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Abstract 

In Runge-Kutta Theory, it is common knowledge that the bounds for the local 

truncation errors do not form a suitable basis for monitoring the local truncation 

error [7]. In a number of literatures including [1], Richardson Extrapolation 

technique has been shown to be a very reliable means of obtaining error estimates 

for Runge-Kutta methods. In this paper, we have sought to investigate, by means 

of rigorous numerical experiments, if this effectiveness of Richardson 

extrapolation technique extends to ARK methods and our results show that it 

doesn’t. 
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1  Introduction  

Mathematics is the lingua franca of life; by it the physical world finds 

expression. Historically, different equations have originated in Chemistry, Physics 

and Engineering. More recently they have also arisen in models in Medicine, 

Biology, Anthropology and the likes. In this paper, we shall restrict our attention 

to just numerical methods for approximating the solution of ordinary differential 

equations with prime focus on initial value problems (IVP); so called because the 

conditions on the solution of the differential equation are all specified at the start 

of the trajectory i.e. they are initial conditions. 

Numerical solution of ODE is the most important technique ever developed 

in continuous time dynamics. Since most ODEs are not soluble analytically, 

numerical integration is the only way to obtain information about the trajectory. 

Many different methods have been proposed and used in an attempt to solve 

accurately, various types of ODE. However, there is a handful of methods known 

and used universally (e.g. Runge-Kutta ([6], [12]), Adam-Bashforth-Moulton ([3], 

[8]) and Backward Difference Formulae). All these, discretize the differential 

system, to produce a difference equation or map. 

The methods produce different maps from the same equation, but they have 

the same aim: that the dynamics of the maps, should correspond closely, to the 

dynamics of the differential equation. From the Runge-Kutta family of algorithms, 

come the most well-known and used methods for numerical integration [5]. 

With the advent of computers, numerical methods are now an increasingly 

attractive and efficient way to obtain approximate solutions to differential 

equations that have hitherto proved difficult, even impossible to solve analytically. 
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2  Preliminary Notes 

Almost Runge-Kutta (ARK) methods are a very special class of general 

linear methods introduced by Butcher in 1997 [4]. The basic idea of these methods 

is to retain the multi-stage nature of Runge-Kutta methods, while allowing more 

than one value to be passed from step to step. Hence, they have a multi-value 

nature. These methods have advantages over traditional methods, which are to be 

found in low-cost local error estimation and dense output. These latter features 

will be a consequence of the higher stage orders that are possible because of the 

multi-value nature of the new methods. Though this multivalue nature brings its 

own difficulties in the sense that satisfactory solutions have to be found not only 

for stepsize changes, but also for the starting steps. 

The number of values passed between steps varies among general linear 

methods; the number of values is three for ARK methods. Of the three input and 

output values in ARK methods, one approximates the solution value i.e. )( nxy  

the second approximates the scaled first derivative ( )( nxyh ′ ) while the third 

approximates the scaled second derivatives ( )(2
nxyh ′′ ). To simplify the starting 

procedure, the second derivative is required to be accurate only to within )( 3hO , 

where h as usual is the stepsize. In other to ensure that this low order does not 

adversely affect the solution value, the method has inbuilt annihilation conditions. 

As a result of these extra input values, we are able to obtain stage order two, 

unlike explicit Runge-Kutta methods that are only able to obtain stage order one. 

The main advantage of the increase in stage order is that error estimates and 

continuous solutions can be more easily achieved [10]. 

ARK have the general form: 
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where s is the number of internal stages.  

The use of an ARK method is very similar to that of an RK method, with the 

main difference being that three pieces of information is now passed between 

steps. The first two starting values are )( 0xy and ))(( 0xyhf respectively and the 

third starting value is obtained by taking a single Euler step forward and then 

taking the difference between the derivatives at these two points. Therefore, the 

starting vector is given by 

( )[ ] )3.2())(())(()()),((),( 00000 xyhfxyhfxyhfxyhfxy −+  

This choice of starting method was chosen for its simplicity, but it is adequate, at 

least for low order methods. The method for computing the three starting 

approximations can be written in the form of the generalized Runge–Kutta tableau 

110
010
001

11
0

−
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where the zero in the first column of the last two rows indicates the fact that the 

term 1−ny  is absent from the output approximation. This can be interpreted in the 

same way as a Runge–Kutta method, but with three output approximations. 

The usual way to change the stepsize is to simply scale the vector in the 

same way one would scale a Nordsieck vector [9]. Setting 1−= jj hhr means the 

y vector needs to be scaled by 
2

1 0 0
0 0
0 0

r
r

 
 
 
  

. 

For an order p method the three output values are given by the equations below 
[ ] 1
1
[ ] 2
2
[ ] 2 3
3

( ) ( ),

( ) ( ), (2.4)

( ) ( ).

n p
n

n p
n

n
n

y y x O h
y hy x O h
y h y x O h

+

+

= +


′= + 
′′= + 

 

In choosing the coefficients of the method, we are careful to ensure that the 

simple stability properties of Runge-Kutta methods are retained [10].  

