponding t-statistic is given by

tDF−IV =

T∑
t=1

wt∆yt −
T∑

t=1

wtz
′
t

(
T∑

t=1

ztz
′
t

)−1 T∑
t=1

zt∆yt

σ̂

√
T∑

t=1

w2
t −

T∑
t=1

wtz′t

(
T∑

t=1

ztz′t

)−1 T∑
t=1

ztwt

(13)

where σ̂2 is a consistent estimator of the variance of the error terms in the

model, σ2. It is obtained by

σ̂2 =
1

T

T∑
t=1

(
∆yt − β̂yt−1 − ztγ̂

)2

.

The distribution of the IV statistic is described as follows.

Theorem 2.1. Under Assumption 1 and the null hypothesis, the limiting

distribution of the DF type IV statistic converges in distribution to

√
T β̂DF−IV

d→ W (1)

σ
(

1
2
{W (1)2 + 1}) (14)

for Model 1. For Model 2, the limiting distribution is given as

√
T β̂DF−IV

d→ W (1)

σ
(

1
2
{W (1)2 + 1} −W (1)

∫ 1

0
W (r)dr

) . (15)

The limiting distribution for Model 3 is
√

T β̂DF−IV
d→ (16)

W (1)

σ

(
[W (1)2 + 1]−W (1)

∫∞
0

W (r)dr + 3[
∫ 1

0
W (r)dr]2+

3W (1)
∫ 1

0
rW (r)dr − 6

∫ 1

0
W (r)dr

∫ 1

0
rW (r)dr

) .

For Model 4, it follows that
√

T β̂DF−IV
d→ (17)

W (1)/σ


[W (1)2 + 1]−{
3W (λ)/λ2 + 6

(
λW (1)− λ

∫ 1

0
W (r)dr

)
/λ3

} ∫ λ

0
rW (r)dr

+
{

2W (λ)/λ− 3
(
λW (1)− λ

∫ 1

0
W (r)dr

)
/λ2

} ∫ λ

0
W (r)dr

+

{
6
(
(1− λ)W (1)− (1− λ)

∫ 1

0
W (r)dr

)
/

(1− λ)3 − 3W (1− λ)/(1− λ)2

}
∫ 1

λ
rW (r)dr

+

{
−

(
3(1− λ)W (1)− (1− λ)

∫ 1

0
W (r)dr

)
/

(1− λ)2 + 2W (1− λ)/(1− λ)

}
∫ 1

λ
W (r)dr



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where W (·) denotes a standard Wiener process; and where the notation
d→

denotes convergence in distribution, λ = limT→∞ TB/T, and W1(·) and W2(·)
are independent Wiener processes. Also, for all four models, the distribution

of the corresponding t-statistic follows

tDF−IV
d→ W (1). (18)

Proof. See the Appendix

Therefore, it is clear that the limiting distribution of the t-statistic does

not depend on the parameters in the deterministic terms. Thus, the distribu-

tion is free of any nuisance parameters. When structural breaks in the level

or trend are allowed in the testing regression, the distribution is still standard

normal and free of the nuisance parameter λ which indicates the location of

the break. The intuitive reason for normality is clear from the expressions for

the t-statistics in (13). The first term in the numerator of (13) is expressed as

the stationary moment condition,
√

T
∑T

t=1(yt−1−yt−1−m)∆yt, which follows a

normal distribution. Note that the first term in the denominator in (13) is sta-

tionary. Moreover, the second terms in the numerator and denominator in (13)

are asymptotically degenerate. The deterministic components in the models

are relegated to these asymptotically negligible terms. As a consequence, the

normality of the t-test is applied directly to all four models and other extended

models. However, we note that the distribution of the estimated coefficient,

β̂DF−IV , does not converge to a normal distribution. They can be referred

to as the coefficient tests. It is shown that
√

T β̂DF−IV converges to function-

als of Wiener processes. This result is not surprising. Intuitively speaking,

the source for the non-standard distribution for β̂DF−IV lies in the first term∑T
t=1 wtyt−1 in the denominator of (12), which is given as a functional of a

non-stationary term yt−1.

