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Abstract

In this paper, Numerical Linear Algebra techniques for data encod-
ing and decoding are presented. The algorithms are based on matrix
triangularization leading to an efficient coding procedure. Rounding off
errors can cause serious problems in the process of coding and thus the
decoding may be led to inaccurate results. Techniques for improving
the stability of the whole process are proposed. The complexity and
the error analysis of the proposed methods are discussed. Examples
illustrating the algorithms are presented.
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1 Introduction

The application of Numerical Linear Algebra procedures in data encryption

has attracted the scientists in recent years. Among matrix factorization, LU is

the most popular. Except from the solution of Linear Systems, severa; other

applications using LU factorization arise as the computation of the Greatest

Common Divisor of several polynomials [1, 9], image deblurring [7, 10] in

Copmuter Graphics and many other.

In [6], an alternative approach for the generation of new cryptographic

functions, applying the LU factorization to Vandermonde matrices is proposed.

An approach integrating data encryption and distribution is presented in [2]

and the authors in [8, 12] take full advantage of the characteristics of the sparse

parity check matrix, such as cyclicity and equality of row weight.

In this paper an application of matrix triangularization in encoding and

decoding data is presented. More precisely, a known method which uses non-

orthogonal transformations is developed and an improved version of the pro-

posed algorithm in [2] is presented. Non-orthogonal transformations are faster

than the orthogonal ones. Orthogonal transformations are more stable but

require more floating point operations. Rounding off errors during numerical

computations in floating point arithmetic can lead to wrong data decoding

when Numerical Linear Algebra methods are used. A scope of this paper is

to improve the stability of the algorithms in order to conclude to efficient and

reliable procedures which encode in a safe way the initial data and guarantee

a solid decoding.

In Section 2, the required theoretical background is presented and tech-

niques improving the stability of the methods are proposed. In Section 3,

the application of the described methods in data encryption and decryption is

presented. In Section 4, useful conclusions are presented.

2 Triangularization of a matrix

There are various methods for triangularizing a matrix. These methods

can be separated in two categories. The first one uses non-orthogonal trans-

formations and the second orthogonal. The algorithms can be implemented
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either numerically or symbolically. The numerical evaluation of the computa-

tions in floating point arithmetic makes the procedure faster but rounding off

errors such as catastrophic cancellation of significant digits can cause serious

problems to the stability of the methods. On the other hand, the symboli-

cal evaluation of the computations guarantees that the final result will be the

real one, with no errors, but the increase of the required time is significant.

Below, the LU factorization with pivoting using non-orthogonal orthogonal

transformations is presented.

2.1 LU factorization with pivoting

The LU factorization of a matrix A results through row operations (Gaus-

sian elimination) to a lower triangular matrix L and an upper one U such

that A = L ·U . There are two decompositions achieving the previous scheme:

Doolittle’s results to a unit lower triangular matrix L and an upper U and

Crout’s to a unit upper triangular matrix U and a lower L. In order to enforce

the stability of the algorithm, partial or complete pivoting can be used. More

precisely, in partial pivoting, in k−th step of the procedure, the row with the

largest aii, i = k, k + 1, . . . , m, element is interchange with the k − th one, in

order to keep the multipliers less or equal to 1. In this manner, the whole

procedure is stable in practise. Another issue that must be discussed is the

inner tolerance of the procedure. Due to rounding off errors, it is possible some

negligible quantities to appear. These quantities should be zeroed. An inner

tolerance εt is used for this purpose. We zero any element which is less in

absolute value than εt. The choice of the most suitable εt is not easy. Different

εt’s can lead to different results. Bellow, the LU factorization with partial

pivoting of an m× n matrix is presented.

Algorithm LU Factorization with row pivoting

for k = 1 : min{m− 1, n}
Find r : |ar,k| = maxk≤i≤m{|ai,k|}
Interchange rows k and r

mik = sik/skk, i = k + 1 : m

aij = aij −mikakj, i = k + 1 : m, j = k + 1 : n
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Set ai,j = 0 if |ai,j| ≤ εt, i = k : m + n, j = k : m + n

Row interchanges can be saved in a vector p, where pi is the number of

row which is the pivot one in step i of the procedure. If Pi is the permutation

matrix in step i and P = Pn−1 · . . . ·P2 ·P1, then the Gaussian elimination with

partial pivoting yields LU factorization of a permuted matrix A as it is shown

in the following scheme.

P · A = L · U.

In order to improve the stability, the LU factorization with complete pivoting

can be used. The difference with partial pivoting is that in every step includes

not only rows but also column interchanges. The column interchanges are

saved again in a vector q and if Qi is the column permutation matrix in step

i and Q = Q1 ·Q2 . . . Qn−1 then it holds

P · A ·Q = L · U.

