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Abstract

The paper deals with the oscillation and asymptotic behavior of solu-
tions of the third-order nonlinear delay dynamic equation
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on a time scale T, where α, β > 0 are quotients of odd positive integers.
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of the equation either oscillates or converges to zero. Our results extend
and improve some known results.

Mathematics Subject Classification: 34N05

Keywords: Oscillation; Asymptotic behavior; Third-order nonlinear delay

dynamic equation; Time scale

1 College of Science, Hunan Institute of Engineering, 88 East Fuxing Road,
Xiangtan 411104, Hunan, P. R. China, e-mail: cdx2003@163.com

Article Info: Received : October 29, 2012. Revised : December 28, 2012
Published online : April 15, 2013



20 Oscillation and Asymptotic Behavior of Solutions of Dynamic Equations

1 Introduction

In this paper, we are concerned with the oscillation and asymptotic behav-

ior of solutions of the third-order nonlinear delay dynamic equation

{
b(t)

([
a(t)

(
x∆(t)

)α
]∆

)β}∆

+ f(t, x(τ(t))) = 0 (1)

on a time scale T. Throughout this paper we assume that the following con-

ditions hold:

(S1) supT = ∞, and α and β are quotients of odd positive integers;

(S2) t0 ∈ T, I := {t : t ∈ T, t ≥ t0}, a, b ∈ Crd(I,R), a(t), b(t) > 0 for t ∈ I,∫∞
t0

a−1/α(t)∆t = ∞, and
∫∞

t0
b−1/β(t)∆t = ∞;

(S3) τ ∈ Crd(T,T), τ(t) ≤ t for t ∈ I, and limt→∞ τ(t) = ∞;

(S4) f ∈ C(I × R,R), and there exists a positive rd-continuous function q

defined on I such that f(t, u)/(uγ) ≥ q(t) for all t ∈ I and for all u 6= 0,

where γ := αβ;

(S5) τ∆(t) > 0 is rd-continuous on T, T̃ := τ(T) = {τ(t) : t ∈ T} ⊂ T is a

time scale, and (τσ)(t) = (σ ◦ τ)(t) for all t ∈ T, where σ is the forward

jump operator on T and (τσ)(t) := (τ ◦ σ)(t).

Recall that a solution of (1) is a nontrivial real function x such that

x ∈ C1
rd[tx,∞), a(x∆)α ∈ C1

rd[tx,∞), b([a(x∆)α]∆)β ∈ C1
rd[tx,∞) for a certain

tx ≥ t0, and x satisfies (1) for t ≥ tx. Our attention is restricted to those

solutions of (1) which exist on the half-line [tx,∞) and satisfy sup{|x(t)| : t >

t∗} > 0 for any t∗ ≥ tx. A solution x of (1) is said to be oscillatory if it is nei-

ther eventually positive nor eventually negative, otherwise it is nonoscillatory.

Equation (1) is said to be oscillatory if all its solutions are oscillatory.

In this work a knowledge and understanding of time scales and of time

scale notations is assumed; for an excellent introduction to the calculus on

time scales, see Bohner and Peterson [15, 16]. A time scale T is an arbitrary

nonempty closed subset of the reals, and the cases when this time scale is equal

to the reals or to the integers represent the classical theories of differential

equations and of difference equations. Many interesting time scales exist, and
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they give rise to many applications (see [15]). The new theory of the so-called

“dynamic equations” not only can unify the theories of differential equations

and of difference equations, but also is able to extend these classical cases

to cases “in between,” e.g., to the so-called q-difference equations when T =

qN0 := {qk : k = 0, 1, 2, · · · , q > 1} (which has important applications in

quantum theory) and can be applied to different types of time scales like T =

hZ := {hk : k ∈ Z, h > 0},T = N2
0 := {k2 : k = 0, 1, 2, · · · } and T = Hn the

space of harmonic numbers. In the last few years, there has been an increasing

interest in obtaining sufficient conditions for the oscillation/nonoscillation and

asymptotic behavior of solutions of different classes of dynamic equations, and

we refer the reader to the papers [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17,

18, 19, 20, 21, 22, 23, 24] and the references cited therein.