We note that the instrument wt is asymptotically uncorrelated with yt−1

under the null hypothesis.6 On the other hand, under the alternative hypothesis

the correlation coefficient between wt and yt−1 is 1−φm. This result essentially

shows the consistency of the test. Also, we note that if stationary covariates

are used as regressors, their effects will be captured in the second terms of the

6In finite sample, wt is correlated with yt−1. The covariance between wt and yt−1 under
the null is mσ2, and the corresponding correlation coefficient converges to 0 as t increases.
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numerator and the denominator in (13). The resulting t-statistic will have a

standard normal distribution and is free of nuisance parameters. This property

significantly differs from that of OLS based unit root tests using covariates,

whose distribution is a convex combination of the non-standard Dickey-Fuller

distribution and the standard normal distribution. Using stationary IV tests

will achieve power without incurring this nuisance parameter. Hansen [7] ini-

tially suggests that the usual unit root tests can become more powerful if the

information in related time series is utilized. He suggests adding stationary

variables, if available, to the unit root testing regression. The required condi-

tion is that these added covariates are stationary and highly correlated with

yt−1 but not correlated with ∆yt. The question is whether such variables are

readily available in practical applications. However, if they are available we

can also improve the power of our IV tests.

In a more general case where the error terms are serially correlated, we

can simply adopt an augmented version of the Dickey-Fuller test to control

for serial correlations. If we allow p lagged terms of yt−1 in the regression,

the instrumental variable needs to be adjusted to wt = yt−1 − yt−p−m. The

asymptotic normality of test statistics in this case is rather obvious.

Although the asymptotic result is rather straightforward for any finite m,

the size property of the test in finite samples depends on the selected value of

m. At the same time, a moderately bigger value of m is necessary for obtaining

desirable power properties of the tests. While in theory any value of m can

be used to achieve the asymptotic normality result, it is desirable to choose

the value of m properly to minimize finite sample biases. In this paper, as a

practical guide, we suggest using the value that minimizes the sum of squared

residuals.

Owing to the standard normal result, it is obvious that the asymptotic

distribution is free of any nuisance parameters in (5) – (8). In this paper, we

illustrate this point by examining the model with structural change, but our

tests can be easily extended to other settings including seasonality, cointegra-

tion and nonlinear models. Adding more regressors in the testing regression

may affect the size and power properties in finite samples, but the normality

result will still hold.
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3 Simulations

In this section, we investigate the small sample properties of the DF-IV

unit root tests through Monte Carlo simulations. The data generating pro-

cess (DGP) implies (1) and (2). We note that all tests are invariant to the

parameters γ in the corresponding DGP for which we utilize dt = z′tγ. Thus,

using γ = 0 or any values of γ in the DGP will not change the simulation

results when the corresponding expression of zt is used for each of the models.

We use pseudo-iid N(0,1) random numbers from the Gauss 15.0.10 RNDNS

procedure. We consider two different values for the error variance of the ini-

tial value with σ2 = 1 and σ2 = 5, to see their effects on the power of the

tests. All the simulation results are based on 10,000 replications. We use the

asymptotic one-sided critical values of the standard normal distribution at the

5% significance level; it is −1.645 in each case.

The instrumental variable wt is given in (11). We examine the effect of

choosing the value of m that minimizes the sum of squared residuals. We also

use five different fixed values of m = 1, 2, 3, 4, and 5. We do not examine

Model 1, but consider three models, Model 2, 3 and 4, as specified in (5) -

(8). We refer to these models as drift, trend, and trend-shift. We use φ = 1

to calculate the empirical size, and φ = 0.9 to compute the power of the tests.

We experiment with cases of T = 50, 100, 300 and 1000. In the models with

level or trend shifts, we assume that the break occurs in the middle of the time

period, such that λ = 0.5.

