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Abstract

Proof Carrying Code is a methodology developed to establish trust
between code consumer and producer. The latter formally proves that
the code he sents to the former satisfies some safety properties. That
proof is received by the consumer together with the code, that is under
inspection. Next the consumer verifies the proof before authorizing the
execution of the code. While PCC is a powerful approach, some issues
like reusability and the difficulty of the producer to produce the formal
proofs, hinder its wide use. In this paper we propose an alternative
schema for proof carrying code using tools from the fields of algebraic
specifications and design by contract to counter some of these problems.
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1 Introduction

Modern day systems are no longer statically configured. Instead, they are

built in ways that facilitate extensibility as much as possible. This becomes

obvious if we consider web applications where mobile code is being used on

computers daily (JavaScript applications, Java Applets, and so on). The ben-

efits of using mobile code are decreased however due to the lack of trust that

usually exists between the mobile code producer and consumer. The provided

code can harm the safety of the system either intentionally or unintentionally.

A first measure to establish the trust between the two parties is to digitally

sign the code. But this says nothing about the code itself except from the

fact that it was created by the signing source. The code could still breach the

safety of the system.

In [1] G. C. Necula introduces the concept of Proof Carrying Code (PCC)

to counter this problem. PCC is a technique in which the code consumer can

statically verify that the code sent by the producer satisfies a set of safety

properties. This is achieved by certifying the compilation process using a logic

defined by the consumer. The producer is responsible for providing a formal

proof that the under inspection code adheres with the safety properties, using

the safety policy.

There are two main disadvantages in using PCC. The first is the difficulty

of creating the proof rules. These rules are designed to allow the proof of a

specific set of safety properties. As a result, the slightest change in the policy

can result in new proof rules and new proofs for the safety and soundness of

the rules as well. The second is the generation of the proofs themselves. The

burden of this task falls on the shoulders of the mobile code producer, a role he

is not usually accustomed to. While this task is automated to a high degree by

a certifying compiler, there are usually proof obligations that require manual

intervention [2].

In this paper we will propose a framework for statically verifying mobile

code, based on PCC. This approach will overcome some of the disadvantages

we mentioned earlier. The key component of the proposed framework is a

translation from hidden algebra specifications to design by contract specifica-

tions. This will allow the use of the hidden algebra specification as the safety

policy. As a result, there will be no need for the code producer to provide a
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Figure 1: basic PPC architecture

proof for the compliance of the provided code. The rest of the paper is orga-

nized as follows: section 2 gives an overview of the PCC technique and section

3 presents the algebraic specification methodology of hidden algebra. Section

4 introduces the reader to the specification paradigm of design by contract

(DBC). In section 5 we describe the proposed framework and finally section 6

concludes the paper.

2 Proof Carrying Code

In order to define a PCC implementation, four components are mandatory

[2]. A formal specification language is required for expressing the safety policy.

Next, a formal semantics of the mobile code language (these are usually defined

as a logic) that relates the code with the specification. In addition we need

a language in which the proofs will be expressed and finally an algorithm to

validate the proofs.

The safety policy is the corner stone of the approach and defines a set of

rules that express which actions a program is allowed to perform and under

which circumstances these are allowed (in Hoare logic style).

A PCC binary undergoes three phases [2]: certification, validation and

consumption. In the first phase, certification, the mobile code is generated

and the producer ensures that it adheres to the safety policy. Next the source
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code is compiled and a proof that it complies with the set of safety properties

is generated from the rules of the safety policy. This is encoded to avoid

tampering and it is transferred to the code consumer. The receipt of the code

initiates the second stage, the validation. The consumer validates the proof. If

this step is successful then the code is loaded for execution. This can be carried

out off-line. After a successful validation, the code is safe to be executed, i.e.

it enters the consumption stage.

Research has been conducted on overcoming the disadvantages of PCC

and especially making it less reliant upon the explicit proof rules of the safety

policy. A. W. Appel in [3], develops a variant of PCC called fundamental proof

carrying code (FPCC) that uses higher order logic and removes the requirement

of individual proof rules for each instruction of the compiler. However, this

does not solve the problem of forcing the code producer to create the proofs

of compliance.

3 Hidden Algebra

Hidden algebra (HA) is an approach for giving semantics particularly for

concurrent distributed object oriented systems, as well as for software engi-

neering in general [4]. This approach is based on equations in contrast with

formalisms like higher order logic for example. The reason behind this decision

is that the proofs supported by this calculus allow maximal simplicity of mech-

anization and at the same time this approach allows adequate expressiveness

[4]. Hidden algebra is a generalization of process algebra and transition sys-

tems which by including non-monadic operations, allows the use of equations

that contain methods or attributes that are parameterized by data [4]. The

key of this approach is the concept of behavioral satisfaction. This means that

we focus on how systems behave in response to a given set of experiments and

not on the implementation details of those systems. This type of specification

is referred to as behavioral specification.

