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Abstract

In this paper, we apply the extended variable-coefficient mapping
method to discuss a new kind of auto-coupled KdV equation with vari-
able coefficients. By solving nonlinear differential algebraic equations
which are derived from nonlinear evolution equations, many Jacobi ellip-
tic function solutions, hyperbolic function solutions and trigonometric
periodic solutions for the auto-coupled KdV equation with variable co-
efficients are derived. By selecting the appropriate parameter values,
some exact solutions of the other forms are also obtained.
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1 Introduction

Nonlinear evolution equations play an important role in description of natu-

ral phenomena. As the soliton phenomena were first observed by Scott Russell

in 1831[1], researchers began to study the explicit solutions of nonlinear evo-

lution equations, many powerful methods to seek explicit exact solitary wave

solutions of nonlinear evolution equations have been established and devel-

oped. Since constructive methods transform the problem of solving nonlinear

evolution equations into the problem of solving the corresponding systems of

algebraic equations, the problem of solving nonlinear evolution equations can

be simplified, and it can also reveal many of the essential attribute of equa-

tions. Some methods have been widely applied and extended, such as Bäcklund

transformation[2,3], sine-cosine method[4], homogeneous balance method[5],

tanh-function expansion method[6,7], the extended tanh-function expansion

method[8,9], the Jacobi elliptic function expansion method[10,11], the Riccati

expansion method[12].

At present, people have paid more attention to the KdV equation with

variable coefficients. Using different constructive methods, some researchers

have obtained exact solutions of the KdV equation with variable coefficients.

For example Liu Shi-Kuo et al. applied extended Jacobi elliptic function ex-

pansion method to construct the exact solutions of variable coefficients KdV

equation, getting the solitary wave solutions and soliton solutions easier[13].

Based on the idea of the homogeneous balance method, Fan En gui obtained

the Bäcklund transformation and similarity reductions of general variable co-

efficient KdV equation[14]. Woopyo Hong et al. found analytic solutions for

general variable coefficient KdV equation and made use of both the truncate

Painleve expansion and symbolic computation to obtain an auto-Bäcklund

transformation and certain soliton-typed analytic solutions[15]. Li Desheng

and Zhang Hongqing obtained exact soliton-like, rational formal and trigono-

metric function solutions of the general variable coefficient KdV and MKdV

equations by using the extended tanh-function method[16].

Based on the reduced method, the variable separation method of extended

mapping method has been widely applied to solve exact solutions of non-

linear evolution equations[17–19], Zhang Sheng and Xia Tiecheng proposed

a variable coefficient extended mapping method and applied this method to
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the MKdV equaiton with variable coefficients and (2+1)dimensional Nizhnik-

Novikov-Vesolov equations. Many new and more general exact solutions in-

cluding Jacobi elliptic function solutions ,hyperbolic function solutions and

trigonometric function solutions are obtained. However, at present, there are

less of papers which applied the extended variable coefficient mapping method

to the variable coefficient coupled equations. This present work is motivated

to apply the method from[19] to a new kind of auto-coupled KdV equations,

and some exact solutions are derived. Particularly, by selecting some different

parameter values,we obtain the corresponding other forms solutions, includ-

ing the Jacobi elliptic function solutions, hyperbolic function solutions and

tribonometric function solutions.

The rest of this paper is arranged as follows: In Section 2, we shall describe

the variable-coefficient extended mapping method for searching solutions of

nonlinear evolution equations with variable coefficients and give the main steps

of the method. In Section 3, we shall apply this method to a new kind of auto-

coupled KdV equation with variable coefficients and obtain some solutions. In

Section 4, some conclusions are given.

2 Description of method

For a given partial differential, say, in two variables x and t

F (u, ut, ux, uxx, uxt, · · · ) = 0, (1)

where ux = ∂u
∂x

, uxx = ∂2u
∂x2 , uxt = ∂2u

∂x∂t
, · · · , the same hereafter.

