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Analysis of a malaria model

with two infectious classes

S.M. Naandam1, E.K. Essel2, S.N. Nortey3 and G. Soderbacka4

Abstract

In this paper we study a deterministic differential equation model for
the spread and control of malaria, which involve two infectious classes.
We derived the conditions for disease free and endemic equilibria. A
comparison of this model and three other models is made and tables of
ranges of parameter values are established.
The main results shows that a simplified NDM-system has a unique
endemic equilibrium for certain values of the ratio of mosquito to hu-
man population, which is always a global attractor. Otherwise, there
is no endemic equilibrium and the disease-free equilibrium is a global
attractor. When the ratio of mosquito to human population changes the
endemic equilibrium changes and forms a curve Ce in the phase space
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parameterized by this ratio. For a certain range of the rate of human
population entering the susceptible class (either by birth or migration)
the original NDM-system has an equilibrium on the curve Ce. This
equilibrium is a saddle with a four dimensional stable and one dimen-
sional unstable manifold. The unstable manifold is well approximated
by this curve.
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1 Introduction

Mathematical modeling of malaria has been studied extensively since the

days of Ross [2] who was the first to model the dynamics of malaria trans-

mission. Macdonald [3] expounded on Ross work by introducing the theory

of superinfection and later, latency into the dynamics of mosquito population.

Anderson and May [9] in addition considered latency in human population

dynamics models. Inroads into malaria modeling have been made by other

authors since then, (see, [6], [7], [4], [11] and [1]).

In this paper we examine the NDM (Nortey-Danso-Marijani) system [13]

and compare with other known systems of the same type. In the NDM system

two infectious classes are considered:

Case 1: A severe case getting the disease the first time.

Case 2: A re-infectious case having some immunity.

Moreover, we show by numerical experiments, that for realistic time peri-

ods of 3-5 years the NDM-system with constant mosquito population (birth

rate equals death rate) can be well approximated by a simplified system, (i.e.,

neglecting changes in total human population size.) We give a summary of re-

alistic ranges of parameters gathering information from different publications.

The simplified model can have only one endemic equilibrium, which is always

observed to be globally attracting and arising from a disease-free equilibrium

through a transcritical bifurcation. Simulation analysis shows that after five

years the solution of the original system starts to slowly diverge from the cor-
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responding simplified system, but follows approximately, a curve of endemic

equilibria for a one-parameter family of simplified systems. The original sys-

tem either has no endemic equilibria or the endemic equilibria is a saddle,

with a one dimensional unstable set, approximately following the equilibria of

simplified system. A solution curve approximating the curve of equilibria of

the simplified system is always existing and in the absence of the saddle point

the host population will either always go to infinity or zero. In the case of ex-

istence of saddle point, the host population tends to infinity or zero depending

on which side of the stable set we start. In any case the motion on that solution

curve is slow and in realistic time (i.e., 3-5 years ) we do not move far away

from the solution of the simplified system and the change in host population

is also small. For large host populations we always get a disease-free situation

where the population is slowly growing if birth rate is greater than death rate.

1.1 Background of malaria in Ghana

Malaria is an infectious disease caused by the genus Plasmodium - a proto-

zoan parasite transmitted by an infectious female Anopheles mosquito. There

are four serotypes; P. falciparum, P. vivax, P. malarie and P. ovale. Approxi-

mately 2.2 billion people are affected by P. falciparum in 86 endemic countries,

resulting in about 515 million clinical cases worldwide and over 1 million fa-

talities in Africa every year.

In Ghana, Malaria is hyper endemic in all parts of the country. Ghana’s

entire population of 24 million is at risk of malaria, although transmission rates

are lower in the urban areas.

According to the World Health Organization report on Malaria in Ghana

[15], Ghana recorded 3200147 and 3694671 malaria cases in the years 2008 and

2009 respectively. Admissions to hospitals due to malaria also went up from

272802 in 2008 to 277047 in 2009. Death due to malaria from the records of

clinics and hospitals stood at 3378 in 2009.

Ghana can be stratified into three malaria epidemiologic zones: the north-

ern savannah; the tropical rainforest; and, the coastal savannah and mangrove

swamps. The major vectors are Anopheles gambiae and Anopheles funestus

[17]. Characteristically, these species bite late in the night, are indoor rest-

ing, and are commonly found in the rural and peri-urban areas, where socio-

economic activities lead to the creation of breeding sites. Anopheles melas
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is found in the mangrove swamps of the southwest and Anopheles arabiensis

in the savannah areas of northern Ghana. Northern Ghana experiences pro-

nounced seasonal variations with a prolonged dry season from September to

April. The normal duration of the intense malaria transmission season in the

northern part of the country is about seven months beginning in April/May

and lasting through to September. Malaria is endemic everywhere in Ghana.