For a set of sorts S, we say that the set A is S-sorted if it can be regarded

as a family of sub-sets as A = ∪{As}s∈S. Using this set of sorts, we can

define a signature Σ as the pair <S, F> where F is a set of function symbols.

Such that F is equipped with a mapping F → S∗ × S meaning that each
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f ∈ F, f : s1 × · · · × sn → s. Then the type (or rank) of f is defined

as rank (f) = s1 . . . sns ∈ S∗. Given a signature as above, a Σ-Algebra

A consists of a non-empty family of carrier sets {As}s∈S and a total function

fA : As1×. . . × Asn → As for each function symbol f : s1×· · ·×sn → s ∈ F .

A Σ-homomorphism between two Σ-algebras A and B, denoted by h : A → B,

is a family of mappings {hs : As → Bs}s∈S that preserves the operators. By

imposing a partial ordering on the sorts we get an Order Sorted Σ-Algebra

(OSA).

An order sorted signature is a triple (S, ≤, Σ) such that (S, Σ) is a many-

sorted signature, (S,≤) is a poset, and the operators satisfy the following

monotonicity condition; Σ ∈ Σw1,s1 ∩ Σw2,s2 and w1 ≤ w2 implies s1 ≤
s2. Given a many-sorted signature, a (S, Σ)-algebra A is a family of sets

{As | s ∈ S} called the carriers of A, together with a function AΣ : Aw → As for

each Σ in Σw,s. Where Aw = As1 × · · · × Asn and w=s1. . . sn. Let (S, ≤, Σ)

be an order sorted signature. A (S, ≤, Σ)-algebra is a (S, Σ)-algebra A such

that, s ≤ s′ in S implies As ⊆ As′ and Σ ∈ Σw1,s1 ∩ Σw2,s2 and w1 ≤ w2

implies AΣ : Aw1 → As1 equals AΣ : Aw2 → As2 on Aw1 [5]. The purpose of the

formalization of order sorted signatures is to define sorts (similar to classes in

OO), functions (similar to methods in OO) and inheritance between the sorts.

By partitioning the set of sorts to visible and hidden sorts (where visible

sorts represent the data part of a specification while hidden sorts denote the

state of an abstract machine) we get the following definition.

Definition 3.1 (Hidden Algebra). Given a signature (S,≤, Σ) and a

subset

H ⊂ S the hidden sorts, a hidden algebra (or a hidden model in general) A

interprets the visible sorts V and the operations Ψ of the visible sorts as a fixed

model D (the data model, say an order sorted algebra) such that A¹V,Ψ = D

(where ¹ is the model reduct). Given two signatures (S,≤, Σ) and (S ′,≤, Σ′)

a signature morphism φ : (S,≤, Σ) → (S ′,≤, Σ′) consists of a mapping z

on sorts that preserves the partial ordering, i.e. for s ≤ s′ then z(s) ≤
z(s′) and an indexed mapping on operators g, such that {gs1...sn : Σs1...sns →
Σ′

z(s1)...z(sn)f(s)}s1...sns∈S,n≥0.

Given a HA signature Σ, the class of its models consists of all Σ-algebras

A. In order to define behavioral equivalence we need the following definitions.
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Definition 3.2 (Behavioral operators). The set of behavioral operators

of a Σ-algebra A, is defined as Σb, where Σb ⊆ Σ, such that each w ∈ Σb
w,s has

exactly one hidden sort in w.

Behavioral operators have object-oriented meaning. σ ∈ Σb
w,s denotes a

method on the state space if s is hidden, and an attribute if s is visible.

Definition 3.3 (Behavioral context). A Σ-context c[z] is a Σ-term c

with a marked variable z occurring only once in c. A behavioral context is any

Σ-context c[z] such that all operations above z in c are behavioral.

Definition 3.4 (Behavioral equivalence). Given a Σ algebra A, two

elements (of the same sort s) a and a′ are called behaviorally equivalent, denoted

as a ∼s a′ iff Ac(a) = Ac(a
′) for all visible behavioral contexts c.

On the visible sorts the behavioral equivalence coincides with the (strict)

equality relation. Behavioral equivalence allows the creation of elegant and

small specifications since we are only concerned with how a state behaves under

the attributes and not how it is constructed. This has led to the development

of Observational Transition Systems (OTS), which are a proper sub-class of

behavioral specifications. The OTS formalization is naturally implemented in

algebraic specification languages like CafeOBJ [6] and thus OTSs have been

used for the specification and verification of many real life systems.