We seek solutions of Eq.(1) in following form[19]:

u = a0 +
n∑

i=1

aif
i(ξ) +

−n∑
i=−1

bif
i(ξ) +

n∑
i=2

cif
i−2(ξ)f ′(ξ) +

−n∑
i=−1

dif
i(ξ)f ′(ξ), (2)

where ai = ai(X), bi = bi(X), ci = ci(X), di = di(X), ξ = ξ(X) and X =

X(x, t) are all functions to be determined later. f(ξ) satisfies the following

auxiliary differential equation:

f ′2(ξ) = pf 4(ξ) + qf 2(ξ) + r, (3)



72 Auto-Coupled KdV Equation

and hence holds for f(ξ) and f ′(ξ):





f ′′(ξ) = 2pf 3(ξ) + qf(ξ),

f ′′′(ξ) = (6pf 2(ξ) + q)f ′(ξ),

f (4)(ξ) = 24p2f 5(ξ) + 20pqf 3(ξ) + (q2 + 12pr)f(ξ),

f (5)(ξ) = (120p2f 4(ξ) + 60pqf 2(ξ) + q2 + 12pr)f ′(ξ),
...

(4)

where ′ = d
dξ

, p, q and r are all real parameters.

To determine u = u(x, x2, x3, · · · , t) explicitly, we take the following four

steps:

Step 1. Determining the integer n by considering the homogeneous balancing

between the highest order nonlinear term(s) and the highest order partial

derivative of u in Eq.(1).

Step 2. With the aid of symbolic computation of the software Maple, sub-

stituting Eq.(2) along with (3) and (4) into Eq.(1), and collecting all the

terms with the same order of f ′l(ξ)f j(ξ)(l = 0, 1; j = 0,±1,±2, . . .) to-

gether, then the left- hand side of Eq.(1) is converted into a polynomial in

f ′l(ξ)f j(ξ)(l = 0, 1; j = 0,±1,±2, . . .). Setting each coefficient to zero yields

a set of over-determined differential equations for a0, ai, bi, ci, di(i = 1, 2, . . .)

and ξ.

Step 3. Solving the system of over-determined differential equations obtained

in Step 2 for a0, ai, bi, ci, di(i = 1, 2, . . .) and ξ by use of Maple.

Step 4. Using the results obtained in above steps to derive a series of fun-

damental solutions of Eq.(1) which depend on the solution f(ξ) of Eq.(3).

For given different values of p, q, r, Eq.(3) has many kinds of Jacobi elliptic

solutions, which are listed as follows:

f(ξ) p q r

snξ, cdξ m2 −(1 + m2) 1

cnξ −m2 2m2 − 1 1−m2

dnξ −1 2−m2 m2 − 1
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continued

f(ξ) p q r

nsξ, dcξ 1 −(1 + m2) m2

ncξ 1−m2 2m2 − 1 −m2

ndξ m2 − 1 2−m2 −1

scξ 1−m2 2−m2 1

sdξ m2(m2 − 1) 2m2 − 1 1

csξ 1 2−m2 1−m2

dsξ 1 2m2 − 1 m2(m2 − 1)

mcnξ ± dnξ −1
4

1+m2

2
− (1−m2)2

4

nsξ ± csξ, cnξ√
1−m2snξ±dnξ

1
4

1−2m2

2
1
4

ncξ ± scξ 1−m2

4
1+m2

2
1−m2

4

nsξ ± dsξ 1
4

m2−2
2

m4

4

snξ ± icnξ, dnξ√
1−m2snξ±cnξ

m2

4
m2−2

2
m2

4

msnξ ± idnξ, snξ
1±cnξ

1
4

1−2m2

2
1
4

snξ
1±dnξ

m2

4
m2−2

2
1
4

dnξ
1±msnξ

1−m2

4
1+m2

2
m2−1

4
cnξ

1±snξ
m2−1

4
1+m2

2
1−m2

4
snξ

cnξ±dnξ
(1−m2)2

4
1+m2

2
1
4

cnξ√
1−m2±dnξ

m4

4
m2−2

2
1
4

Where i2 = −1. Selecting proper values of p, q, r and corresponding f(ξ),

then substituting them along with ai, bi, ci, di and ξ into Eq.(2), we can obtain

exact solutions of Eq.(1), from which hyperbolic solutions and trigonometric

function solutions can be obtained in the limit cases when m → 1 and m → 0.