In this paper we will concentrate on methods where A is strictly lower 

triangular, and hence the methods are explicit, but most of the theory can be 

carried over to implicit methods [2]. 

 

 

3 Richardson extrapolation technique 

 The deferred approach to the limit, otherwise known as Richardson 

extrapolation [11] involves solving a problem twice using step sizes h  and 2h . 

Under the localizing assumption that no previous errors have been made, we may 

write 
1 2

1 1 1( ) ( , ( )) O( )p p
n n n n ny x y T x y x h hϕ + +
+ + +− = = +         (3.1) 

where p  is the order of the method, 1( , ( )) p
n nx y x hϕ +  is the principal local 

truncation error. Next, we will compute *
1ny + , a second approximation to 1( )ny x + , 
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obtained by applying the same method at 1nx −  with steplenght 2h . Under the 

same localizing assumption, it follows that: 

       * 1 2
1 1 1 1( ) ( , ( ))(2 ) O( )p p

n n n ny x y x y x h hϕ + +
+ + − −− = +      (3.2) 

and on expanding 1 1( , ( ))n nx y xϕ − −  about ( , )n nx y , 

            * 1 2
1 1( ) ( , ( ))(2 ) O( )p p

n n n ny x y x y x h hϕ + +
+ +− = +            (3.3) 

On subtracting (3.1) from (3.3), we obtain 

 * 1 1 2
1 1( ) (2 1) ( , ( )) O( )p p p

n n n ny x y x y x h hϕ+ + +
+ +− = − +  

Therefore, the principal local truncation error which is taken as an estimate for the 

local truncation error may be written as: 

         
*

1 1 1
1 1

( )( , ( ))
2 1

p n n
n n n p

y x yx y x h Tϕ + + +
+ +

−
= =

−
             (3.4) 

                   
*

1 1
1 1

( )
2 1
n n

n p

y x yT + +
+ +

−
⇒ =

−
        (3.5) 

 

 

3.1 Numerical experiments 

 In [1] as well as other literature, Richardson Extrapolation has been shown 

to be a means of obtaining quick and acceptable estimates of the local truncation 

errors in computations using any s-stage explicit Runge-Kutta method, without 

having to obtain the exact solution first. The goal of this paper is to investigate the 

viability of equation (3.5) for ARK methods by solving the following initial value 

problems: 

1.   ( );
4 20
y yy y′ = −  (0) 1y = .  Exact solution:  /4

20
19

t

t

ey
e

=
+

    

2.  cos ,y y x′ =  (0) 1y = .      Exact Solution:  sin ,xy Ce=    1C = .  

A numerical solver was developed using Java programming language to solve the 

differential equations above using the following Almost Runge-Kutta methods. 



Ochoche Abraham, K.R. Adeboye and A.K. Olumide 131  

3.2.1 Method 1 

ARK45: A Fourth order method with five stages 
31 1

4 2 4[ , , ,1,1], 4
1 10 0 0 0 0 1
4 32

2 1 10 0 0 0 1
5 10 40
3 75 33 330 0 0 1

140 112 560 560
543 87 108 411 0 0 1
245 49 245 190
16 2 16 7 70 1 0
45 15 45 90 90
16 2 16 7 70 1 0
45 15 45 90 90
0 0 0 0 1 0 0 0
56 62 784 196 24 7420 0
9 25 225 225 5 225
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3.2.2 Method 2 

ARK5:  A Fifth order method with five stages 
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4  Main Results  
 In Figure 1 we can see from the solution curves that the curve for the error 

estimates using Richardson extrapolation is very far from the curve of the 

numerical approximation using ARK45 with h= 0.1 and h = 0.2.  

 In Figure 2 we can see from the solution curves again, that the curve for the 

error estimates using Richardson extrapolation is very far from the curve of the 

numerical approximation using ARK5 with h= 0.1 and h = 0.2. 

 In Figure 3 we can see from the solution curves that the estimates from 

Richardson extrapolation again, has no similarities whatsoever with the solution 

curves of the numerical approximation using ARK45 with h = 0.1 and h = 0.2. 

 In Figure 4 just as in Figure 3, we can see from the solution curves, that the 

estimates from Richardson extrapolation again, has no similarities whatsoever 

with the solution curves of the numerical approximation using ARK5 with h = 0.1 

and h = 0.2.  

 

 

5  Labels of figures and tables 

 
Figure 1: Graph of actual errors and estimated errors for problem 1 using ARK45 
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Figure 2: Graph of actual errors and estimated errors for problem 1 using ARK5 

 

 

 

Figure 3: Graph of actual errors and estimated errors for problem 2 using ARK45 
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Figure 4: Graph of actual errors and estimated errors for problem 2 using ARK5 

 

 

6  Conclusion 

From the results obtained in section 5.0, it can be therefore concluded that 

while Richardson extrapolation technique is a very effective means of obtaining 

acceptable error estimates for Runge-Kutta methods, it is not the same for Almost 

Runge-Kutta methods. 
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