Formally an OTS is a transition system that can be written in terms of

equations. Assuming there exists a universal state space Y, and that each data

type we wish to use is already defined in terms of initial algebra, an OTS S is

defined as the triplet S =< O, I, T >, where [7]:

• O is a finite set of observers. Each o ∈ O is a function o : Y → D, where

D is a data type and may differ from observer to observer. Given an

OTS S and two states u1, u2 ∈ Y the equivalence between them wrt. S

is defined as ∀o ∈ O, o(u1) =S o(u2).

• I is the set of initial states for the system, i.e. I ⊆ Y .
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• T is finite set of transition functions. Each τ ∈? is a function τ : Y → Y ,

such that τ(u1) = τ(u2) for each [u] ∈ Y/=S
and u1, u2 ∈ [u]. τ(u) is

called the successor state of u with respect to S. Also with each τ , comes

a condition c− τ , called the effective condition of τ , such that τ(u) =S u

if ¬(c− τ(u)).

Observers and transitions are usually parameterized, generally they are

denoted as oi1...im and τj1...jn provided that there exist data types Dk and

k ∈ {i1, . . . im, j1, . . . jn} with m,n ≥ 0.

Design by contract (DBC) is a method for developing object oriented soft-

ware which has been first proposed in [8] in 1992 . The basic idea of this

approach is that the class’ methods and the programs that invoke them have

a so call contract between them. On the one hand the invoker of a method

guarantees certain pre-conditions before calling the method and on the other

hand the method is able to guarantee that certain post-conditions will hold

after its execution. The main contribution of DBC is that these contracts are

executable, meaning that they are defined in the program code in the pro-

gramming language and are translated into executable code by the compiler.

This makes possible that any violation of the contracts may occur while the

program is running, will be detected immediately.

Various compilers/libraries have been developed for programming languages

to enable DBC functionality. For example, modernJass[9], cofoja[10] and

JML[11] for Java, spec#[12] for C# and jsContract[13] for Javascript.

In JML, a specification is created using special annotated comments, which

start with the sign @. The specification of the obligations of the calling pro-

gram is denoted by using the key words //@ requires. The methods’ post-

conditions, that the implementer has to meet, are denoted using //@ensures.

A contract in JML is a set of pre and post conditions for a method. Such

contracts can be used as an abstraction of a methods’ behavior. JML uses

Java’s expression syntax to write the predicates that are used to express the

assertions, and the pre and post conditions. The lack of expressiveness of

the Java language to write formal specifications is solved by extending Java

expressions with the required specification contracts (for example quantifiers

[11]). The semantics of a JML method’s specification is that when the method

is invoked in a state where its pre-conditions are met, then one of the follow-

ing two things will happen. Either the method terminates normally, in which
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Figure 2: architecture of the proposed system

case the post-conditions of the specification are guaranteed, or the method

throws an exception, in which case the exception thrown must be permitted

by the specification (either by default or explicitly) and the exceptional post-

conditions must be satisfied [11] (these conditions are denoted by the signals

clause).

In addition, JML is designed to be used with a wide number of different

tools [14, 15]. The range of these tools is from DBC support to runtime

assertion checking (RAC) and to static verification (SV) of specifications using

theorem provers [1]. Here, we are interested in SV tools since we wish to be able

to verify the code before it is executed. Several SV tools have been developed

for JML, like ESC/JAVA2[16], TACO[17], KeY[18] and so on. These permit to

the user to check for inconstancies between the code and the JML annotations.
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4 Proof Carrying Algebraic Specification Frame-

work

One of the main road blocks for the full scale adoption of PCC is the

obligation of the code producer to provide a formal proof that the code satisfies

a set of safety properties. This is a role that the code producers are not

comfortable with, particullarly since the verification process requires human

interaction for the verification of some proof obligations. Another road block

is the lack of reusability of the safety properties. An improvement to the PCC

schema would be a framework where the producer is not oblidged to prove the

compliance of the code and at the same time the compliance is easily verified

by the consumer. Also, a degree of reusability of the safety policies is desired.

Figure 2, shows the process of generating and using proof carrying code with

the proposed framework (JML could be replaced by any other DBC language).

We distinguish the following steps:

• Specification. A specification of the system and the behaviour of an

arbitrary program is created by the consumer, using hidden algebra.

• Verification of safety. A proof is conducted by the consumer, that the

specification meets the desired safety properties.

• Translation and Transfer. The specification gets translated into a lan-

guage that is easy to check against implementation and that the code

producer can understand. For this we used DBC languages. This is the

safety policy sent to the producer.

• Implementation. The code producer sends the program to the consumer.

• Verification of compliance. The consumer statically verifies that the

recieved code is compliant to the specification.

• Authorization. If the previous step is successful the code is authorized

for execution.

Initially the code consumer creates an abstract OTS specification of the

system that will execute the mobile code, we will refer to this OTS as Ssys.