Here snξ = sn(ξ, m), cnξ = cn(ξ,m) and dnξ = dn(ξ, m) are Jacobi elliptic

sine function, Jacobi elliptic cosine and Jacobi elliptic function of the third

kind respectively, m denotes the modulus of Jacobi elliptic functions. Other

functions are derived from these three kinds of functions[20]:

nsξ =
1

snξ
, ncξ =

1

cnξ
, ndξ =

1

dnξ
,

scξ =
snξ

cnξ
, sdξ =

snξ

dnξ
, cdξ =

cnξ

dnξ
,

csξ =
cnξ

snξ
, dsξ =

dnξ

snξ
, dcξ =

dnξ

cnξ
.
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The Jacobi elliptic functions degenerate into hyperbolic functions when

m → 1[21]:

lim
m→1

sn(ξ, m) = tanh ξ, lim
m→1

cn(ξ,m) = sech ξ, lim
m→1

dn(ξ, m) = sech ξ,

lim
m→1

ns(ξ, m) = coth ξ, lim
m→1

nc(ξ,m) = cosh ξ, lim
m→1

nd(ξ,m) = cosh ξ,

lim
m→1

sc(ξ, m) = sinh ξ, lim
m→1

sd(ξ,m) = sinh ξ, lim
m→1

cd(ξ,m) = 1,

lim
m→1

cs(ξ, m) = csch ξ, lim
m→1

ds(ξ, m) = csch ξ, lim
m→1

dc(ξ,m) = 1.

The Jacobi elliptic functions degenerate into trigonometric functions when

m → 0:

lim
m→0

sn(ξ,m) = sin ξ, lim
m→0

cn(ξ,m) = cos ξ, lim
m→0

dn(ξ,m) = 1,

lim
m→0

ns(ξ,m) = csc ξ, lim
m→0

nc(ξ,m) = sec ξ, lim
m→0

nd(ξ,m) = 1,

lim
m→0

sc(ξ,m) = tan ξ, lim
m→0

sd(ξ,m) = sin ξ, lim
m→0

cd(ξ,m) = cos ξ,

lim
m→0

cs(ξ,m) = cot ξ, lim
m→0

ds(ξ,m) = csc ξ, lim
m→0

dc(ξ, m) = sec ξ.

In this paper, we consider the following coupled KdV equation with variable

coefficients 



F1(t, u, v, ut, vt, ux, vx, uxx, vxx, uxxx, . . .) = 0,

F2(t, u, v, ut, vt, ux, vx, uxx, vxx, vxxx, . . .) = 0.
(5)

In order to search for explicit solutions of Eq.(5), we suppose that the solutions

of Eqs.(5) can be expressed as




u = a0 +

n1∑
i=1

aif
i(ξ) +

−n1∑
i=−1

bif
i(ξ) +

n1∑
i=2

cif
i−2(ξ)f ′(ξ) +

−n1∑
i=−1

dif
i(ξ)f ′(ξ),

v = A0 +

n2∑
i=1

Aif
i(ξ) +

−n2∑
i=−1

Bif
i(ξ) +

n2∑
i=2

Cif
i−2(ξ)f ′(ξ)

+

−n2∑
i=−1

Dif
i(ξ)f ′(ξ).

(6)

where ai = ai(X), bi = bi(X), ci = ci(X), di = di(X), Ai = Ai(X), Bi =

Bi(X), Ci = Ci(X), Di = Di(X), ξ = ξ(X), X = X(x, t) are all functions to

be determined later. By balancing the highest order nonlinear term(s) and the

highest order partial derivative in Eqs.(6), we can get the values of n1, n2.
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3 Application

General variable coefficient KdV equation is given as

ut + α(t)uux + β(t)uxxx = 0, (7)

where α(t) and β(t) are arbitrary functions of t,the equation first was intro-

duced by Grimshaw.

In this paper,a new auto-coupled KdV equations with variable coefficients

is as follows: 



ut + α(t)uvx + β(t)uxxx = γ(t)vx,

vt + α(t)vux + β(t)vxxx = γ(t)ux.
(8)

where β(t) = δα(t), δ is a constant.

By balancing uxxx and uvx, vxxx and vux, we get n1 = 2, n2 = 2. In order to

search for explicit solutions, we assume that Eqs.(8) has the following solutions

of the form:



u(ξ) = a0 + a1f(ξ) + a2f
2(ξ) + b1

1
f(ξ)

+ b2
1

f2(ξ)
+ c2f

′(ξ) + d1
f ′(ξ)
f(ξ)

+ d2
f ′(ξ)
f2(ξ)

,

v(ξ) = A0 + A1f(ξ) + A2f
2(ξ) + B1

1
f(ξ)

+ B2
1

f2(ξ)
+ C2f

′(ξ) + D1
f ′(ξ)
f(ξ)

+D2
f ′(ξ)
f2(ξ)

.

