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Algebraic attacks on stream ciphers:
recent developments and new results
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Abstract

The security of stream ciphers against algebraic attacks is studied in
this paper. Emphasis is given on analysing the properties of the under-
lying Boolean functions that need to be satisfied, such as the algebraic
and the fast algebraic immunity. We present an overview of the con-
structions of functions with maximum algebraic immunity discovered
recently, whereas known relationships with other cryptographic criteria
are also reviewed. Moreover, we investigate the link between the fast
algebraic immunity and the correlation immunity of Boolean functions,
where a trade-off between resistance to correlation and fast algebraic
attacks is proved. It is also shown that a known construction of crypto-
graphic functions does not behave well with respect to (fast) algebraic

attacks.
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1 Introduction

Stream ciphers form an important class of cipher systems. They are widely
used to provide confidentiality in environments characterized by a limited com-
puting power or memory capacity, and the need to encrypt at high speed (e.g.
wireless communications). The advantages of stream ciphers rest with the
fact that they require only few gates in VLSI circuitry and are easy to build,
whereas they are able to provide a high security level; in addition, since they
avoid error propagation, they are preferable in applications where errors may
occur during the transmission. Stream ciphers are also well suited to military
cryptography, since only the device generating the keystream may be subject
to strict security measures; other devices which will be fed by the keystream

and perform the encryption do not require such stringent environments.

In binary additive stream ciphers, a keystream k& = k1k, . . ., which is known
only to the transmitter and the receiver, is xor-ed with the original message
(plaintext) m = mymg..., resulting in the encrypted message (ciphertext)
¢ = c1Cy ... that satisfies ¢; = m; @ k; for all 7. In general, the security of such
systems is strongly contingent on the unpredictability of the keystreams. It
should be stressed that if the keystream is truly random and its length is equal
to the length of the plaintext, then such a system, being called one-time pad
and proposed by an Army Officer Joseph Mauborgne as an improvement of the
so-called Vernam cipher introduced by the engineer Gilbert Vernam in 1918,
has perfect secrecy as it is pointed out in Claude Shannon’s pioneeiring work
[45]. However, the one-time pad is of limited practical value since generation
of truly random keystreams is not efficient, whereas the requirement for having
a keystream of length equal to the length of the message introduces a huge key
distribution problem. Hence, the design of stream ciphers strives to resemble
the one-time pad, that is to construct efficient keystream generators producing
pseudorandom sequences of large period which closely resemble truly random

sequences.

Linear Feedback Shift registers (LFSR) are basic building blocks for key-
stream generators in stream ciphers, due to their appealing properties and ease
of implementation. A typical diagram of a LFSR is depicted in Figure 2. Each
such circuit consists of n consecutive 2-state storage units, where at each clock

pulse the content of any stage (0 or 1) is shifted to the next stage; the con-
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Figure 1: A typical stream cipher operation
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Figure 2: A diagram of a Linear Feedback Shift Register

tent of the last (leftmost) stage is computed according to a feedback function.
However, the linear complexity, i.e. the length of the shortest LFSR generating
a given sequence, is important for assessing resistance to several cryptanalytic
attacks, like the Berlekamp—Massey algorithm [32], but also more recent type
of attacks [43]; in particular, the linear complexity represents the minimum
amount of the sequence required to fully specify the remainder. Hence, it
is evident that any keystream should have high linear complexity and, thus,
LESRs do not suffice to provide sequences of cryptographic strength.

As a response to this, several techniques have been proposed to increase the
linear complexity obtained by LFSRs, such as nonlinear filters and nonlinear
combiners [36] (see Figures 3 and 4 respectively). The security of these systems
is mainly attributed to the properties of the underlying Boolean functions that
are used as filter/combiner functions; namely, cryptographic Boolean functions
need to satisfy specific criteria, such as high algebraic degree, in order to ensure
resistance against several cryptanalytic attacks [36]. As most constructions
are ad-hoc, finding good keystream generators, which is strongly contigent to
identifying Boolean functions with good cryptographic properties, is of great

theoretical and practical value.
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Figure 4: The diagram of a nonlinear combiner generator

Apart from its algebraic degree, the nonlinearity of a Boolean function
is among the most significant cryptographic properties; it is defined as the
minimum distance from all the affine functions, and indicates whether attacks
based on linear cryptanalysis [33] and best affine approximations [16] can be
prevented. With the appearance of more recent attacks, such as low order
approximation attacks [22], Boolean functions need also have the property that
they cannot be approximated adequately by low degree functions. Hence, their
rth order nonlinearity [4], that is the minimum distance from all functions of
degree at most r, need to be computed as a significant cryptographic measure.