There have been significant progress in malaria control in Ghana. This

is a result of household ownership of insecticide-treated net (ITN) and in-

door residual spraying (IRS), intermittent preventative treatment in pregnant

women (IPTP) and also mass spraying just to mention a few.

For pregnant women, the introduction of malaria medication has helped in

preventing still born deaths.

1.2 Paper outline

The rest of the paper is organized as follows. In Section 2 we give the

necessary notations and preliminaries for building the models. The terms in

the models are explained and the meanings of the parameters used are also

given. The ranges of the parameter values used are also given in this section.

In Section 3 we give a detailed description of the NDM model and compare

with Ross, Chitnis et al and Ngwa et al models. In Section 4 we give detail

explanation of the analysis of the NDM-model.

Finally in Section 5 we compare the results obtained using our new method

of analyzing the NDM model and compared it to that of the other models.

2 Notations and Preliminaries from Malaria

Modeling

2.1 Description of variables and parameters

In epidemic modeling the populations are divided into classes forming the

variables in a system of differential equations. The terms in the equations

give the transition rates between the population classes. We use the following

notations for population classes:
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Table 1: Description of variables for the malaria model

Variables Description

SH Susceptible human population

EH Latent human population

IH Infectious human population

RH Recovered with clinical immunity

SM Susceptible mosquitoes

EM Latent mosquito population

IM Infectious mosquitoes

IH1 Infectious human (clinical malaria cases re-

sulting from completely susceptible individ-

uals)

IH2 Re-infectious individuals from clinical immu-

nity

NH Total human population

NM Total mosquito population

m = NM

NH
Ratio of mosquito and human population

In addition to the above population class notations, the following parameter

notations will also be encountered in the sessions.

Please, note that, the following parameters: σh, σv, a, βhv, C, βvh, b, β̃vh

and C̃hv are in the incidence terms of Chitnis et al and Ngwa et al models (for

full meanings see [6] and [11]).

The NDM-model [13] and the Ross model [2] have no latent classes but

Chitnis et al [8] and Ngwa et al [11] models include these classes.
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Table 2: Incidence parameters and descriptions

Parameters Description

βH Contact rate between susceptible humans

and infectious mosquitoes

βM Contact rate between susceptible mosquitoes

and infectious humans

c Constant of proportionality

k Resistance factor

Table 3: Recovery parameters and descriptions

Parameters Description

γ Rate of recovery from infectious class

α Rate of recovery from re-infectious

Table 4: Loss of immunity parameter and descriptions

Parameters Description

ω Rate of loss of clinical immunity

2.2 Terms for transition between population classes

For easy reading we explain the following transitional terms which will be

encountered in the paper: incidence, recovery, loss of immunity, birth, death

and migration and latency.

2.2.1 Incidence

All epidemic models have an incidence term that measures the rate at

which individuals in a population get infectious. For example the incidence
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Table 5: Birth and death parameters and descriptions

Parameters Description

b Rate of human population entering into sus-

ceptible class (i.e., birth and migration)

bM Birth rate for the mosquito population enter-

ing into susceptible class

µH Natural death rate of human

δ1 Death rate due to clinical malaria

δ2 Death rate due to re-infection of malaria

µM Natural death rate of mosquitoes

Table 6: Latency parameters and descriptions

Parameters Description

νH Latency rate in human

νM Latency rate in mosquitoes

term in the SI model [16] is βIS (i.e., the rate at which individuals move from

susceptible to infectious class.)

In general we can have different such incidence terms:

Type 1 is of the form b(I, S). Here S represents a susceptible host or vector

population and I an infectious vector or host population correspondingly. The

function b(I, S) is increasing in both variables.

Type 2 is of the form b(R,S). Sometimes there is supposed to be pos-

sibilities for recovered also to infect. Here R is recovered host and S is the

susceptible vector (see [8] and [11])and the function b(R,S) is increasing in

both variables.

Type 3 is of the form b(I, R). Here the recovered individual is not fully

immune and therefore capable of being infected. Here I is the infectious vector

population, whilst R is the recovered but not fully immune host population

and the function b(I, R) is increasing in both variables. In some cases the

incidence function is written as a product of two increasing functions g and h

in the form b(I, S) = g(I)h(S). The most usual incidence function is the case



202 Analysis of a malaria model ...

when g and h are linear and this is called linear incidence. A general class of

non-linear incidence functions in a simple model are studied in [14].

Usual non-linear types of g and h are h(S) = Sr and g(I) = kIp, where

p and r are positive numbers. Another type of non-linear incidence function

is given by g(I) = kIp

1+aIq . Many incidence functions are of the special type

b(I, S) = βIS where β often also depends on host and vector sizes. For

example, the mosquito population size usually oscillates between the rainy

season and dry season and is bigger during the rainy season and this can then

have an effect also on the coefficient β.