(9)

where a0 = a0(t), a1 = a1(t), a2 = a2(t), b1 = b1(t), b2 = b2(t), c2 = c2(t),

d1 = d1(t), d2 = d2(t), A0 = A0(t), A1 = A1(t), A2 = A2(t), B1 = B1(t),

B2 = B2(t), C2 = C2(t), D1 = D1(t), D2 = D2(t), ξ = κx + η, κ = κ(t),

η = η(t).

Substituting Eqs.(9),(3) and (4) into Eqs.(8), collecting the coefficients with

the same power xµf ′l(ξ)f j(ξ)(µ = 0, 1; l = 0, 1; j = 0,±1,±2, · · · ) and setting

each of the obtained coefficients to be zero, we get a set of over-determined

nonlinear differential algebraic equations, which is omitted here. Solving the

set of over-determined nonlinear differential algebraic equations by using sym-

bolic computation of software Maple, we have results in the following cases:

Case 1

a0 = c, a1 = 0, a2 = 0, b1 = 0, b2 = −12δrk2, c2 = 0, d1 = 0, d2 = 0,

A0 = c, A1 = 0, A2 = 0, B1 = 0, B2 = −12δrk2, C2 = 0, D1 = 0, D2 = 0,

κ = k, η = (γ(τ)k − α(τ)kc− 4β(τ)qk3)dt.

(10)
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where c and k are arbitrary constants.

Therefore, the first solution of Eqs.(8) are given as follows:

u = v = c− 12δrk2 1

f 2(ξ)
, (11)

We can obtain many new and more types of exact solutions of Eqs.(8). For

example, selecting p = −m2, q = 2m2 − 1, r = 1 −m2 and f(ξ) = cnξ yields

Jacobi elliptic function solutions as

u = v = c− 12δ(1−m2)k2nc2ξ, (12)

In the limit cases when m → 0 , from Eq.(12) we can obtain trigonometric

function solutions as

u = v = c− 12δk2 sec2 ξ, (13)

Selecting p = 1
4
, q = 1−2m2

2
, r = 1

4
and f(ξ) = cnξ√

1−m2snξ±dnξ
yields

u = v = c− 3δk2 (
√

1−m2snξ ± dnξ)2

cn2ξ
, (14)

when m → 0, from Eq.(14)we can obtain trigonometric function solutions as

u = v = c− 3δk2 (sin ξ ± 1)2

cos2 ξ
, (15)

Selecting p = 1
4
, q = 1−2m2

2
, r = 1

4
and f(ξ) = snξ

1±cnξ
yields

u = v = c− 3δk2 (1± cnξ)2

sn2ξ
, (16)

When m → 1 from Eq.(16) we can obtain hyperbolic function solutions

u = v = c− 3δk2 (1± sech ξ)2

tanh2 ξ
, (17)

When m → 0 from Eq.(16) we can obtain trigonometric function solutions

u = v = c− 3δk2 (1± cos ξ)2

sin2 ξ
, (18)

where ξ = kx− (γ(τ)k − α(τ)kc− 4β(τ)qk3)dt.
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Case 2

a0 = c, a1 = 0, a2 = −12δpk2, b1 = 0, b2 = 0, c2 = 0, d1 = 0, d2 = 0,

A0 = c, A1 = 0, A2 = −12δpk2, B1 = 0, B2 = 0, C2 = 0, D1 = 0, D2 = 0,

κ = k, η = (γ(τ)k − α(τ)kc− 4β(τ)qk3)dt.

(19)

where c and k are arbitrary constants.