Another important cryptographic criterion of a Boolean function is the
so-called correlation tmmunity, which is a measure of the degree to which its
outputs are uncorrelated with some subset of its inputs. A function should have
high correlation immunity in order to thwart specific cryptanalytic attacks,
such as correlation attacks [46, 47, 35].

A more recent attack, attracting great attention, is the so-called algebraic
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attack, which exploits the structure of the underlying Boolean functions so as
to construct overdefined systems of nonlinear multivariate equations to facili-
tate the determination of the secret key [12]. As a result of the analysis derived
in [34], the following property is stated as a prerequisite for any Boolean func-
tion f of n variables in order to prevent algebraic attacks: there should not be
a function g of low degree satisfying either fx g =0 or (f + 1) * g = 0. This
observation leads to the definition of the algebraic immunity as a significant
cryptographic criterion for Boolean functions, which indicates the degree of

the minimum-degree function ¢ satisfying the foregoing condition.

Algebraic attacks may be further improved by exploiting linear relations
among the keystream bits; this approach, called fast algebraic attack, was first
proposed in [13] and has been further investigated in [1, 2, 17]. Fast algebraic
attacks may be efficiently applied to cryptographic systems that are resistant to
conventional algebraic attacks, although they require knowledge of consecutive

keystream bits (which is not needed in algebraic attacks).

A maximum value for the algebraic immunity is also a necessary (though
not sufficient) condition for withstanding such attacks [38]; the notion of fast
algebraic immunity has been recently intoduced in [29] to assess the resistance
against fast algebraic attacks. In general, constructions of functions resistant
to fast algebraic attacks, as well as the characterization of such functions with

respect to other cryptographic criteria, remains a challenging open problem.

In this paper, we focus on properties of cryptographic Boolean functions in
terms of their resistance against both conventional and fast algebraic attacks.
More precisely, the contribution of the paper is twofold. First, we present a
state of the art of the constructions of Boolean functions with maximum alge-
braic immunity, whereas their resistance against fast algebraic attacks is also
dicussed; we also survey known relationships between algebraic immunity and
other cryptographic criteria, such as nonlinearity and correlation immunity.
The contribution of the paper is the identification of a trade-off between re-
sistance to correlation and fast algebraic attacks; it is the first time that such
a relationship is proved, given the fact that the connection between the corre-
lation and algebraic immunity is known to be an interesting open problem as
it was recently stated in [18, p. 65]. Furthermore, we show that correlation-
immune functions obtained via the well-known Siegenthaler’s construction do

not behave well in terms of fast algebraic attacks, whereas it is also shown that
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they may also be vulnerable to low-order approximation attacks if construction
parameters are not properly chosen.

The paper is organised as follows; the basic definitions and the notation
used are introduced in Section 2. A survey of (fast) algebraic attacks is given
in Section 3, whereas known relationships between algebraic immunity and
other cryptographic measures are also described. A tradeoff between resistance
to correlation and fast algebraic attack is proved in Section 4; moreover, we
further investigate a known class of correlation immune functions (obtained via
the Siegenthaler’s construction), illustrating that this class may be vulnerable

to fast algebraic attacks. Finally, concluding remarks are given in Section 5.

2 Preliminaries

Let f : Fy — Fy be a Boolean function, where F, = {0,1} is the binary
field. The set of Boolean functions on n variables is denoted by B,,. The truth
table of f is the binary vector

of length 2", also denoted by f for simplicity. The Boolean function f € B, is
said to be balanced if wt(f) =2""1.

The support of a Boolean function f € B, is defined as supp(f) = {b €
Fy : f(b) = 1}.