In the models we have considered here, the incidence function is written

in the form b(I, S) = βH

NH
IS in host equations and b(I, S) = βM

NH
IS in vector

population equations.

In Chitnis et al model, β-parameters are dependent on population sizes in

a natural way. Where NH is far larger than NM , the incidence function in

Chitnis et al model coincides with the incidence functions in the other models

named above.

More precise: Chitnis et al finds the coefficients for term with IMSH and

IHSM consequently in the form

BH =
λh

IM
= bh(NH , NM)

βhv

NM

=
b(NH , NM)

NH

βhv

NM

=
σhσvNM

σvNM + σhNM

βhv

NM

=
σvσhβhv

σvNM + σhNH

(1)

BM =
λv

IH
= bv(NH , NM)

βvh

NH

=
b(Nh, NH)

NM

βvh

NH

=
σhσvNH

σvNM + σhNH

βvh

NH

=
σvσhβvh

σvNM + σhNH

(2)

For NM small and NH considerable large, we then get approximately,

BH =
σvβhv

NH

, BM =
σvβvh

NH

(3)

which corresponds to NDM-system with BH = βH

NH
and BM = βM

NH
, where

βH = σvβhv and βM = σhβvh.

But for NH small and NM considerable large we then get approximately

BH =
σhβhv

NM

, BM =
σhβvh

NM

. (4)
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which is quite an opposite situation. As we interpret it, Chitnis et al suggested

that dividing by small NH in these cases will make an unrealistic big β-factor.

Chitnis et al has incidence terms with combinations IMSH , IHSM and

RHSM as NDM-system has incidence terms for IMSH , IMRH , IH1SM and

IH2SM . NDM-system does not have the possibility for mosquitoes to get in-

fectious from recovered class.

2.2.2 Recovery

The recovery rate is denoted by γ. Most models, except the NDM model

have one type of recovery. The recovery terms are all linear. 1
γ

is the average

time spent in recovery if γ is the coefficient in the linear term. In the NDM-

model there are two recovery rates, one of them representing the recovery

from the infectious class is denoted by γ whiles the other representing the

recovery from the re-infectious class is denoted by α. Also here the terms are

linear. Usually after the recovery, the infectious are moved to a recovered class

with some immunity but in Ross model the infectious move directly to the

susceptible class whiles in the Ngwa et al model some of the infectious move

to the susceptible whiles the rest move to recovered class.

2.2.3 Loss of Immunity

The loss of immunity is denoted by ω. It was observed that with the

exception of the Ross model, all the other models have rates of loss of immunity.

These terms are also linear. The quantity 1
ω

is the average time in loosing

immunity. Here ω is the coefficient of the linear term.

2.2.4 Birth, Death and Migration

The birth and death coefficients are b, bM , µH , µM , δ1, δ2 and comes from

linear terms in the NDM-system. The parameters b and µH are the birth

and death rates for the host population respectively. The number 1
µH

is the

average life expectancy of humans and 1
b

is average time to give birth. Likewise

the parameters bM and µM are the birth and death rates for the mosquito

population respectively.

In NDM-model we assume linear birth and death terms, whereas in Chitnis et

al [8] and Ngwa et al [11] models, they assumed quadratic birth terms, whilst
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death has both linear and quadratic terms. The disease-induced death rates

δ1 and δ2 add an extra linear term for infectious classes. Chitnis et al also

includes a migration factor into the susceptible host class which is a constant

term.

2.2.5 Latency

The rate of becoming infectious in latent classes are denoted by νH and

νM for the host and mosquito populations respectively. Some models have

separate class for latency and is usually denoted by E, whereas in the NDM-

model this latency class is accounted for by decreasing β values. Identifying

how the latency values are included in the decreasing β values may be quite

difficult. Nevertheless, latency can be included in the model in two ways, either

with a latent population E, but if included more exact it should be included by

making a delay system. Not withstanding, there can be a lot of mathematical

difficulties associated with this type of system. The need for having a latency

term in the model becomes very important if the life span of the vector is

relatively short and less important in the case of the host which has a longer

life span. For individuals (e.g., host) with longer life span the latency term

may often be excluded from the model.

In the case of malaria the latency period can be very different [9] and

thus there is no clear latency period used in the delay equations but must be

taken in average. This means that delay-equation are not so much better than

models with a latent population included.

2.3 Typical values of parameters and their ranges

Some typical parameter values and the possible ranges of the parameters

in the models are given in six tables below. Two of them give values for

incidence parameters, two of them give values for transmission parameters

between population classes and two tables give birth, death and migration

parameter values.