2.2 Numerical Complexity

The required floating point operations of LU factorization of an m × n

matrix is O(n2(m− n
3
)).

2.3 Error Analysis

The LU factorization, is the exact factorization of the slightly disturbed

initial matrix A:

A + E = L · U, ||E||∞ ≤ n2ρu||A||∞,

where ρ is the growth factor (in case of row pivoting) and u the unit round off.

The theoretical bound of the norm of the error matrix is unfortunately large

because of the growth factor. More precisely,

ρ ≤ 2n−1
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in Gaussian elimination with partial and

ρ ≤ (n · 21 · 31/2 · 41/3 · . . . · n1/(n−1))1/2

in complete pivoting respectively [3, 11]. Wilkinson in [11] and Higham and

Higham in [5] have constructed matrices for which the upper bound of the of

the growth factor is attained in partial pivoting. In practise, these examples for

which the LU factorization with partial pivoting fails are rare. They can not

be found in real applications, since the elements of the initial matrix have to

satisfy some relationships in order to fail the algorithm (we have to construct

such matrices). It follows that the LU factorization with partial pivoting can

be considered stable in practise and it is the most popular algorithms for trian-

gularizing a matrix. The bound for the growth factor in complete pivoting is a

slowly growing function of n, it is not attained in practice and thus Gaussian

elimination with complete pivoting is a stable procedure.

Although the LU factorization with partial pivoting is stable in practice,

if the entries of A vary widely, then there is a chance the accuracy of the

procedure to be affected. More precisely, it is possible during the Gaussian

elimination, a small number to be added to a large one. In this case, due

to catastrophic cancellation of significant digits in exponential alignment, the

results of the computations could lead to failure as it is shown below.

Example 2.1. Let A =

[
10 106

1 1

]
and b =

[
106

2

]
. Then, applying

Gaussian elimination with row pivoting in order to solve the system A · x = b

in a 4 digit arithmetic the result is x =

[
0

1

]
which differs significant from

the real solution which approximately is x =

[
1

1

]
. In order to treat in an

efficient way such circumstances, a suitable scaling of the entries of the initial

matrix can be chosen. More specifically, using an invertible diagonal matrix

D such that the entries of every row of D−1 ·A to be of the same order, we can

solve equivalently the system D−1 ·A ·x = D−1 · b. Similarly, we can scale rows

and columns of A by multiplying it with D−1
1 and D2 from the left and the

right respectively. In this case, the largest element in magnitude of D−1
1 ·A ·D2

is between 1/β and 1, where β is the base of the number system [3]. Thus, we
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have to solve the system





D−1
1 · A ·D2 · y = D−1

1 · b

y = D−1
2 · x

The previous procedure is known as equilibration [4].

3 Application to data encryption and decryp-

tion

Let A be an n× n matrix containing the initial information which can be

eg. a text or an image. The text can be easily transformed to numbers. An

image can be represented by non negative integers as follows.

Let I be a 2D image of dimensions n × n. The previous image can be

represented by a 2D matrix of size n× n. The (i, j)-th element of the matrix

I corresponds to the color values of the position of the (i, j)-th pixel of the

image. Thus

I =




I1,1 I1,2 I1,3 . . . I1,n

I2,1 I2,2 I2,3 . . . I2,n

...
...

... . . .
...

...
...

... . . .
...

In,1 In,2 In,3 . . . In,n




If the image is in grayscale, only one such matrix is needed for its repre-

sentation. The element Ii,j denotes the grayscale shade value of the (i, j)-th

pixel of the image (intensity information). The value 0 corresponds to black

(weakest intensity) and 1 corresponds to white (strongest intensity). In case

that the initial image is coloured then three such matrices are needed, one for

Red, one for Green and one for Blue (RGB).

The scheme of the LU factorization evaluates a secret variance and si-

multaneously, an encryption of the initial data, since a part of the encrypted

information is saved in the lower triangular matrix L and another one in the
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Figure 1: LU Decomposition

upper triangular U (see Figure 1). The extraction of the initial data is im-

possible, since it is an NP-hard problem to reconstruct the initial matrix A

knowing only L or only U [2].

Although the proposed algorithm provides high security in data encoding,

the use of floating point arithmetic can cause some serious problems in the

evaluation of the procedure as it is discussed in Section 2. The use of partial

or complete pivoting can offer even more security improving the stability of the

algorithm without increasing significantly the required complexity and storage

capacity. The scaling of the initial data, as described in Section 2, can also

protect the proposed method from some more extreme circumstances, where

the entries of the initial matrix A, containing the initial data, vary widely.

This variation would be intended in data encoding for security reasons but

simultaneously makes the evaluation of the algorithms more liable to rounding

off errors and can lead the whole process to failure (eg. false decoding).