Any n-variable Boolean function f is commonly expressed in the so-called
Algebraic Normal Form (ANF) as

fl@)= ) au’ (1)

where the sum is taken modulo 2, a,, € F; and each monomial " is determined
by ¥ = [/, «7". The degree of f equals the degree of the highest-degree
monomial in its ANF. If deg(f) is 1, then f is said to be an affine (or linear
if the constant term is zero); the monomials of degree k < deg(f) that appear
in (1) are called the kth degree part of f € B,,.

By definition, if deg(f) < r, then the vector f is a codeword of the rth order

binary Reed-Muller code R(r,n) [31]; we also write f € R(r,n) for simplicity.
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The Walsh or Hadamard transform of the Boolean function f € B,, at some

b € I}, denoted by xy(b), is the real-valued function given by

Xr(b) = 3 (-1 = o 2t 4 ba). )

zclky

According to (2), the Boolean function f is balanced if and only if x7(0) = 0.

Each Boolean function f € B, is decomposed as follows

f(®) = (14 24) floi=0 + @i f |a=1

for any 0 < ¢ < n — 1, where f|;,—0, fls;=1 € Bn_1 are not dependent on ;.
Such a decomposition - which can be recursively applied to the subfunctions

f x;=0 é fi,O;f

decomposition may be also written as f = fio || fi1. If ¢ = n — 1, then this is

A . . .
zi—=1 = fi1 - is also called Shannon’s expansion formula. This

the usual concatenation of the truth tables of the sub-functions f|;,—o, f|z,=1 €
B,_1.

2.1 Correlation attacks and correlation immunity

A known type of attacks that can be applied to stream ciphers is the so-
called correlation attacks, firstly introduced in [46] for nonlinear combiners (but
can be also applied, suitably modified, to nonlinear filter generators [47]). The
correlation attack exploits the existence of a statistical dependence between
the keystream and the output of a single constituent LE'SR; such a dependence
exists if and only if the output of the corresponding Boolean function f is
correlated to at least one of its inputs (see Figure 4). Many variations of
such type of attacks occur, whereas the fast correlation attacks are the most
powerful [35].

To thwart such type of attacks, the Boolean functions employed as non-
linear filter /combiner generators should possess certain properties (apart from
having high algebraic degree); the correlation immunity is a measure of the
degree to which the outputs of a function are uncorrelated with some subset
of its inputs. More precisely, we say that f € B, is t-th correlation immune if

it is not correlated with any t-subset of {z1,...,x,}; namely if

Pr(f(x) =0|z;, = bi,,...,x;, = by) = Pr(f(x) =0)
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for any ¢ positions x;,,...,x;, and any b;,,...,b;, € Fo. If a ¢-th order corre-
lation immune function is also balanced, then it is called t-th order resilient
[46].

An equivalent characterization of correlation-immune functions is the fol-

lowing.

Definition 2.1. If f € B} is a k-th order correlation-immune function,
then supp(f) has the following property: for any o = (ay,...,ar) € F5 and
fO’f’ any {jlaj?a s ij} g {17 27 R n}7 it holds

Hx = (1,29, ...,2,) €supp(f),zj, = a1,...,z;, =a}| = wt(f)/2"

In other words, when © € Fy passes through all the vectors of supp(f), then
the vector formed from any (i1, i, ..., i) coordinates of © will equally likely to

be any vector of Fs.

It is easy to verify that if f is k-th order correlation-immune, then it is also
m-th order correlation-immune for any m < k.

There is a known trade-off between the correlation immunity and the degree
of a function [46]: if f € B, is k-th order correlation-immune, then deg(f) <
n — k. More specifically, for a resilient function f of order k, it holds deg(f) <
n—k—1if1 <k <n-—2][46].

The following well-known result has been proved in [50].

Proposition 2.1. A function f € B, s t-th order correlation immune if
and only if
xr(b) =0, V b such that 1 < wt(b) < t.

Clearly, f is t-th order resilient if, additionally, it holds x(0) = 0.