Recently, Erbe et al. [11] considered the case when α = 1, β ≥ 1 is a

quotient of odd positive integers and τ(t) = t in (1) and established some

sufficient conditions which ensure that every solution of (1) either oscillates or

has a finite limit at ∞. Besides, Erbe et al. [14] studied the case when α = 1

and β is a quotient of odd positive integers in (1) and improved and extended

the results in [11]. Hassan [22] investigated the case when α = 1 and β ≥ 1 is

a quotient of odd positive integers in (1) and gave several oscillation criteria

for (1). Yu and Wang [24] were concerned with the case when α and β are

quotients of odd positive integers, αβ = 1 and τ(t) = t in (1) and obtained two

sufficient conditions for the asymptotic and oscillatory behavior of solutions of

(1).

It is clear that what the papers [11, 14, 22, 24] considered are some special

cases of (1) and that the results in [11, 14, 22, 24] cannot be applied to the

general cases of (1). For instance, all the results in [11, 14, 22] cannot be

applied to (1) when α 6= 1, the results in [11, 24] are invalid when τ(t) 6= t,

and the results in [24] fail to be applied to (1) when αβ 6= 1. Therefore, it

is of great interest to investigate the oscillation and asymptotic behavior of

solutions of (1) in the general cases. In this paper, for the case when α and

β are quotients of odd positive integers and τ(t) ≤ t, we establish several

sufficient conditions which ensure that every solution of (1) either oscillates or

tends to zero. Our results extend and improve some of the results presented

in [11, 14, 22, 24].

In what follows, for convenience, when we write a functional inequality
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without specifying its domain of validity we assume that it holds for all suffi-

ciently large t.

2 Lemmas

Lemma 2.1 (Chen [7], Lemma 2.3). Suppose that (S5) holds. Let x :

T → R. If x∆(t) exists for all sufficiently large t ∈ T, then (x ◦ τ)∆(t) =

(x∆ ◦ τ)(t)τ∆(t) for all sufficiently large t ∈ T.

Lemma 2.2 (Chen [7], Lemma 2.4). Let ψ : T → R and λ > 0 be a

constant. Furthermore, assume ψ∆(t) > 0 and ψ(t) > 0 for all sufficiently

large t ∈ T. Then we have the following:

(i) If 0 < λ < 1, then (ψλ)∆(t) ≥ λ(ψσ)λ−1(t)ψ∆(t) for all sufficiently large

t ∈ T, where ψσ := ψ ◦ σ;

(ii) If λ ≥ 1, then (ψλ)∆(t) ≥ λψλ−1(t)ψ∆(t) for all sufficiently large t ∈ T.

Lemma 2.3 (Hardy et al. [8]). If A and B are nonnegative, then

λABλ−1 − Aλ ≤ (λ− 1)Bλ when λ > 1,

where the equality holds if and only if A=B.

Lemma 2.4. Suppose that (S1)–(S4) and the following condition hold:

∫ ∞

t0

{
a−1(s)

∫ ∞

s

[
b−1(u)

∫ ∞

u

q(v)∆v

]1/β

∆u

}1/α

∆s = ∞. (2)

Furthermore, suppose that (1) has an eventually positive solution x. Then

[
a(t)

(
x∆(t)

)α
]∆

> 0, (3)

and either x∆(t) > 0 or limt→∞ x(t) = 0.
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Proof. Since x is an eventually positive solution of (1), form (S3) there exists

t1 ≥ t0 such that

x(t) > 0 and x(τ(t)) > 0 for t ∈ [t1,∞). (4)

Therefore, from (1) and (S4) we have for t ∈ [t1,∞),

{
b(t)

([
a(t)

(
x∆(t)

)α
]∆

)β}∆

= −f(t, x(τ(t))) ≤ −q(t)xγ(τ(t)) < 0, (5)

which implies that b(t)
([

a(t)
(
x∆(t)

)α
]∆)β

is strictly decreasing on [t1,∞).

Thus,
[
a(t)

(
x∆(t)

)α
]∆

is eventually of one sign, i.e.,
[
a(t)

(
x∆(t)

)α
]∆

is even-

tually positive or eventually negative.