In Table 1, we report the simulation results for the DF-IV tests. These

results can provide a practical guideline to select a value of m that gives the

best possible correct size for each of the tests. We notice that when T = 50,

using m = 2 or 3 gives rejection rates that are closer to the nominal sizes than

using higher values of m for the model with drift. For the models with trend,

level-shift or trend-shift, m = 1 gives the lowest size distortions. The tests

tend to exhibit size distortions when a higher value of m is used. When T =

100, using m = 3 gives more or less correct sizes for the model with drift but

m = 1 gives a better size of the test for the model with trend, level-shift, or

trend-shift. When T = 1000, choosing m = 5 gives more or less correct sizes

for the model with drift, but a lower value of m is needed to warrant good

size under the null. It is clear that the values of m that lead to correct size
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increase as the sample size increases.

Table 1: Size of the test

T = 50 T = 100 T = 300 T = 1000

σ2 = 1 σ2 = 5 σ2 = 1 σ2 = 5 σ2 = 1 σ2 = 5 σ2 = 1 σ2 = 5

Model 2: With Drift

m = 1 0.023 0.022 0.013 0.014 0.009 0.010 0.007 0.005

m = 2 0.044 0.044 0.032 0.030 0.023 0.025 0.018 0.015

m = 3 0.060 0.058 0.046 0.043 0.033 0.032 0.025 0.022

m = 4 0.071 0.072 0.054 0.051 0.038 0.038 0.031 0.029

m = 5 0.082 0.082 0.060 0.060 0.043 0.046 0.035 0.034

Model 3: With Trend

m = 1 0.061 0.060 0.045 0.041 0.026 0.026 0.017 0.018

m = 2 0.106 0.104 0.076 0.076 0.047 0.048 0.033 0.035

m = 3 0.139 0.135 0.097 0.092 0.059 0.061 0.042 0.047

m = 4 0.162 0.162 0.118 0.113 0.071 0.072 0.051 0.053

m = 5 0.194 0.187 0.133 0.131 0.080 0.079 0.057 0.054

Model 4: With Trend Shift

m = 1 0.110 0.113 0.066 0.063 0.035 0.033 0.025 0.021

m = 2 0.212 0.208 0.112 0.113 0.060 0.054 0.040 0.043

m = 3 0.296 0.290 0.150 0.151 0.077 0.072 0.056 0.055

m = 4 0.376 0.372 0.189 0.190 0.091 0.090 0.058 0.059

m = 5 0.447 0.449 0.225 0.229 0.107 0.107 0.065 0.068

We now look at the power of the test. The results in Table 2 show that the

power increases as m increases. This occurs in all cases. Also, we note that the

power increases significantly when the error variance, σ2 increases, while the

size of the tests is not affected by σ2. This is a good feature of the DF type

tests; on the contrary, the LM or DF-GLS type tests have the shortcoming

that they tend to lose power under the same situation.
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Table 2: Power of the test