2.2 Low order approximation attacks and nonlinearity

If a high-degree cryptographic Boolean function can be adequately approx-
imated by a low-degree function, then the corresponding cryptographic system
is not secure; for instance, the linear cryptanalysis on stream ciphers [19] ex-

ploits the existence of biased linear relations between some keystream bits
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and some key bits. Alternatively, the attacker may replace the corresponding
Boolean function f (e.g. the combiner function) by another function g of low
degree such that wt(f + g) is small [22] and, thus, to mount a fast correlation
attack to the modified system in order to reveal a secret key which produces a
slightly modified keystream (namely a noisy version of the keystream, where
the noise is small). Consequently, cryptographic functions should not be well
approximated by low-degree functions.

The minimum distance between f and all affine functions is the nonlinearity
of f, and is denoted by nl(f); it is determined by the Walsh transform [31] via

1
_ : __on—=1_ —
nl(f) = uin wt(f +1) =2 5 ax 1xr(B)]- (3)

The notion of the nonlinearity is readily generalized to the rth order non-
linearity nl.(f) of the function f, which is defined as
nl.(f) = min wt(f+g). (4)

9€R(r,n)

From (4) we have nl(f) > nly(f) > nl3(f) > --- and this sequence is the
so-called nonlinearity profile of f [4].

Computing the r-th order nonlinearity of Boolean functions, as well as their
best r-th order approximations, is known to be a difficult task even for small
values of r (if 7 = 1, then the maximum possible nonlinearity is achieved by
the so-called bent functions, which is 271 —2%/2-1 for n even; if n is odd, then
the value of the maximum possible achievable nonlinearity remains unknown).
Some particular cases though have been recently fully solved; the following

result - which will be used in the sequel - has been proved in [21].

Theorem 2.2. Let [ € B,, deg(f) = 3, having the form [ = (¢ +
L) |l; (g2 + l2), where q1,q2,01,12 € B,y not dependent on x; and, more-
over, deg(q;) = deg(qz) = 2, deg(ly),deg(ly) < 1. Then, the best quadratic

approximations of f have one of the following forms
2 f? = (ql + ll) HJ (ql + )‘41+Q2+12) y

0. 6}1” = (QZ + )‘41+Q2+l1) H] (q2 + l2) :

where Ay, 4go+1;, © = 1,2, 15 a best affine approzimation of g1 +qa+1;. Moreover,

it holds nly(f) = 2772 — 27271 for some 1 < h < [251]; more precisely, 2h
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15 the rank of the symplectic matriz associated with the quadratic part ¢, + qo

[31].

3 Algebraic attacks on stream ciphers

Let us consider a pseudo-random keystream generator in either the nonlin-
ear filter or combiner model. Both cases can be described in a unified approach
by a linear permutation L : FY — FY | a linear mapping L' : FY — F? and
a n-variable combining or filtering Boolean function f € B, in a following
way: If so,s1...,sy 1 is the secret key of the keystream generator (that is the
initialisation of the linear part of the generator) and kg, k1, . .. is the produced

keystream, then it holds
f(L' o L'(s0, 81, ,5x-1)) = ki, i >0

where each L' : F) — F) is a linear operator, determined by the composition
of L with itself ¢ times (for instance, in the filter model, L is the function that
maps each of the LESR to the next state). Algebraic attacks try to efficienly
solve the latter equation, if the number of equations is much larger than the
number of unknowns (an algebraic attack is is a known-plaintext attack, that is
the attacker needs to know a part of the initial message, which in turn implies
knowledge of part of the keystream).

Let us assume that there exists g € B, of low degree such that f x g = h,

where h is also of low degree. Then, from the above we get
I{Izg(L, @) Li(So, S1y.00y SN—I)) == h(L, 9 Li(So, S1y.0y SN—I)) (5)

and, thus, a system of equations of low degree is constructed by considering
each ¢ such that k; = 1; this system may be solved more efficiently than the
initial system (e.g. by using Groebner basis or via linearization of the system
and subsequent application of Gaussian elimination).