The columns in the Tables 7 to 9 refer to different sets of parameter values

used in different papers. Standard values of the NDM model are given in

column 2 of the tables.
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The C2006 refers to values in tables taken from Chitnis et al [6] and C2008

refers to values from Chitnis et al [7] with different sets for low and high

transmission of the disease. Ngwa2000 refers to values from Ngwa et al [11].

RossMac refers to values from Ross model in May and Anderson [9]. The ranges

for the parameter values are taken or calculated from the same references.

In Table 7 we see the values for the incidence parameters.

Table 7: Incidence Parameters

Parameters NDM C2006 C2008 Low C2008 High Ngwa2000 RossMac

βH 0.06 0.011 0.0055 0.0088 - 0.055

βM 0.05 0.48 0.06 0.19 0.4167 0.03

c 0.25 - - - - -

k 0.12 - - - - -

σh - 18 4.3 19 - -

σv, a - 0.6 0.33 0.5 - 0.055

βhv, C - 0.02 0.022 0.022 - 0.5

βvh, b - 0.83 0.24 0.48 - 1

β̃vh, C̃hv - 0.083 0.024 0.048 - -

m - 2 4 10 - 25

The parameters βH and βM are present in all models. In Chitnis et al model

they are not constant and depend on human and mosquito population sizes. In

this case we give the values of βH and βM for population sizes corresponding

to disease free equilibrium. The following constants σh, σv, βhv, βvh, β̃vh are

present in the incidence expressions in Chitnis et al model, whiles the constants

c and k are present only in the NDM model. The parameters a, b, C are

constants in the incidence expressions in the Ross model. The parameters

Cvh, C̃hv are constants in the incidence expressions in the Ngwa et al model.

Finally m = µM

µH
is the ratio between the mosquito and human population

used in the incidence expressions in the Chitnis et al and Ross models.

In Table 8 columns 2 to 7 are the values associated with transition param-

eters in column 1 (see,[13],[11],[7] and [6]).

We have constants for the rates of recovery, loss of immunity and transition

from latency to infectious.
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Table 8: Transition parameters

Parameters NDM C2006 C2008 Low C2008 High Ngwa2000 RossMac

γ(IH → RH) 0.04 0.0037 0.0035 0.0035 0.0124 -

ω(RH → SH) 0.01 0.015 0.0027 0.00055 0.0146 -

α(IH2 → RH) 0.04 - - - - -

νH (EH →
IH)

- 0.083 0.10 0.10 0.0833 -

νM (EM →
IM)

- 0.1 0.083 0.091 0.10 -

rH(IH → SH) - - - - 0.00833 0.011

Table 9: Birth, death and migration parameters

Parameters NDM C2006 C2008 Low C2008 High Ngwa2000 RossMac

ΛH - 0.033 0.041 0.033 - -

b 0.000055 0.000078 0.00011 0.000055 0.000077 -

bM 0.05 0.4 0.13 0.13 0.04175 -

µH 0.000055 0.00012 0.00012 0.00016 - -

µM 0.05 0.17 0.13 0.0.13 - 0.137

δ1, δ 0.000018 0.00035 0.000018 0.00009 0.0000417 -

δ2 0.00001 - - - - -

µ1h - 0.000042 0.0000088 0.000016 0.000056 -

µ1v - 0.1429 0.033 0.033 0.0417 -

µ2h - 0.0000001 0.0000002 0.0000003 - -

µ2v - 0.00023 0.00004 0.00002 - -
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In Table 9 we see the values for the birth, death and migration parameters

in the following: (see,[13],[11],[7] and [6]).

The parameters b and bM are the birth rates for human and mosquito

populations correspondingly. The parameters µH and µM are the death rates

for human and mosquito populations correspondingly. The parameters δ1, δ2, δ

are disease induced death rates for human population. In the Chitnis et al and

Ngwa et al models, quadratic expressions are used for the death terms, with

constants µ1h, µ2h, µ1v, µ2v in the expressions.

From Tables 10 to 12 we now present possible realistic ranges for the various

parameters.

In Table 10 we see the values for the ranges of the incidence parameters.

Ranges for σh, σv, βhv, βvh, β̃vh, a, b, C,m are taken directly from [7] , [11]

and [9]. The maximal βH , βM , are calculated from [7]. The ranges for c and k

are simply taken as the half and double values of the corresponding values in

the standard parameter set.
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Table 10: Ranges for incidence parameters