We now claim
[
a(t)

(
x∆(t)

)α
]∆

> 0 for t ∈ [t1,∞). (6)

If not, then there exists t2 ≥ t1 such that

[
a(t)

(
x∆(t)

)α
]∆

< 0 for t ∈ [t2,∞). (7)

Since b(t)
([

a(t)
(
x∆(t)

)α
]∆)β

is strictly decreasing on [t1,∞), we get

b(t)
([

a(t)
(
x∆(t)

)α
]∆)β

≤ b(t2)
([

a(t2)
(
x∆(t2)

)α
]∆)β

:= c1 < 0

for t ∈ [t2,∞). Therefore, we conclude
[
a(t)

(
x∆(t)

)α
]∆

≤ c
1/β
1 b−1/β(t) for

t ∈ [t2,∞). Integrating both sides of the last inequality from t2 to t, we obtain

a(t)
(
x∆(t)

)α ≤ a(t2)
(
x∆(t2)

)α
+ c

1/β
1

∫ t

t2

b−1/β(s)∆s for t ∈ [t2,∞).

Letting t → ∞ and using (S2), we get limt→∞ a(t)
(
x∆(t)

)α
= −∞. Thus,

there exists t3 ≥ t2 such that a(t3)
(
x∆(t3)

)α
< 0. It follows from (7) that

a(t)
(
x∆(t)

)α
is strictly decreasing on [t2,∞). Hence, we obtain a(t)

(
x∆(t)

)α ≤
a(t3)

(
x∆(t3)

)α
:= c2 < 0 and x∆(t) ≤ c

1/α
2 a−1/α(t) for t ∈ [t3,∞). Integrating

both sides of the last inequality from t3 to t, we find

x(t) ≤ x(t3) + c
1/α
2

∫ t

t3

a−1/α(s)∆s for t ∈ [t3,∞).
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Letting t → ∞ and using (S2), we get limt→∞ x(t) = −∞, which contradicts

the fact that x is an eventually positive solution of (1). Therefore, (6) holds.

From (6) we conclude that a(t)
(
x∆(t)

)α
is strictly increasing on [t1,∞).

Thus, a(t)
(
x∆(t)

)α
as well as x∆(t) is eventually of one sign, i.e., a(t)

(
x∆(t)

)α

as well as x∆(t) is eventually positive or eventually negative. If x∆(t) is even-

tually negative, then we obtain limt→∞ x(t) := l1 ≥ 0 and

lim
t→∞

a(t)
(
x∆(t)

)α
:= l2 ≤ 0, (8)

and we conclude that there exists t4 ≥ t1 such that x(t) ≥ l1 for t ∈ [t4,∞).

Thus, from (S3) there exists t5 ∈ [t4,∞) such that

x(τ(t)) ≥ l1 for t ∈ [t5,∞). (9)

Next, we prove l1 = 0. From (5) and (9) we obtain

{
b(t)

([
a(t)

(
x∆(t)

)α
]∆

)β}∆

≤ −q(t)xγ(τ(t)) ≤ −lγ1q(t) for t ∈ [t5,∞),

Integrating both sides of the last inequality from t to u, we get

− b(t)

([
a(t)

(
x∆(t)

)α
]∆

)β

< b(u)

([
a(u)

(
x∆(u)

)α
]∆

)β

− b(t)

([
a(t)

(
x∆(t)

)α
]∆

)β

≤ −lγ1

∫ u

t

q(v)∆v for u ≥ t ≥ t5.

Letting u → ∞, we have −b(t)
([

a(t)
(
x∆(t)

)α
]∆)β

≤ −lγ1
∫∞

t
q(v)∆v and

−
[
a(t)

(
x∆(t)

)α
]∆

≤ −l
γ/β
1

[
b−1(t)

∫∞
t

q(v)∆v

]1/β

for t ∈ [t5,∞). Integrating

both sides of the last inequality from t to ∞, we conclude for t ∈ [t5,∞)

a(t)
(
x∆(t)

)α ≤ −l2 + a(t)
(
x∆(t)

)α ≤ −l
γ/β
1

∫ ∞

t

[
b−1(u)

∫ ∞

u

q(v)∆v

]1/β

∆u,

where l2 is defined as in (8). Hence, we have

x∆(t) ≤ −l1

{
a−1(t)

∫ ∞

t

[
b−1(u)

∫ ∞

u

q(v)∆v

]1/β

∆u

}1/α

for t ∈ [t5,∞).
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Integrating both sides of the last inequality from t5 to t, we obtain for t ≥ t5,

x(t) ≤ x(t5)− l1

∫ t

t5

{
a−1(s)

∫ ∞

s

[
b−1(u)

∫ ∞

u

q(v)∆v

]1/β

∆u

}1/α

∆s.