From the analysis of [12, 34] it turned out that the aforementioned condition
may be re-stated as follows: for a cryptographic Boolean function f, there
should not exist a low degree function ¢ such that it holds either f x g =0 or
(f +1) x g = 0. These requirements are equivalent to saying that f need to

have high algebraic immunity, defined as follows.
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Definition 3.1. The algebraic immunity of f € B, is defined as
Al,(f) = min{deg(g)| g € AN(f) UAN(f +1), g # 0}

where AN (f) = {g € By : fxg = 0}, and * denotes the multiplication

(point-wise product) of Boolean functions.

Each element in AN(f) is called annihilator of f. Moreover, it is proved
in [12] that Al,(f) < [5].

There are many open problems that should be addressed in the design
of cryptosystems that are immune to algebraic attacks. An important open
issue is the construction of Boolean functions achieving the maximum possible
algebraic immunity. Several constructions of such functions are provided in
the literature. The first one is the majority function, described in [15], which
is a symmetric function; other constructions of symmetric functions having
maximum algebraic immunity are also given in [3, 40, 11] (note that when
the number of the variables is odd, then the only symmetric function with
maximum algebraic immunity is the majority function [39]). However, the
symmetry property poses a risk from a cryptographic point of view and, thus,
constructions of non-symmetric functions of maximum algebraic immunity are
of high importance. Several such constructions have been given in [5, 6, 23,
44, 9]; unfortunately, most of the functions do not present high nonlinearity,
whereas others are non-balanced. Further constructions, providing functions
with higher nonlinearities, are given in [7, 48, 41, 51] (as is pointed out though
in [10], the first construction in [48] coincides with the construction in [7]). A
generic construction of functions with odd number of variables and maximum
algebraic immunity is also given in [25]; however, this construction, although
it covers the entire space of functions with maximum algebraic immunity, is
more theoretical than practical. Finally, proper modifications on some of the
above families of functions so as to provide new functions with also maximum
algebraic immunity have been recently proposed in [26, 27]. More precisely, an
algorithmic approach to appropriately modify the majority function with odd
number of variables is proved in [26], whereas it is shown in [27] that the same
approach also holds for the case of even number of variables (the even case has
been also studied in [9]). The proposed unified algorithm, covering both the

odd and even case, is shown next (Algorithm 1), where a partial ordering of
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Algorithm 1 Generate Functions of Maximum Al via the majority function

Require: Majority function f € B,
Li—0, fo—f

2: S «— supp(f)
3: S «—supp(1+ f)
4: T « {v € supp(f) : wt(v) = [5]}
5 1"« {v €supp(f +1) : wt(v) = | 3]}
6: while (T # 0) vV (T" # 0) do
7 1—i+1
8: (ai,b;) e{Sx S :a;=b;AN(a; €T Vb €T} > choose randomly
0 fi supp(fi) — supp(fi )\ {ai} U {bi}
10: S — S\ {a;}
11: S"— 5"\ {b;}
12: T —T\{veT:v>b}

13: T —T'\{ueT:u<a}
14: end while

Ensure: functions {fi}i>1: Al,(fi) = [5]

Figure 5: Algorithm for constructing functions with maximum Al

vectors in [y defined as follows
u=veuy, <y vo<i<n—1,

has been utilized.

It should be stressed though that constructing functions with maximum
algebraic immunity (without sacrificing other cryptographic criteria) still re-
mains an active research area.

Several relationships have been proved between algebraic immunity and

other cryptographic measures. For instance, it was shown in [5] that

Al (f)—1 n—Aln(f)
omswns Y 0.
i=0 i=0

It is also well-known that low nonlinearity implies low algebraic immunity
(although high nonlinearity does not always imply high algebraic immunity).
More precisely, it is proved in [5] that
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Especially for the first-order nonlinearity, a better bound has been proved in
[30]:
Al (f)—2
n—1
> 2 ("1 (6)
i=0
whereas other improvements on the aforementioned bounds have been proved

in [4, 37], namely

Al (f)—r—1
nl.(f) > 2 ("77)  (for most cases),
i=0

and
)z > > (),

respectively. Note that the latter one, provided in [37], improves the bound in
[5] and, moreover, it also improves the bound given in [4]) (for small values of
r, which is the most important case in cryptography). Furthermore, for r =1,
the bound in [37] coincides with (6).