Therefore, the second solution of Eqs.(8) are given as follows:

u = v = c− 12δpk2f 2(ξ), (20)

Selecting p = 1, q = −(1 + m2), r = m2 and f = dcξ yields

u = v = c− 12δk2dc2ξ, (21)

When m → 0, from Eq.(21) we can obtain trigonometric function solutions as

u = v = c− 12δk2 sec2 ξ, (22)

Selecting p = 1
4
, q = 1−2m2

2
, r = 1

4
and f = snξ

1+cnξ
yields

u = v = c− 3δk2 sn2ξ

(1 + cnξ)2
, (23)

When m → 1, from Eq.(23) we can obtain hyperbolic function solutions as

u = v = c− 3δk2 tanh2 ξ

(1 + sech ξ)2
, (24)

When m → 0, from Eq.(23) we can obtain trigonometric function solutions as

u = v = c− 3δk2 sin2 ξ

(1 + cos ξ)2
, (25)

where ξ = kx− (γ(τ)k − α(τ)kc− 4β(τ)qk3)dt.

Case 3

a0 = c, a1 = 0, a2 = −12δpk2, b1 = 0, b2 = −12δrk2, c2 = 0, d1 = 0,

d2 = 0, A0 = c, A1 = 0, A2 = −12δpk2, B1 = 0, B2 = −12δrk2,

C2 = 0, D1 = 0, D2 = 0, κ = k, η = (γ(τ)k − α(τ)kc− 4β(τ)qk3)dt.

(26)

where c and k are arbitrary constants.
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Therefore, the third solutions of Eqs.(8) are given as follows:

u = v = c− 12δpk2f 2(ξ)− 12δrk2 1

f 2(ξ)
, (27)

Selecting p = 1
4
, q = 1−2m2

2
, r = 1

4
and f(ξ) = cnξ√

1−m2snξ±dnξ
yields

u = v = c− 3δk2 cn2ξ

(
√

1−m2snξ ± dnξ)2
− 3δk2 (

√
1−m2snξ ± dnξ)2

cn2ξ
, (28)

When m → 0, from Eq.(28) we can obtain trigonometric function solutions as

u = v = c− 3δk2 cos2 ξ

(sin ξ ± 1)2
− 3δk2 (sin ξ ± 1)2

cos2 ξ
, (29)

Selecting p = 1
4
, q = 1−2m2

2
, r = 1

4
and f(ξ) = snξ

1±cnξ
yields

u = v = c− 3δpk2 sn2ξ

(1± cnξ)2
− 3δk2 (1± cnξ)2

sn2ξ
, (30)

When m → 1, from Eq.(30) we can obtain hyperbolic function solutions as

u = v = c− 3δpk2 tanh2 ξ

(1± sech ξ)2
− 3δk2 (1± sech ξ)2

tanh2 ξ
, (31)

When m → 0, from Eq.(30) we can obtain trigonometric function solutions as

u = v = c− 3δpk2 sin2 ξ

(1± cos ξ)2
− 3δk2 (1± cos ξ)2

sin2 ξ
, (32)

Selecting p = 1
4
, q = 1−2m2

2
, r = 1

4
, f(ξ) = nsξ ± csξ yields

u = v = c− 3δk2(nsξ ± csξ)2 − 3δk2 1

(nsξ ± csξ)2
, (33)

When m → 1, from Eq.(33) we can obtain hyperbolic function solutions as

u = v = c− 3δk2(coth ξ ± csch ξ)2 − 3δk2 1

(coth ξ ± csch ξ)2
, (34)

When m → 0, from Eq.(33) we can obtain trigonometric function solutions as

u = v = c− 3δk2(csc ξ ± cot ξ)2 − 3δk2 1

(csc ξ ± cot ξ)2
. (35)

where ξ = kx− (γ(τ)k − α(τ)kc− 4β(τ)qk3)dt.
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Case 4

a0 = c, a1 = 0, a2 = −6δpk2, b1 = 0, b2 = 0, c2 = ±6δk2√p, d1 = 0,

d2 = 0, A0 = c, A1 = 0, A2 = −6δpk2, B1 = 0, B2 = 0, C2 = ±6δk2√p,

D1 = 0, D2 = 0, κ = k, η = (γ(τ)k − α(τ)kc− β(τ)qk3)dt.

(36)

where c and k are arbitrary constants.