Next a very abstract specification of arbitrary mobile code is created, we will
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Figure 3: a safety policy

refer to this as Sm. One way to specify arbitrary code is by having Sm import

Ssys. The transitions of Sm are then defined as a mapping of a subset of the

transitions of Ssys. They correspond to the system functions the mobile code

can invoke. Their effective conditions define the preconditions for using them

and the equations defining declare their post-conditions. So in this way the

specification of the mobile code defines the interface for the communication

with system. Note that only the specification of the arbitary mobile code

has to be made public, thus ensuring information hidding on the part of the

consumer if required.

They only way for the foreign code to interact with (change the state of)

the system is through those transitions. Thus, if we define the way that these

transitions are allowed to be used and verify that under these rules the safety

properties of interest hold, we can be certain that any instatiation of this loose

specification of mobile code will not violate the safety of the system. Such

a specification can be seen in figure 3. The ovals represent the state space

of the OTSs and the arrows the behavioral operators. The dotted arrows in

the two OTSs denote the subset of transitions from Ssys that are mapped to

transitions of Sm. The dotted arrow from Sm to Ssys, denotes a special kind

of behavioral operator called projection. The projection given a state of Sm

returns the corresponding state of Ssys [19].

Next the consumer verifies that this specification satisfies the desired safety

properties and makes adjustments if necessery. This part of the verification is

computer human interactive. Experience has shown that behavioral specifica-

tions can be used to verify the most complext of liveness or safety properties.

In addition in the OTS framework proofs can be reused just like objects to
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create more complex proofs. Thus, it is possible to built libraries of proofs

about specifications, that the consumer can use to verify properties in mini-

mum time. For each system the verification of the safety properties needs only

be done once and it is not carried out by the producer. Instead it is carried

out by the consumer, who is much more confortable in this role since he wants

to ensure that his system will not be compromised.

The following step is to translate this mathematical specification to a form

that is easy to verify against an implementation. Also, we wish for the specifi-

cation to be easily understood by the code producer. Design by contract lan-

guages (DBC), such as JML, fit this role prefectly. Firstly, they are expressed

in a programming language like syntax, so the programmers can understand

the specification without much trouble. Secondly, there are numerous tools

that allow the automatic verification that an implementation complies with a

DBC specification. Thirdly the contracts can be discarded (treated as com-

ments), if that is required. So the specification can have no impact on the

execution of the program. This translation is transfered to the producer.

Upon receiving the translated specification the producer can proceed to the

implementation of the mobile programm. Also he can (optionally) statically

verify if his implementation is compliant with the received specification. Once

the code is finished it can be sent to the consumer.

The consumer receives the mobile code and statically verifies it complies

with the specification using the plethora of available such DBC tools. If the

verification is successful the code is compiled if necessery (compilation isn’t

required for scripting languages) and is authorized for execution.

4.1 OTS to DBC

A key component to the proposed framework is the existance of a correct

translation from OTS specifications to the various DBC specifications. We are

already working in that direction and have produced some first results for a

translation of OTS/CafeOBJ to JML specifications in the report [20]. A proof

that such translations are correct can be conducted using the definition of

equivallence for behavioral specification []. A behavioral specification (like an

OTS) is defined by a set of equations E created using a hidden subsignature

Γ of Σ. Formally B(Σ, Γ, E). Two behavoral specifications over the same
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hidden signature (like an OTS and its translation to JML) B(Σ, Γ, E1) and

B′(Σ, Γ′, E2) are equal iff all operations in Γ′ are behaviorally congruent for B

[21]. We intend to provide such a proof for our translation in the near future.

5 Conclusions

He have proposed a framework for PCC in which the producer is not re-

quired to conduct tedious proofs about the safety of the mobile code. In

addition the proposed definition of safety policies allows their reuse. These

two points have been considered as roadblocks to the adoption of PCC so far.

These results can be achieved through the combination of two independent

methodologies. Hidden algebra and design by contract. We use the former

to specify the behavior of the system and of mobile code. This permits safe

and sound proofs of the properties of interest. Such specifications however can

not be easily linked to the implementation of the mobile code. In addition,

programmers usually are not accustomed to such formalisms. We overcome

these difficulties by proposing the translation of hidden algebra specifications

to design by contract specifications. After such a translation the specification

can be sent to the producer. Once the implementation is ready the consumer

can statically and automatically verify its compliance with the spefication. We

believe that the shifting of roles (moving the proof of the properties) from the

producer to the consumer better reflects reality, where the consumer is better

motivated to invest extra effort for the protection of his system. Also, because

the specifications and proofs can be reused we believe that the burden will

be dimished to some degree. Fundamental issues for the proposed framework,

remain the correct translation of the specifications. We have already taken

steps in that direction.
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