In addition, by also considering the notion of
Al; (f) £ max{min {f x g = 0}, min {(f + 1) x g = 0}},
deg(g) deg(g)

where clearly Al,(f) < Al (f), the following result is proved in [42]:

Proposition 3.1. Let f € B, with Al,(f) = k1 <Al (f) = ke and g € B,
with deg(g) = r. Then, it holds:

1. If ko < 2r, thenwt(f+g)>z’“1 r— 1()_|_Zkz r— 1()
2. Ifkl < 2r andk2>2r+1 thenWt(f+g) >Zk1 r— 1( )+Zk2 r— 1( )}

3. If ky > 2r + 1, then wt(f +g) > S0 (1) + 3007, (%77)-
Nevertheless, there are still many open questions concerning the relation-
ship between algebraic immunity and other cryptographic criteria of Boolean

functions, such as correlation immunity.
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3.1 Fast algebraic attacks on stream ciphers

The bacic idea behind fast algebraic attacks is the identification, for a
given cryptographic function f € I}, of a low-degree function g such that the
function h = f x g is of reasonable degree; if this is the case, then the number
of the unknowns in the corresponding equations may be further reduced. Note
that g+h € AN(f) and, thus, the degree of g+ h may be greater than Al,(f),
thus leading to the result that maximum algebraic immunity does not imply
resistance to fast algebraic attacks.

Assuming that such g, h do exist, we get (similarly to (5)):

klg(L, 9] Li(So, S1yeny SN—I)) = h(L’ o Li(So, S1yeny SN—I)); 1= 0, 1, ce (7)

Then there exists a linear combination of the first 795" () equations that

sum the right-hand part of (7) to zero; this linear combination can be found
via the well-known Berlekamp-Massey algorithm [32]. By this procedure, we
get one equation of degree at most deg(g) (and, thus, the main computational
effort in such attacks rests with deg(g)).

It is evident from the above analysis that the core process of fast algebraic
attacks is the identification of functions g, h with deg(g) = e, deg(h) = d
such that, for a given cryptographic function f € B,,, it holds f x ¢ = h and
e+ d < n. It is well-known that there always exists a pair g, h with degrees
e, d respectively such that e +d > n [13].

Pasalic in [38] introduced the following definition, to provide a unique ap-
proach for characterizing the resistance to both conventional and fast algebraic

attacks:

Definition 3.2. A Boolean function f € B, is called Algebraic Attack Re-
sistant (AAR) if it has mazimum algebraic immunity [ 3] and, moreover, for
any g ¢ AN(f) with deg(g) = e, 1 < e < [§] — 1, we necessarily have that
d = deg(f * g) satisfies e +d > n. The latter property is referred to as High
Degree Product (HDP) of order n.

It is proved in [38] that if f € B, satisfies HDP of order n, so does f + 1
and, furthermore, f has maximum algebraic immunity [%].

More recently, the notion of fast algebraic immunity has been introduced
in [29].
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Definition 3.3. The fast algebraic immunity of f € B,,, denoted by FAl,(f),
15 defined as

FALL(f) = min{2 Al,(f), deg(g) + deg(f * 9)} ,

ge

where 1 < deg(g) < Al,(f).

From the above analysis we get that FAl,(f) < n and, thus, functions of
the maximum possible fast algebraic immunity n are required to withstand
fast algebraic attacks. Moreover, it is obvious that FAIl,(f) = n if and only if
fis AAR.

A relationship between fast algebraic immunity and r-th order nonlinearity

has been recently proved in [49]:

Theorem 3.4. Let f € B, and d a positive integer. If nl,.(f) < Z?:o @
for some r < deg(f), then FAL,(f) <r + 2d.

Amongst the known families of functions achieving optimal algebraic im-
munity, those proposed in [7, 41] seem to behave well against fast algebraic

attacks. The construction given in [7] is described as follows:

Proposition 3.2. Let n be any integer such that n > 1 and « a primitive
element of the finite field Fon . Let also f € B,, such that

supp(f) = {0,1, o, &%, . . ., a2n71_2}.

Then f has mazimum algebraic immunity [%].