Therefore, the fourth solutions of Eqs.(8) are given as follows:

u = v = c− 12δpk2f 2(ξ)± 6δk2√pf ′(ξ), (37)

Selecting p = 1, q = 2−m2, r = 1−m2 and f = csξ yields

u = v = c− 12δk2cs2ξ ± 6δk2cs′ξ

= c− 12δk2cs2ξ ∓ 6δk2nsξdsξ,
(38)

When m → 1, from Eq.(38) we can obtain hyperbolic function solutions as

u = v = c− 12δk2 csch2 ξ ∓ 6δk2 coth ξ csch ξ, (39)

When m → 0, from Eq.(38) we can obtain trigonometric function solutions as

u = v = c− 12δk2 cot2 ξ ∓ 6δk2 csc2 ξ, (40)

where ξ = kx− (γ(τ)k − α(τ)kc− β(τ)qk3)dt.

Cases 5

a0 = c, a1 = 0, a2 = 0, b1 = 0, b2 = −6δrk2, c2 = 0, d1 = 0,

d2 = ±6δk2
√

r, A0 = c, A1 = 0, A2 = 0, B1 = 0, B2 = −6δrk2,

C2 = 0, D1 = 0, D2 = ±6δk2
√

r,

κ = k, η = (γ(τ)k − α(τ)kc− β(τ)qk3)dt.

(41)

where c and k are arbitrary constants.

Therefore, the fifth solutions of Eqs.(8) are given as follows:

u = v = c− 6δrk2 1

f 2(ξ)
± 6δk2

√
r
f ′(ξ)
f 2(ξ)

, (42)
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Selecting p = m2, q = −(1 + m2), r = 1, f = snξ yields

u = v = c− 6δk2 1

sn2ξ
± 6δk2 sn′ξ

sn2ξ

= c− 6δk2 1

sn2ξ
± 6δk2 cnξdnξ

sn2ξ
,

(43)

When m → 1, from Eq.(43) we can obtain hyperbolic function solutions as

u = v = c− 6δk2 1

tanh2 ξ
± 6δk2 sech2 ξ

tanh2 ξ

= c− 6δk2 1

tanh2 ξ
± 6δk2 1

sinh2 ξ
,

(44)

When m → 0, from Eq.(43) we can obtain trigonometric function solutions as

u = v = c− 6δk2 1

sin2 ξ
± 6δk2 cos ξ

sin2 ξ
, (45)

Selecting p = (1−m2)2

4
, q = 1+m2

2
, r = 1

4
and f = snξ

cnξ±dnξ
yields

u = v = c− 3

2
δk2 (cnξ ± dnξ)2

sn2ξ
± 3δk2 sn′ξ(cnξ ± dnξ)− snξ(cn′ξ ± dn′ξ)

sn2ξ

= c− 3

2
δk2 (cnξ ± dnξ)2

sn2ξ
± 3δk2 cn2ξdnξ + sn2ξdnξ + cnξ

sn2ξ
,

(46)

When m → 1, from Eq.(46) we can obtain hyperbolic function solutions as

u = v = c− 3

2
δk2 (sech ξ ± sech ξ)2

tanh2 ξ
± 3δk2 sech3 ξ + tanh2 ξ sech ξ + sech ξ

tanh2 ξ
,

(47)

so

u = v = c∓ 3δk2 sech3 ξ + tanh2 ξ sech ξ + sech ξ

tanh2 ξ
, (48)

or

u = v = c− 6δk2 sech2 ξ

tanh2 ξ
± 3δk2 sech3 ξ + tanh2 ξ sech ξ + sech ξ

tanh2 ξ

= c− 6δk2 1

sinh2 ξ
± 3δk2 sech3 ξ + tanh2 ξ sech ξ + sech ξ

tanh2 ξ
,

(49)

When m → 0, from Eq.(46) we can obtain trigonometric function solutions as

u = v = c− 3

2
δk2 (cos ξ ± 1)2

sin2 ξ
± 3δk2 cos2 ξ + sin2 ξ + cos ξ

sin2 ξ

= c− 3

2
δk2 (cos ξ ± 1)2

sin2 ξ
± 3δk2 1 + cos ξ

sin2 ξ
.

(50)



Dongpo Hu and Cuncai Hua 81

where ξ = kx− (γ(τ)k − α(τ)kc− β(τ)qk3)dt.

4 Conclusion

In this paper, a new kind of auto-coupled KdV equation with variable co-

efficients is proposed. We apply the extended variable coefficient mapping

method to the coupled model, and obtain many exact solutions which include

Jacobi elliptic function solutions, hyperbolic function solutions and trigono-

metric function solutions of auto-coupled KdV equation with variable coeffi-

cients.
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