T = 50 T = 100 T = 300 T = 1000

σ2 = 1 σ2 = 5 σ2 = 1 σ2 = 5 σ2 = 1 σ2 = 5 σ2 = 1 σ2 = 5

Model 2: With Drift

m = 1 0.074 0.650 0.105 0.632 0.209 0.558 0.491 0.500

m = 2 0.119 0.663 0.165 0.655 0.327 0.594 0.733 0.592

m = 3 0.149 0.660 0.214 0.657 0.436 0.604 0.859 0.645

m = 4 0.181 0.651 0.246 0.648 0.514 0.609 0.930 0.675

m = 5 0.201 0.637 0.276 0.638 0.584 0.611 0.964 0.693

Model 3: With Trend

m = 1 0.101 0.384 0.119 0.517 0.224 0.518 0.489 0.485

m = 2 0.160 0.405 0.188 0.544 0.344 0.552 0.730 0.577

m = 3 0.197 0.396 0.245 0.548 0.439 0.569 0.857 0.628

m = 4 0.235 0.382 0.281 0.539 0.513 0.575 0.928 0.663

m = 5 0.273 0.359 0.312 0.521 0.588 0.574 0.962 0.680

Model 4: With Trend Shift

m = 1 0.157 0.308 0.142 0.456 0.215 0.501 0.482 0.468

m = 2 0.262 0.335 0.220 0.489 0.332 0.537 0.716 0.568

m = 3 0.353 0.342 0.287 0.490 0.428 0.555 0.852 0.619

m = 4 0.443 0.341 0.345 0.485 0.504 0.559 0.925 0.655

m = 5 0.517 0.343 0.390 0.478 0.575 0.558 0.961 0.673

4 Summary and Concluding Remarks

In this paper, we have developed new unit root tests using stationary in-

strumental variables. Our new unit root tests are based on the moments

E[(yt−1 − yt−1−m) ∆yt]. In contrast, most existing unit root tests are essentially

based on the moment conditions E(yt−1∆yt) = 0. Since these tests can be un-

dertaken with the usual t-tests in the unit root regression using yt−1−yt−1−mT

as an instrument, we call these tests as ‘stationary IV tests’. The asymptotic
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distribution of our stationary IV statistics is standard normal under the null

hypothesis regardless of differing deterministic terms or detrending methods in

the underlying model. As such, with our new testing procedures it is possible

to perform valid statistical inference based on the standard distribution theory

when testing for a unit root. Also, we demonstrated that the coefficient tests

do not have the normal distribution as they depend on yt−1 under the null

hypothesis.

This paper utilizes the DF type regression. However, it is possible to con-

sider other testing strategies using the Lagrange Multiplier (LM, Schmidt and

Phillips [8]) or the DF-GLS detrending methods (Elliott et al. [9]). Although

the tests adopting such methods may look more powerful than the DF version

tests, the power comparison depends on whether the initial value of a time se-

ries is large or not. When the initial value is large, these other unit root tests

lose power. Then, the DF version of the test is preferred in this situation.

Still, such tests can be desired in other situations, and they remain as future

research topics.
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A Appendix

Lemma 1: Define a partial sum process St =
t∑

j=1

εj, and ξt = εt−1 + ...+ εt−m,

where m is a finite positive integer. Under Assumption 1,

T−1

T∑
t=1

St−1εt
d→ 1

2
σ2

[
W (1)2 − 1

]
(A1)

T−3/2

T∑
t=1

St−1
d→ σ

∫ 1

0

W (r)dr (A2)

T−5/2

T∑
t=1

tSt−1
d→ σ

∫ 1

0

rW (r)dr (A3)

T−1

T∑
t=1

ξtSt−1
d→ 1

2
mσ2

[
W (1)2 + 1

]
(A4)

T−1/2

T∑
t=1

ξt
d→ mσW (1) (A5)

T−3/2

T∑
t=1

ξtt
d→ mσ

[
W (1)−

∫ 1

0

W (r)dr

]
(A6)

T−1/2

T∑
t=1

ξtεt
d→ √

mσ2W (1). (A7)

T−1

T∑
t=1

ξ2
t

p→ mσ2 (A8)

Proof. See Hamilton [10] (Proposition 17.1, p.506) for (A1) - (A3). For

(A4), note that ξtSt−1 = ξt(St−1 − St−1−m + St−1−m) = ξt(ξt + St−1−m).

T−1
T∑

t=1

ξ2
t

p→ mσ2 by the strong law of large numbers and T−1
T∑

t=1

ξtSt−1−m
d→

1
2
mσ2 [W (1)2 − 1] from (A1). (A7) follows since {ξtεt}∞1 is a martingale dif-

ference series with variance mσ4; see, for example, White [11] (p.133). (A8)

follows from the strong law of large numbers.
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Lemma 2: Let

AT =
T∑

t=1

wtyt−1 −
T∑

t=1

wtz
′
t

(
T∑

t=1

ztz
′
t

)−1 T∑
t=1

ztyt−1 (A9)

BT =
T∑

t=1

wt∆yt −
T∑

t=1

wtz
′
t

(
T∑

t=1

ztz
′
t

)−1 T∑
t=1

zt∆yt (A10)