Assume l1 > 0. Letting t →∞ and using (2), we see limt→∞ x(t) = −∞, which

contradicts the fact that x is an eventually positive solution of (1). Therefore,

we have l1 = 0, which implies limt→∞ x(t) = 0. The proof is complete.

Lemma 2.5. Suppose that (S1)–(S4) hold and that x is an eventually positive

solution of (1). Furthermore, assume that there exists T∗ ∈ [t0,∞) such that[
a(t)

(
x∆(t)

)α
]∆

> 0 and x∆(t) > 0 for t ∈ [T∗,∞). Then there exists T ≥ T∗
such that

x∆(t) > g1(t, T )b1/γ(t)
([

a(t)
(
x∆(t)

)α
]∆)1/α

for t ∈ [T,∞), (10)

where g1(t, T ) := a−1/α(t)
( ∫ t

T
b−1/β(s)∆s

)1/α

, here γ is defined as in (S4).

Proof. Proceeding as in the proof of Lemma 2.4, we obtain (4) and (5). Let

T := max{t1, T∗}. Since x∆(t) > 0 for t ∈ [T,∞), we have for t ∈ [T,∞),

a(t)
(
x∆(t)

)α
> a(t)

(
x∆(t)

)α − a(T )
(
x∆(T )

)α

=

∫ t

T

{
b1/β(s)

[
a(s)

(
x∆(s)

)α
]∆

}
b−1/β(s)∆s. (11)

From (5) we obtain that b(t)
([

a(t)
(
x∆(t)

)α
]∆)β

is strictly decreasing on [T,∞).

Thus, we get b(s)
([

a(s)
(
x∆(s)

)α
]∆)β

≥ b(t)
([

a(t)
(
x∆(t)

)α
]∆)β

for t ≥ s ≥
T and

b1/β(s)
[
a(s)

(
x∆(s)

)α
]∆

≥ b1/β(t)
[
a(t)

(
x∆(t)

)α
]∆

for t ≥ s ≥ T. (12)

It follows from (11) and (12) that

a(t)
(
x∆(t)

)α
> b1/β(t)

[
a(t)

(
x∆(t)

)α
]∆

∫ t

T

b−1/β(s)∆s

and

x∆(t) > a−1/α(t)b1/γ(t)
([

a(t)
(
x∆(t)

)α
]∆)1/α

( ∫ t

T

b−1/β(s)∆s

)1/α

= g1(t, T )b1/γ(t)
([

a(t)
(
x∆(t)

)α
]∆)1/α

for t ∈ [T,∞), (13)

where g1(t, T ) is defined as in Lemma 2.5. The proof is complete.
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3 Main Results

Theorem 3.1. Assume that (S1)–(S5) and (2) hold. Furthermore, suppose

that, for all sufficiently large T ∈ [t0,∞), there exist T1 > T and a positive

function ϕ ∈ C1
rd(I,R) such that τ(T1) > T and

lim sup
t→∞

∫ t

T1

{
ϕ(s)q(s)− (ϕ∆

+(s))γ+1

(γ + 1)γ+1[τ∆(s)ϕ(s)g1(τ(s), T )]γ

}
∆s = ∞, (14)

where ϕ∆
+(s) := max{ϕ∆(s), 0} and the function g1 is defined as in Lemma 2.5.

Then every solution of (1) either oscillates or tends to zero.

Proof. Let x be a nonoscillatory solution of (1). Without loss of generality,

we may assume that x is an eventually positive solution of (1). Proceeding as

in the proof of Lemma 2.4, we see that there exists t1 ∈ [t0,∞) such that (4)

and (5) hold. By Lemma 2.4, there exists t2 ∈ [t1,∞) such that (3) holds for

t ∈ [t2,∞) and either x∆(t) > 0 for t ∈ [t2,∞) or limt→∞ x(t) = 0. Assume

x∆(t) > 0 for t ∈ [t2,∞). Consider the generalized Riccati substitution

w(t) = Q(t)
ϕ(t)

xγ(τ(t))
for t ∈ [t2,∞), (15)

where Q(t) := b(t)
([

a(t)
(
x∆(t)