Another issue is the use of the inner tolerance εt in the encoding proce-

dure. As it is mentioned in Section 2, different εt’s can lead to different LU

factorizations. The proper selection of the quantity εt is not always an easy

task and it depends many times on the initial data. A wrong choice of εt can

result to such matrices L and U that lead the decoding process to failure.

Data recovery can be achieved using the formula for matrix multiplication:

A = L ·U (without pivoting, not stable), P ·A = L ·U (with partial pivoting)

or P ·A ·Q = L ·U (with complete pivoting), where P and Q are the identity

matrix with interchanged rows/columns. In order to decrease the required

storage capacity, L can be saved in the lower triangular of A and U in the up-

per one (the ones in diagonal is not needed to be saved) and the row/column
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interchanges can be saved in a vector v/u instead of a two-dimensional matrix

P/Q respectively. In this manner, the required storage capacity is the same

with that of the initial data. The multiplications are evaluated taking advan-

tage of the special form of L and U reducing the required complexity.

Example 3.1. Let A =




10 1 2 1020

2 5 1 1

2 1 3 1

2 1012 1 2


 be the matrix containing

the initial data which have to be encoded. Applying the LU factorization with

partial pivoting to A we get

L =

[
1.000000000000000 0 0 0

0.200000000000000 1.000000000000000 0 0

0.200000000000000 0.000000000000800 1.000000000000000 0

0.200000000000000 0.000000000004800 0.230769230768166 1.000000000000000

]
,

U =

[
10 1 2 1020

0 9.999999999998001 · 1011 0.600000000000000 −2.000000000000000 · 1019

0 0 2.599999999999520 −1.999999999998400 · 1019

0 0 0 −1.538461538454438 · 1019

]
,

and the permutation matrix

P =




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0




which can be stored as the vector p = [1 4 3 2] for saving storage capacity.

As we can observe, the entries of some rows of A vary widely. As it is shown

below, this variation caused serious problems during the numerical evaluation

of LU factorization with partial pivoting, leading to an inaccurate final result.

The product of P ·L·U , which is the decoding, should be equal with the matrix

A, which includes the initial data. But,

A− P · L · U =




0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 2




which means that the encoded message was wrong decoded.
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In order to encode and decode efficiently the previous data, we use scaling

before the partial pivoting. More precisely, we multiply matrix A from the left

with D1
−1 and from right with D2, where

D1 =

[
‖A(1, :)‖F 0 0 0

0 ‖A(2, :)‖F 0 0

0 0 ‖A(3, :)‖F 0

0 0 0 ‖A(4, :)‖F

]

=

[
1020 0 0 0

5.567764362830022 0 0 0

0 0 3.872983346207417 0

0 0 0 1012

]
,

D2 =




1
‖A(1,:)‖F

0 0 0

0 1
‖A(2,:)‖F

0 0

0 0 1
‖A(3,:)‖F

0

0 0 0 1
‖A(4,:)‖F




=

[
0.094491118252307 0 0 0

0 0.000000000001000 0 0

0 0 0.258198889747161 0

0 0 0 10−20

]
,

where A(i, :) denotes the i-th row of matrix A, A(:, j) denotes the j-th column

of matrix A and ‖.‖F denotes the Frobenius norm.

Applying the LU factorization with partial pivoting to D−1
1 ·A ·D2 we get

L =

[
1.000000000000000 0 0 0

0.000000000003873 1.000000000000000 0 0

0.695608343640252 0.718421208107818 1.000000000000000 0

0.000000000000000 −0.000000000000000 0.000000000000000 1.000000000000000

]
,

U =

[
0.048795003647427 0.000000000000258 0.200000000000000 0.258198889747161 · 10−20

0 0.000000000001000 −0.000000000000516 0.000000000001000 · 10−20

0 0 −0.092747779151663 −0.000000000000718 · 10−20

0 0 0 1.000000000000000 · 10−20

]
,

and the permutation matrix

P =




0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0


 .

Now,

D−1
1 · A · −P · L · U =




0 0 0 0

−0.252 · 10−28 0 −0.505 · 10−28 0

0 0 0.139 · 10−16 0

0 −8.211 · 10−48 −3.009 · 10−36 0




which means that the error in the decoding is of the order of the epsilon of the

machine.
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4 Conclusions

In this paper we presented an application of the LU factorization with par-

tial or complete pivoting for data encoding and decoding. The LU factorization

accomplishes a dispersal and an encryption of initial data. The extraction of

initial data, even if the matrix L or U is available, is an NP-hard problem.

Rounding off errors and not proper selection of inner tolerance εt during the

numerical evaluation of data encoding using LU factorization with partial or

complete pivoting can lead to inaccurate decoding. The use of scaling (row

or/and column) in the initial data improves significant the behaviour of the

procedure resulting to an efficient and reliable method.
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