Parameters Description Range

βH Contact rate between susceptible humans

and infectious mosquitoes

0-0.27

βM Contact rate between susceptible mosquitoes

and infectious humans

0- 0.63

c Constant of proportionality 0.125-0.5

k Resistant factor 0.06-0.24

σh The maximum number of mosquito bites a

human can have per unit time

0.10-50

σv, a Average number of bites given to humans by

each mosquito per unit time, if humans were

freely available

0.055-1.0

βhv, C The probability of transmission of infection

from an infectious mosquito to susceptible

human given that a contact between the two

occurs

0.01-0.5

βvh, b The probability of transmission of infec-

tion from an infectious human to susceptible

mosquito given that a contact between the

two occurs

0.072-1.0

β̃vh The probability of transmission of infec-

tion from a recovered human to susceptible

mosquito given that a contact between the

two occurs

0.024-0.64

m The ratio of number of mosquitoes to humans 2-40
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Table 11: Ranges for transition parameters

Parameters Description Range

γ (IH → RH) Recovery rate due to

clinical malaria

0.0014-0.04

ω (RH → SH) Rate of loss of immu-

nity

0.00055-0.0146

α (IH2 → RH) Recovery rate due to

re-infection

0.01-0.04

νH (EH → IH) rate of progression of

humans from the ex-

posed state to the in-

fectious state

0.067-0.20

νM (EM → IM) rate of progression of

mosquitoes from the

exposed state to the

infectious state

0.029-0.33

rH (Ih → Sh) Recovery rate without

any gain substantial

immunity

0.008-0.011

In Table 11 depicts the values for the ranges of the transition parameters.

The ranges are taken directly from [7] and γ is calculated from [7].

In Table 12 depicts the values for the ranges of the birth, death and mi-

gration parameters.
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Table 12: Ranges for birth, death and migration parameters

Parameters Description Range

ΛH Immigration rate of

humans

0.0027-0.27

b Birth rate of humans 0.000027-0.00014

bM Birth rate of

mosquitoes

0.020-0.4

µH Natural death rate of

humans

0.00003-0.00009

µM Natural death rate of

mosquitoes

0.02-0.12

δ1, δ Death rate due to clin-

ical malaria

0-0.0001

δ2 Death rate due to re-

infection

0.000005-0.000015

µ1h, µh Density dependent

part of the death (or

emigration on) rate

for humans

0.000001-0.001

µ2h Density independent

part of the death (or

emigration on) rate

for humans

0.00000001-0.000001

µ1v, µv Density dependent

part of the rate of

mosquitoes

0.001-0.1

µ2v Density independent

part of the rate of

mosquitoes

0.000001-0.001

The ranges are taken directly from Chitnis et al [7] and [6] except the

natural death rates which are taken as the inverse numbers of the average life

expectancy.
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2.4 Review of some known models

2.4.1 The NDM-model

In this section we review the NDM-model which is the main subject of

investigation in this paper. In the paper published by R. Aguas et al [12],

the authors identified an interesting phenomenon. This phenomenon was fur-

ther investigated by the authors of the NDM model in [13]. R. Aguas et al

claimed that a characteristic of P. falciparum is the gradual acquisition of clin-

ical immunity, resulting from repeated exposures to the parasite. However any

given infection produces a clinical outcome that depends on a combination of

parasite, vector, host and environmental factors.

Also, in highly endemic regions, both prevalence of infection and incidence

of severe malaria are high in young children and pregnant women, whereas

in older children and adults, prevalence of infection is higher while incidence

of severe cases is lower. Thus, even after many exposures, humans are not

resistant to infection, but develop clinical immunity that prevents symptomatic

disease which is not solely dependent on host intrinsic age factors.

In low endemic regions, however, malaria infection and morbidity shows

less age dependence, with infections being commonly symptomatic even in

adults, due to less frequent immunologic simulation.

In the work done by the authors of the NDM model (see [13]), a model was

created consisting of a system of ODE’s for the host and vector populations.

The model divides the host populations into four classes: Susceptible, SH ,

Infectious, IH1, Recovered, RH and Re-infectious, IH2. Human beings enter the

susceptible class either through birth (at a constant rate) or from the recovered

class (at a constant rate). When an infectious mosquito bites a susceptible

human, there is some probability that the parasite (in the form of sporozoite)

will be passed on to the human and the person will move to the infectious

class and become infectious. After some time the infectious humans recover

and move to the recovered class. In our model a proportion of the recovered

humans could move back into the susceptible class and the remaining become

re-infectious and move to the re-infectious class. In addition, some of the

re-infectious humans recover and return to the recovered class (at a constant

rate). Humans leave the population through a density - dependent natural

death rate δ1, and through a disease-induced death rate δ2.
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In the NDM model, we divide the vector (mosquito) population into two

classes: the Susceptible SM , and the Infectious class, IM . Female mosquitoes

(we do not include male mosquitoes because only female mosquitoes bite hu-

man for blood meals) enter the susceptible SM class through birth. The par-

asite (in the form of gametocytes) enters the mosquito, after biting an infec-

tious human,with some probability. When this happens the mosquito then

moves from the susceptible SM class to the infectious IM class. The mosquito

remains infectious for life. Mosquitoes leave the population through a density-

dependent natural death rate.