This class of functions, apart from balancedness and high (first-order) non-
linearity, seems to have good behavior against fast algebraic attacks (according
to experiments for small values of n). Modified versions of these functions are
provided in [41, 51], where it is also shown that these functions seem to be
resistant against fast algebraic attacks (although a mathematic proof is still

missing). More precisely, the construction in [41] is as follows.

Proposition 3.3. Let n > 1 be an integer and o be a primitive element of
the finite field Fon. If f € B, with supp(f) = {1,a,a?,...,a”""1} U S, where
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e SC {aD",...,aD"+b"+1} and |S| = 2" — D,
« D=5 (1)
e D, = ((g]),

then Al,(f) = [5].

Furthermore, in [51] it is shown that specific modified versions of the above
functions still have maximum algebraic immunity (and other cryptographic
properties). Finally, efficient strategies to appropriately modify all the above
classes of functions such as to ensure maximum algebraic immunity have been
recently proposed in [27]; however, there is still room for study concerning fast

algebraic immunity.

4 A trade-off between resistance to correla-

tion and fast algebraic attacks

We next prove a trade-off between correlation immunity and the HDP
property, which rests with the limitations occurring in the degree of a correlation-

immune function.

Proposition 4.1. If f € B, is m-th order correlation-immune Boolean
function for m > 2, then it does not satisfy the HDP property and, thus, it is
not AAR.

Proof. Due to our hypothesis, it holds deg(f) < n—m < n—3. Let us consider
any function g € B, with deg(g) = 1. Then, for the function h = g« f it holds
deg(h) < 14n—3 = n—2. Consequently, we have deg(h)+deg(g) < n—2+1=
n — 1 and the claim follows. O

Using the same arguments, we can also prove the following result.

Proposition 4.2. If f € B, is m-th order resilient Boolean function for
2 <m <n—2, then it does not satisfy the HDP property and, thus, it is not
AAR.
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From the above we get that, in general, correlation-immune functions are
not optimal in terms of withstanding fast algebraic attacks (a possible excep-
tion being the case of low-order correlation immunity); this is attributed to the
known trade-off between algebraic degree and correlation immunity. However,
it is the first time that such a trade-off between resistance to correlation and
fast algebraic attacks is being stated.

Next we focus on m-th order resilient functions since they are balanced
and, thus, are of most cryptographic importance. Working similarly as above,

we directly obtain the following.

Theorem 4.1. If f € B, is m-th order resilient Boolean function, then
FAL,(f) <n—m+1.

Proof. Recalling that deg(f) < n — m — 1, the proof is straightforward by

working similarly as in Proposition 4.2. O

From Theorem 4.1 we directly obtain the following result, which is an

equivalent re-statement of Proposition 4.2 in terms of fast algebraic immunity.

Corollary 4.2. Let f € B, be a m-th order resilient function, for 2 < m <
n — 2. Then it holds FAlL,(f) < n.

4.1 The Siegenthaler’s construction

A recursive procedure to construct an m-th order resilient Boolean function
has been provided in Siegenthaler’s seminal paper [46], based on the property
that if g, ¢’ € B, are both m-th order resilient, then f = ¢' || g € B, is
also m-th order resilient. Each step of the procedure starts with an m-th
order resilient Boolean function ¢ (obtained from the previous step), computes
¢' = gom by permuting the variables within g according to 7 € P,, (chosen
such that the highest degree terms of g, ¢" do not fully coincide), and then
outputs ¢’ || g. At the first step, we start with a linear function g € B,,,2, e.g.
g(x1, ..., Tmyo) = @1 + -+ + Xy and the transposition m = (m + 1, m + 2),

whilst at the final step we get an mth order resilient function f € B, of degree



74 Algebraic attacks on stream ciphers

n —m — 1. Note that function f is the concatenation of 2" ™ 2 sub-functions
on m + 2 variables.

As it is stated in [5], it is difficult to say whether the Siegenthaler’s con-
struction is good or bad in terms of algebraic immunity. In the sequel, we
analyse the Siegenthaler’s construction in terms of fast algebraic immunity.
Clearly, Theorem 4.1 implies that for m > 2 any function obtained via this
construction does not have maximum FAI; however, this result also holds for

m = 1, as shown next.