)α
]∆)β

and γ is defined as in (S4). It is easy

to see that w(t) > 0 for t ∈ [t2,∞). By the following product and quotient

rules for the delta derivatives of the product FG and the quotient F/G of two

delta differentiable functions F and G:

(FG)∆ = F∆G + F σG∆ and
(F

G

)∆

=
F∆G− FG∆

GGσ
=

F∆

Gσ
− FG∆

GGσ
,

where F σ := F ◦ σ,Gσ := G ◦ σ and GGσ 6= 0, from (15) we get

w∆ = Q∆ ϕ

(x ◦ τ)γ
+ Qσ

[ ϕ

(x ◦ τ)γ

]∆

= Q∆ ϕ

(x ◦ τ)γ
+ Qσ

[ ϕ∆

(x ◦ τσ)γ
− ϕ

[(x ◦ τ)γ]∆

(x ◦ τ)γ(x ◦ τσ)γ

]
on [t2,∞). (17)

Hence, from (5), (15) and (17) we have

w∆ ≤ −ϕq +
ϕ∆

ϕσ
wσ − ϕ

Qσ[(x ◦ τ)γ]∆

(x ◦ τ)γ(x ◦ τσ)γ

≤ −ϕq +
ϕ∆

+

ϕσ
wσ − ϕ

Qσ[(x ◦ τ)γ]∆

(x ◦ τ)γ(x ◦ τσ)γ
on [t2,∞), (18)
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where ϕ∆
+ is defined as in Theorem 3.1. From (S5) and Lemma 2.1, there exists

t3 ∈ [t2,∞) such that

(x ◦ τ)∆ = (x∆ ◦ τ)τ∆ > 0 on [t3,∞). (19)

If 0 < γ < 1, then by taking ψ = x ◦ τ and by Lemma 2.2 (i) and (19)

there exists t4 ∈ [t3,∞) such that

[(x◦τ)γ]∆ ≥ γ(x◦τσ)γ−1(x◦τ)∆ = γ(x◦τσ)γ−1(x∆ ◦τ)τ∆ on [t4,∞). (20)

It follows from (18) and (20) that

w∆ ≤ −ϕq +
ϕ∆

+

ϕσ
wσ − ϕ

Qσ · γ(x ◦ τσ)γ−1(x∆ ◦ τ)τ∆

(x ◦ τ)γ(x ◦ τσ)γ

= −ϕq +
ϕ∆

+

ϕσ
wσ − γτ∆ϕ

Qσ

(x ◦ τσ)γ+1
· (x ◦ τσ)γ

(x ◦ τ)γ
(x∆ ◦ τ) (21)

on [t4,∞). If γ ≥ 1, then by taking ψ = x ◦ τ and by Lemma 2.2 (ii) and (19)

there exists t5 ≥ t4 such that

[(x ◦ τ)γ]∆ ≥ γ(x ◦ τ)γ−1(x ◦ τ)∆ = γ(x ◦ τ)γ−1(x∆ ◦ τ)τ∆ on [t5,∞). (22)

It follows from (18) and (22) that

w∆ ≤ −ϕq +
ϕ∆

+

ϕσ
wσ − ϕ

Qσ · γ(x ◦ τ)γ−1(x∆ ◦ τ)τ∆

(x ◦ τ)γ(x ◦ τσ)γ

= −ϕq +
ϕ∆

+

ϕσ
wσ − γτ∆ϕ

Qσ

(x ◦ τσ)γ+1
· (x ◦ τσ)

(x ◦ τ)
(x∆ ◦ τ) (23)

on [t5,∞). From (S5) we see τ(t) is increasing on T. Since t ≤ σ(t) for t ∈ T,

we have τ(t) ≤ τσ(t) for t ∈ T. In view of x∆(t) > 0 for t ∈ [t2,∞), we have

(x ◦ τ)(t) ≤ (x ◦ τσ)(t) for t ∈ [t2,∞). Therefore, for all γ > 0, from (21) and

(23) we get

w∆ ≤ −ϕq +
ϕ∆

+

ϕσ
wσ − γτ∆ϕ

Qσ

(x ◦ τσ)γ+1
(x∆ ◦ τ) on [t5,∞). (24)