Figure 1: Flow diagram of malaria model

In Figure 1, we present a schematic diagram of the mathematical model

for malaria transmission. Susceptible humans, SH , get infectious at a cer-

tain probability, when they are bitten by an infectious mosquito. They then

progress to infectious class, IH1, and later into the recovered class RH . These

also progress from recovered to the re-infectious, IH2 or re-enter the susceptible

SH class.

Susceptible mosquitoes SM get infectious at a certain probability when

they come in contact with infectious IH1 or re-infectious IH2 humans and then

progress to the infectious class IM .
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The equations for the malaria model in Figure 1 are shown in equation

(5). The state variables and the parameters used in the model are described

in section 2 and typical values are given in Tables 7, 8 and 9. All parameters

are assumed to be strictly positive with the exception of the disease-induced

death rate, δ1 and δ2, which we assume to be nonnegative.

ṠH(t) = bNH −
βHSHIM
NH

+ ωRH − µHSH

İH1(t) =
βHSHIM
NH

− γIH1 − (µH + δ1)IH1

ṘH(t) = γIH1 + αIH2 −
cβHRHIm

NH

− ωRH − µHRH (5)

İH2(t) =
cβHRHIM

NH

− αIH2 − (µH + δ2)IH2

ṠM(t) = bMNM −
βMSM(IH1 + kIH2)

NH

− µMSM

İM(t) =
βMSM(IH1 + kIH2)

NH

− µMIM

2.4.2 Ross, Chitnis et al and Ngwa et al models

We hereby introduce and compare the NDM model with some known mod-

els which have important connections with the model we consider. We have

chosen three very known models. The first one is the historical Ross model

which is an SI-model with no recovery class, only two population classes for

host and vector. The two other models are the Chitnis et al and Ngwa et al

models which also have latency classes for both host and vector, but only one

infectious class for host. We rewrite all the models in notations corresponding

to the notations used in the NDM model. In section 2, we gave a list of ranges

for parameters used in known publications and discuss the form of different

transition terms between classes like incidence, latency, recovery and other

terms.

Ross model

In this model we have only four population classes; the susceptible host
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population SH and mosquito population SM and the infectious human popu-

lation IH and infectious mosquito population IM . For details see [9].

We expect the total host and mosquito populations to be constant. Thus,

the model is given by the equations for the infectious populations.

İH = ab
IMSH

NH

− γIH

(6)

İM = aC
IHSM

NH

− µIM

The equations for susceptible populations follow from the relations

S ′
H = −I ′

H and S ′
M = −I ′

M .

Parameters γ and µ are the host recovering rate and mosquitos death rate

correspondingly. The incidence rates we described before as βH and βM are

now represented by ab and aC respectively (we use C instead of c in the model

described in [9] so as not to get confused with the constant c in the NDM

model) and the meaning of a, b and C are given in the tables of parameter

values in section 2.

Chitnis et al model

Here we introduce a known model of Chitnis et al [7] and discuss some

connections with the NDM model.

In our notation the model takes the form:

ṠH = ΛH + bNH + ωRH −
βHSHIM
NH

− µHSH

ĖH =
βHSHIM
NH

− νHEH − µHEH

İH = νHEH − γIH − µHIH − δIH
ṘH = γIH − ωRH − µHRH (7)

ṠM = bMNM −
βMSMIH + β̃MSMRH

NH

− µMSM

ĖM =
βMSMIH + β̃MSMRH

NH

− νMEM − µMEM

İM = νMEM − µMIM

We have the following relations between our notations and Chitnis et al

notations:
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For Population Variables:

SH = Sh, EH = Eh, IH = Ih, RH = Rh, SM = Sv, EM = Ev and IM = Iv

NH = Nh = Sh + Eh + Ih +Rh and NM = Nv = Sv + Ev + Iv.

The latency classes EH and EM are added in this model.

For the Parameters:

ΛH = Λh, b = ψh, bM = ψv, ω = ρh, νH = νh, νM = νv, γ = γh,

δ = δh, βH =
λhNh

Iv
=

σvσhβhvNh

σvNv + σhNh

, βM =
bvβvhNh

Nv

=
σvσhβvhNh

σvNv + σhNh

,

β̃M =
bvβ̃vhNh

Nv

=
σvσhβ̃vhNh

σvNv + σhNh

, µH = fh(Nh) = µ1h + µ2hNh, and

µM = fv(Nv) = µ1v + µ2vNv.

We have linear transmission terms from latency to infectious and quadratic

death terms, except terms which are familiar from NDM model. We also have

the possibility that mosquitoes can get the disease from recovered host. We

observe that βH , βM and β̃M are not constant but have complicated form as

explained in section 2 in connection to incidence.