Proposition 4.3. For any 1-st order resilient function f € B, obtained via
the Siegenthaler’s construction, it holds FAl,(f) < n.

Proof. Each such function f of degree n — 2 has the form

f=h Hn Ja

where f1, fo € B,_; have degree n—3 and do not depend on x,,. Consequently,
this implies that the linear function g(xy,...,z,) = x, satisfies deg(f x g) <
n — 2 (since all the (n — 2)-th degree terms of f contain z,) and, hence, the

claim follows. O

Consequently, any function obtained via the Siegenthaler’s construction is
bound to have fast algebraic immunity less that n - and, thus, it is not AAR.
Clearly, such a result can be similarly proved for any other function f that is
constructed via concatenation of other functions (since the terms in the ANF
of f with maximum degree share a common variable). Consequently, although
the behavior of these functions in terms of algebraic immunity still remains an
open problem, it becomes evident that they do not provide resistance against

fast algebraic attacks.

4.1.1 Second—order nonlinearity

Apart from the fast algebraic immunity, it should be stressed that the
functions obtained via the Siegenthaler’s construction may not behave well in
terms of withstanding low order approximation attacks. More precisely, the
permutation of variables that takes place in the construction process has - in

general - impact on the second-order nonlinearity of the derived function. For
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instance, let us consider the case of a cubic function f € Bs obtained via the

Siegenthaler’s construction; clearly, one such function is the following:
f=4dls9
where
g(x, ... xq) = (1 +23) ||a (1 + 22) = Towy + 2324 + 1 + X9

and ¢’ is obtained by ¢ via a permutation of the variables (such that deg(g +
g') = 2). It is easy to verify that any such function f satisfies the conditions
implied by Theorem 2.2. Let us now assume that ¢’ is obtained from ¢ via the

following permutation of variables:
7 (1,2,3,4) = (2,1,3,4)
that is ¢’ = o124 + w324 + 1 + 9. In this case, it holds (due to Theorem 2.2):
nly(f) = 272 — on-2=h

where 2h is the rank of the symplectic matrix that is associated with the

quadratic form
(xomy + x324) + (X124 + T324) = T4(T) + T2)

and, thus, h = 1 [31]. Consequently, the 1-th order resilient function f satisfies
nly(f) = 4 - that is the minimum possible (note also that, since 4 < "1 ),
we again get that FAI,(f) < 5 due to Theorem 3.4).

On the other hand, if ¢’ is obtained from g via 7’ = (1,2,3,4) — (2,3,4,1),
then ¢’ = z123+ 2124+ x2 + 23, and the l-resilient function f' = ¢' || ¢ satisfies
nly(f') = 22 — 2" "2 where 2}/ is the rank of the symplectic matrix that is
associated with the quadratic form wex4 + 2324 + 1203 + x124. Note that this

quadratic form can be written as

Y1Yo + Ysys + 1

where y; = x1, ¥yo = X9, y3 = v1 + 29 + 23, Y4 = 1 + x4. Hence, since all y;,
i=1,2,3,4, are linearly independent, we get that b’ = 2 [31], thus resulting in
nly(f’) = 6. Concluding, the permutations at each step affect the second-order

nonlinearity.
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5 Conclusions

The resistance of stream ciphers against algebraic attacks was studied in
this paper. More precisely, a survey of the recent findings in this area is
provided, whereas new results are proved regarding tradeoffs that exist between
resistance to correlation and fast algebraic attacks. The main outcome of our
analysis is that functions of very low order correlation immunity should be
chosen in order to thwart fast algebraic attacks, whereas it is also shown that
even the first order correlation immunity (i.e. the minimum possible to provide
resistance against correlation attacks) does not necessarily ensure resistance
against fast algebraic attacks.

Many directions for further research are still open; for instance, an inter-
esting challenge is to evaluate known powerful constructions of Boolean func-
tions in terms of their fast algebraic immunity. Moreover, other algebraic-type
attacks that have been recently proposed, such as the fast selective discrete
Fourier transform (DFT) [20] attacks, need to be further explored and inves-
tigated.
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