From (10) and the definition of the function Q, there exists T ∈ [t5,∞)

such that x∆(t) > g1(t, T )Q1/γ(t) for t ∈ [T,∞). Take t6 ∈ (T,∞) such that

τ(t) > T for t ∈ [t6,∞). Then we get (x∆ ◦ τ)(t) > g1(τ(t), T )Q1/γ(τ(t)) for

t ∈ [t6,∞). Since τ(t) ≤ t ≤ σ(t) for t ∈ T and (5) implies that Q(t) is
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decreasing on [t1,∞), we have Q(τ(t)) ≥ Qσ(t) for t ∈ [t1,∞). Therefore, we

get (x∆ ◦ τ)(t) > g1(τ(t), T )(Qσ)1/γ(t) for t ∈ [t6,∞). Hence, from (24) we

obtain for t ∈ [t6,∞),

w∆(t) < −ϕ(t)q(t) +
ϕ∆

+(t)

ϕσ(t)
wσ(t)− γτ∆(t)ϕ(t)

Qσ(t)g1(τ(t), T )(Qσ)1/γ(t)

(x ◦ τσ)γ+1(t)
.

(25)

From (15) and (25) we have for t ∈ [t6,∞),

w∆(t) < −ϕ(t)q(t) +
ϕ∆

+(t)

ϕσ(t)
wσ(t)− γτ∆(t)ϕ(t)g1(τ(t), T )

(
wσ(t)

ϕσ(t)

)λ

, (26)

where λ = 1+1/γ. For t ∈ [t6,∞), taking A =
[
γτ∆(t)ϕ(t)g1(τ(t), T )

]1/λ wσ(t)
ϕσ(t)

and B =

{
ϕ∆

+(t)

λ
[
γτ∆(t)ϕ(t)g1(τ(t),T )

]1/λ

}γ

, by Lemma 2.3 and (26) we obtain

w∆(t) < −ϕ(t)q(t) +
(ϕ∆

+(t))γ+1

(γ + 1)γ+1[τ∆(t)ϕ(t)g1(τ(t), T )]γ
(27)

for t ∈ [t6,∞). Integrating both sides of the last inequality from t6 to t, we

obtain for t ∈ [t6,∞),

w(t)− w(t6) ≤ −
∫ t

t6

{
ϕ(s)q(s)− (ϕ∆

+(s))γ+1

(γ + 1)γ+1[τ∆(s)ϕ(s)g1(τ(s), T )]γ

}
∆s.

Since w(t) > 0 for t ∈ [t2,∞), we have for t ∈ [t6,∞),

∫ t

t6

{
ϕ(s)q(s)− (ϕ∆

+(s))γ+1

(γ + 1)γ+1[τ∆(s)ϕ(s)g1(τ(s), T )]γ

}
∆s < w(t6).

Thus, we get lim supt→∞
∫ t

t6

{
ϕ(s)q(s)− (ϕ∆

+(s))γ+1

(γ+1)γ+1[τ∆(s)ϕ(s)g1(τ(s),T )]γ

}
∆s ≤ w(t6)

< ∞, which contradicts (14). Hence, the proof is complete.

We now introduce a function class R to present our next theorem. Let

D := {(t, s) ∈ T × T : t ≥ s ≥ t0} and D0 := {(t, s) ∈ T × T : t > s ≥ t0.

A function H ∈ Crd(D,R) is said to belong to the class R if H(t, t) = 0 for

t ≥ t0, H(t, s) > 0 for (t, s) ∈ D0, and H has a rd-continuous delta partial

derivative H∆s(t, s) on D0 with respect to the second variable.
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Theorem 3.2. Assume that (S1)–(S5)and (2) hold. Furthermore, suppose

that, for all sufficiently large T ∈ [t0,∞), there exist T1 > T , a positive function

ϕ ∈ C1
rd(I,R), a function H ∈ R and a function h ∈ Crd(D,R) such that

τ(T1) > T ,

H∆s(t, s) + H(t, s)
ϕ∆

+(s)

ϕσ(s)
=

h(t, s)

ϕσ(s)
H

γ
γ+1 (t, s) for (t.s) ∈ D (28)

and

lim sup
t→∞

1

H(t, T1)

∫ t

T1

[
H(t, s)ϕ(s)q(s)− hγ+1

+ (t, s)

(γ + 1)γ+1Ψγ(s, T )

]
∆s = ∞, (29)

where ϕ∆
+(s) is defined as in Theorem 3.1, Ψ(s, T ) := τ∆(s)ϕ(s)g1(τ(s), T ) and

h+(t, s) := max{0, h(t, s)}, here g1 is defined as in Lemma 2.5. Then every

solution of (1) either oscillates or tends to zero.