Ngwa et al model

Here we introduce a known model of Ngwa et al [11] and discuss some

connections with the NDM model.

In our notation the model takes the form:

ṠH(t) = bNH + ωRH + rHIH − µHSH −
βHSHIM
NH

ĖH(t) =
βHSHIM
NH

− (νH + µH)EH

İH(t) = νHEH − (rH + γ + δ + µH)IH

ṘH(t) = γIH − (ω + µH)RH (8)

ṠM(t) = bMNM − µMSM −
βMSMIH
NH

− β̃MSMRH

NH

ĖM(t) =
βMSMIH
NH

+
β̃MSMRH

NH

− (νM + µM)EM

İM(t) = νMEM − µMIM

We have the following relations between our notations and Ngwa et al

notations:
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For Population Variables:

SH = Sh, EH = Eh, HH = Ih, RH = Rh, SM = Sv, EM = Ev, and IM = Iv

NH = Nh = Sh + Eh + Ih +Rh and NM = Nv = Sv + Ev + Iv

For parameters:

b = λh, ω = βh, βH = cvhav, νH = νh, rH = rh, γ = αh, δ = γh, bM = λv,

νM = νv, βM = chvav, β̃M = c̃hvav, µH = fh(Nh) = µh + µ2hNh, and

µM = fv(Nv) = µv + µ2vNv.

The model has the same population classes as in Chitnis et al. The term

rHIH for the transition from infectious directly to susceptible, with immediate

loss of immunity is present in Ross equation but not present in NDM model

nor in Chitnis et al model. The incidence terms are the same as in Chitnis

et al but βM and βH do not depend on the population size. They also used

logistic death terms.

2.5 Mathematical analysis

2.5.1 Simplified models

To carry out a serious mathematical investigation, it is usual to scale the

equations to variables representing proportions of population classes, com-

pared with total host or mosquitos classes. Sometimes after that, total host

and mosquito populations are assumed constant. This often gives good approx-

imations in short time behavior, even if not always, especially for the mosquito

population which can change faster. Ngwa et al [11] and Chitnis et al [7] have

pointed out this problem. Anyhow a lot can be obtained from simplified mod-

els assuming at least the host population is constant. The populations can be

considered as slow variables thereby simplifying the general investigation.

Using the scaled variables x = IH

NH
, z = IM

NM
the Ross model becomes:

x′ = βHmz(1− x)− γx
z′ = βMx(1− z)− µz

(9)

where m = NM

NH
and βH = ab, βM = aC. Also in Ngwa et al [11] and Chitnis

et al [7] they have the same type of scaling before examining, even if they do
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not assume constant populations, they still study equations for these relative

population sizes.

In the NDM-model, we scale the population sizes in each class by the total

population sizes to derive a scaled version of the model above, by introducing

the following new variables:

s =
SH

NH

, x =
IH1

NH

, r =
RH

NH

, y =
IH2

NH

, u =
SM

NM

, z =
IM
NM

.

With these new variables, the equations become

s′ = b− βHmsz + ωr − µHs− εs

x′ = βHmsz − γx− (δ1 + µH)x− εx

r′ = −cβHmzr + αy + γx− ωr − µHr − εr (10)

y′ = cβHmzr − αy − (δ2 + µH)y − εy

u′ = bM − βMu(x+ ky)− µMu− εu

z′ = βMu(x+ ky)− µMz − εz

where m = NM

NH
and εj =

jN ′
H

NH
if j = s, x, y, r, and εi =

iN ′
M

NM
if i = u, z, where

N ′
H

NH
= (b − µH) − δ1x − δ2y, and

N ′
M

NM
= bM − µM . Assuming in system (11)

bM = µM and constant host population, we can derive a simplified system

x′ = βHmsz − γx− (δ1 + µH)x

r′ = −cβHmzr + αy + γx− ωr − µHr (11)

y′ = cβHmzr − αy − (δ2 + µH)y

z′ = βMu(x+ ky)− µMz

where s = 1− x− y − r, and u = 1− z.
We assume bM = µM meaning the mosquito population is constant. Then

ε terms seem to have no effect on the system in moderate time. In moderate

time, the solution curves of system (11) are close to the solution curves of the

simplified system (11) and after that, slowly move close to a curve of equilibria

of the simplified system where parameter m changes.

3 Main Results

In this section we present and prove our main results. Before we do that,
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we introduce the following notations.

Notations

rx =
γ

ω + µH

, ry =
µH + δ2
ω + µH

, γ1 = γ + µH + δ1,

4b =
δ2

1 + kcγ1ry/α1 − ry

, B =
βHβM

γ1µM

.
(12)

We have the following main results:

Results for simplified system.