CT =
T∑

t=1

w2
t −

T∑
t=1

wtz
′
t

(
T∑

t=1

ztz
′
t

)−1 T∑
t=1

ztwt (A11)

Under the null hypothesis and Assumption 1, T−1AT converges in distribution

to

2mσ2
(
[W (1)2 + 1]

)
, (A12)

for Model 1, and

2mσ2

(
[W (1)2 + 1]− 1

2
W (1)

∫ 1

0

W (r)dr

)
, (A13)

for Model 2, respectively. T−1AT converges to

2mσ2

(
[W (1)2 + 1]−W (1)

∫∞
0

W (r)dr + 3[
∫ 1

0
W (r)dr]2+

3W (1)
∫ 1

0
rW (r)dr − 6

∫ 1

0
W (r)dr

∫ 1

0
rW (r)dr

)
, (A14)

for Model 3. For Model 4, it converges to

2mσ2




[W (1)2 + 1]−
{

3W (λ)/λ2 + 6

(
λW (1)−

λ
∫ 1

0
W (r)dr

)
/λ3

}
∫ λ

0
rW (r)dr

+
{

2W (λ)/λ− 3
(
λW (1)− λ

∫ 1

0
W (r)dr

)
/λ2

} ∫ λ

0
W (r)dr

+

{
6
(
(1− λ)W (1)− (1− λ)

∫ 1

0
W (r)dr

)
/

(1− λ)3 − 3W (1− λ)/(1− λ)2

}
∫ 1

λ
rW (r)dr

+

{
−

(
3(1− λ)W (1)− (1− λ)

∫ 1

0
W (r)dr

)
/

(1− λ)2 + 2W (1− λ)/(1− λ)

}
∫ 1

λ
W (r)dr




,

(A15)

Also, for all four models,

T−1/2BT
d→ √

mσ2W (1), (A16)

and

T−1CT
p→ mσ2. (A17)
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Proof. Distribution of T−1AT

We consider projecting the matrix zt on wt in order to remove the effects

of the deterministic terms. We note that in Models 1, 2 and 3 for which

no structural break is allowed for, such projections will completely purge the

deterministic components of wt. In Model 4, the projection does not remove

the deterministic component completely. The problem remains for the m− 1

periods for t = TB +1, ..., TB +m−1. But, the remaining term appears only for

a finite time period, and the effect is ignorable asymptotically. We, therefore,

have under the null hypothesis

T−1AT = T−1

T∑
t=1

ξtSt−1 − T−1

T∑
t=1

ξtz
′
t

(
T∑

t=1

ztz
′
t

)−1 T∑
t=1

ztSt−1 + op(1) (A18)

where St−1 and ξt are defined in Lemma 1. For the first term, we have the

result in (A4). This is a case for Model 1. For the asymptotic distribution

of Models 2 - 4, we note that the distribution of the second term depends on

zt. We need to examine each case separately. We re-write the second term in

(A18) as

−
T∑

t=1

DT ξtz
′
t

(
T∑

t=1

DT ztz
′
tDT

)−1

T−1

T∑
t=1

DT ztSt−1 + op(1) (A19)

where DT is defined as below.

Model 2: when zt = 1, we let DT = [T−1/2]. Then, it is easy to see from

(A2) and (A5) that

T−1

T∑
t=1

ξt

(
1

T

) T∑
t=1

St−1
d→ mσ2W (1)

∫ ∞

0

W (r)dr

Applying the above result and (A4) to (A18), we can obtain the desired result

of (A13).

Model 3: when zt = [1, t], we let DT = diag[T−1/2, T−1/3]. It follows from

(A2), (A3), (A5), and (A6) that
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[
T−1/2

T−3/2

]
T∑

t=1

ξtz
′
t

d→
[

mσW (1)

mσ
[
W (1)− ∫ 1

0
W (r)dr

]
]

(A20)

(
T∑

t=1

DT ztz
′
tDT

)−1

d→
(

4 −6

−6 12

)

[
T−3/2

T−5/2

](
T∑

t=1

ztSt−1

)′
d→

[
σ

∫ 1

0
W (r)dr

σ
∫ 1

0
rW (r)dr

]

Then, we obtain the result in (A14) by evaluating the matrix multiplication

of the above terms in (A20).