Proof. Assume that x is a nonoscillatory solution of (1). Without loss of

generality, assume that x is an eventually positive solution of (1). Proceeding

as in the proof of Theorem 3.1, we see that (26) holds. Multiplying (26) by

H(t, s) and then integrating from t6 to t, we find for t ∈ [t6,∞),

∫ t

t6

H(t, s)ϕ(s)q(s)∆s ≤ −
∫ t

t6

H(t, s)w∆(s)∆s +

∫ t

t6

H(t, s)
ϕ∆

+(s)

ϕσ(s)
wσ(s)∆s

−
∫ t

t6

H(t, s)γΨ(s, T )

(
wσ(s)

ϕσ(s)

)1+1/γ

∆s, (30)

where Ψ(s, T ) is defined as in Theorem 3.2. Applying the integration by parts

formula

∫ d

c

F (s)G∆(s)∆s =
[
F (s)G(s)

]d

c
−

∫ d

c

F∆(s)G(σ(s))∆s,

we get for t ∈ [t6,∞),

−
∫ t

t6

H(t, s)w∆(s)∆s =
[
−H(t, s)w(s)

]s=t

s=t6
+

∫ t

t6

H∆s(t, s)wσ(s)∆s

= H(t, t6)w(t6) +

∫ t

t6

H∆s(t, s)wσ(s)∆s. (31)
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Substituting (31) in (30) and then using (28), we obtain for t ∈ [t6,∞)

∫ t

t6

H(t, s)ϕ(s)q(s)∆s

≤ H(t, t6)w(t6) +

∫ t

t6

{[
H∆s(t, s) + H(t, s)

ϕ∆
+(s)

ϕσ(s)

]
wσ(s)

−H(t, s)γΨ(s, T )

(
wσ(s)

ϕσ(s)

)1+1/γ
}

∆s

= H(t, t6)w(t6) +

∫ t

t6

[h(t, s)

ϕσ(s)
H

γ
γ+1 (t, s)wσ(s)

−H(t, s)γΨ(s, T )

(
wσ(s)

ϕσ(s)

)1+1/γ]
∆s

≤ H(t, t6)w(t6) +

∫ t

t6

[h+(t, s)

ϕσ(s)
H

γ
γ+1 (t, s)wσ(s)

−H(t, s)γΨ(s, T )

(
wσ(s)

ϕσ(s)

)1+1/γ]
∆s, (32)

where h+(t, s) is defined as in Theorem 3.2. Taking λ = 1 + 1/γ,

A =
[
H(t, s)γΨ(s, T )

]1/λ wσ(t)

ϕσ(t)

and B =

{
h+(t,s)

λ
[
γΨ(s,T )

]1/λ

}γ

for t ≥ s ≥ t6, by Lemma 2.3 and (32) we have

∫ t

t6

H(t, s)ϕ(s)q(s)∆s ≤ H(t, t6)w(t6) +

∫ t

t6

hγ+1
+ (t, s)

(γ + 1)γ+1Ψγ(s, T )
∆s

for t ≥ t6 and 1
H(t,t6)

∫ t

t6

[
H(t, s)ϕ(s)q(s) − hγ+1

+ (t,s)

(γ+1)γ+1Ψγ(s,T )

]
∆s ≤ w(t6) for t ∈

(t6,∞). Hence, we get

lim sup
t→∞

1

H(t, t6)

∫ t

t6

[
H(t, s)ϕ(s)q(s)− hγ+1

+ (t, s)

(γ + 1)γ+1Ψγ(s, T )

]
∆s ≤ w(t6) < ∞,

which implies a contradiction to (29). Thus, this completes the proof.
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Remark 3.1. The results obtained in this paper are very general. From The-

orems 3.1 and 3.2, we can get many different sufficient conditions for the

oscillation and asymptotic behavior of solutions of (1) with different choices of

the functions ϕ and H.
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