Model 4: when zt = [1, t, Dt, tDt, ∆Dt], we drop ∆Dt for simplicity in

deriving the asymptotic distribution. Including ∆Dt in the regression has the

effect of removing one observation from the series, hence it should have no

effects on the asymptotic distribution. Therefore, we have zt = [1, t, Dt, tDt].

We let z̈t = [Dt, Dtt,D2t, D2tt], where D2t =

{
1, t ≤ TB

0, t ≥ TB + 1
. Note that the pro-

jection of zt has the same effect as the projection of z̈t. Then, we consider

DT = diag[T−1/2, T−1/3, T−1/2, T−1/3] to have
T∑

t=1

DT ξtz
′
t

(
T∑

t=1

DT ztz
′
tDT

)−1

T∑
t=1

DT ztSt−1DT =
T∑

t=1

ξtz̈
′
t

(
T∑

t=1

z̈tz̈
′
t

)−1 T∑
t=1

z̈tSt−1. But,
∑T

t=1 z̈tz̈
′
t is block diag-

onal. It is straightforward to see that

(
T∑

t=1

DT z̈tz̈
′
tDT

)−1

=




4λ−1 −6λ−2 0 0

−6λ−2 126λ−3 0 0

0 0 4(1− λ)−1 −6(1− λ)−2

0 0 −6(1− λ)−2 12(1− λ)−3


 .

(A21)
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and

DT

T∑
t=1

ξtz̈
′
t

d→ (A22)




mσW (λ)

mσ
[
λW (1)− λ

∫ 1

0
W (r)dr

]

mσW (1− λ)

mσ
[
(1− λ)W (1− λ)− (1− λ)

∫ 1

0
W (r)dr

]




T−1DT

(
T∑

t=1

z̈tSt−1

)′
d→




σ
∫ λ

0
W (r)dr

σ
∫ λ

0
rW (r)dr

σ
∫ 1

λ
W (r)dr

σ
∫ 1

λ
rW (r)dr




Applying (A4) and the above results to (A18), we obtain the desired result

of (A15).

Distribution of T−1/2BT

We have under the null hypothesis

T−1/2BT = T−1/2

T∑
t=1

ξtεt− T−1/2

T∑
t=1

ξtz
′
t

(
T∑

t=1

ztz
′
t

)−1 T∑
t=1

ztεt + op(1) (A23)

The result follows for the first term using (A7). The second term is ignorable

asymptotically since T−1/2
T∑

t=1

ξtz
′
t

(
T∑

t=1

ztz
′
t

)−1 T∑
t=1

ztεt = Op(T
−1/2).

Distribution of T−1CT

We have under the null hypothesis

T−1CT = T−1

T∑
t=1

ξ2
t − T−1

T∑
t=1

ξtz
′
t

(
T∑

t=1

ztz
′
t

)−1 T∑
t=1

ztξt + op(1). (A24)

The result follows from (A8), noticing that the second term on the right hand

side is negligible since T−1
T∑

t=1

ξtz
′
t

(
T∑

t=1

ztz
′
t

)−1 T∑
t=1

ztξt = Op(T
−1).

Proof of Theorem 1: Note

√
T β̂DF−IV =

T−1/2BT

T−1AT

, (A25)
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where AT and BT are defined in (A9) and (A10) of Lemma 2. Apply

the results for T−1AT in (A12), (A13) and (A14) for Models 1,2 and 3,

respectively, and the result in (A23) for T−1/2BT . Proof is complete from

continuous mapping theorem.

We have

tDF−IV =
BT

σ̂
√

CT

d→
√

mσ2W (1)

σ
√

mσ2
= W (1) (A26)

where CT is defined in (A11). Apply the results for T−1AT in (A12),

(A13) and (A14) for Models 1,2 and 3, respectively, and the result in

(A24) for T−1/2CT . Proof is complete from continuous mapping theorem.