The simplified system has a unique endemic equilibrium for m > 1
B

which

is always a global attractor. For m ≤ 1
B

there is no endemic equilibrium and

the disease-free equilibrium where x = r = y = z = 0 (and thus s = u = 1)

is a global attractor. When m changes the endemic equilibria form a curve Ce

in the phase space parameterized by m.

Results for original system.

For µH < b < 4b+µH the original NDM-system has an equilibrium on the

curve Ce which is a saddle with a four dimensional stable and one dimensional

unstable manifold. The unstable manifold is well approximated by the curve

Ce. On one side of the stable manifold of the saddle point the total host

population slowly decreases to zero and on the other side, the population

increases to infinity and getting to disease-free situation after the value of m

has passed 1
B

. If b ≤ µH the host population will decrease to zero near the

curve Ce and if b > 4b + µH the host population will go to infinity near the

curve Ce, becoming disease-free when m has passed 1
B

.

3.1 Calculations of endemic equilibrium for simplified

system

(Existence of endemic equilibrium solution). We now show how to

get the expressions for the curve Ce by solving for the equilibria for ( 11) . We

also prove that, this equilibrium is unique provided it exists.

From (11) we see that if; x′ = 0, then

x =
βH

γ1

msz, (13)
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y′ = 0, then

y =
cβH

α1

mrz, (14)

where α1 = α+ µH + δ2.

r′ + y′ = 0, then

r = rxx− ryy. (15)

z′ = 0 and using u = 1− z, then

z =
βM(x+ ky)

βM(x+ ky) + µM

. (16)

Using these formulas we deduce an expression also for s. Some calculations

give

s =
1

Bm
+ C1x+ C2y (17)

where C1 =
γ1

βHm
− kcγ1rx

α1

, and C2 =
kcγ1ry

α1

+
kγ1

βHm
.

From s + x + r + y = 1 using (15) and (17) we can solve for y as linear

expression of x (that is, y = L−Qx) and substituting into (14) we get a second

order equation for x as follows:

η2x
2 + η1x+ η0 = 0 (18)

where

η2 = βM(kQ− 1)(ryAQ+Q+ rxA)

η1 = −2 βM k ry ALQ− 2 βM k LQ− µQ+ βM ry AL− βM k rxAL+ βM L

η0 = L(βMkryAL+ βMKL+ µM)

(19)

and where Q =
1 + C1 + rx

1 + C2 − ry

, L =
1− 1

Bm

1 + C2 − ry

, and A =
cβHm

α1

.

Knowing x, we can easily calculate the other variables at equilibrium. Vari-

able y is calculated from the linear expression in x and r from ( 15) and finally

we have s = 1− x− r − y, u = 1− z.
(Uniqueness of endemic equilibrium solution). We now prove the

uniqueness of the endemic equilibrium of the simplified system. Here we show

that there is exactly one endemic equilibrium for the simplified system in the

case m > 1
B

and otherwise no endemic equilibrium.

For our range (see, Tables 7 to 12) of parameters Q must be positive. For y

to be positive we need x < L
Q

. For our range of parameters L < Q and L
Q
< 1.
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We show that there is exactly one solution of equation ( 18) for 0 < x < L
Q

when m > 1
B

. From m > 1
B

follows L > 0. Equation (18) is quadratic or

linear and as the value on the left hand side is positive for x = 0 and negative

( −βM rx A L2

Q2 ) for x = L
Q

it must have exactly one solution in the interval from

0 to L
Q

. For m ≤ 1
B

we get L ≤ 0 and there is then no positive solution for y

if Q > 0. Using the x value found for m > 1
B

and calculating y and inserting

these into the expressions for s, r, y, z and u, we see that all of them will be

positive and less than one.

The solution considered as a function of m will be a parameter form for

the curve Ce.

If we have parameters a little bit outside our parameter ranges, then Q

might become negative and we have in the case m < 1
B

the possibility of two

endemic equilibria for the simplified system, one stable and the other unstable.

3.2 Calculations of the equilibrium for the original NDM

system

In this section we take a look at equilibrium for the original system. In

order to find the equilibrium we let N ′
H = 0. For this equilibrium, the relations

(13), (14), (15), (16 ) and (17) are valid. From (11) we see that if N ′
H = 0,

then

δ1x+ δ2y = b− µH . (20)

From x+ y + r + s = 1 using (15) and (17) we get

(1 + C1 + rx)x+ (1 + C2 − ry)y = 1− 1

Bm
. (21)

Solving (20) and (21) with respect to x and y we get

x =
xn1m+ xn0

xd1m+ xd0

y =
yn1m+ yn0

xd1m+ xd0

(22)

where xn1, xn0, yn1, yn1, xd1, xd0 do not depend on m and are given by the ex-
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pressions below

xn1 = (cγ1kµHry − α1µMyy − bcα1kry + α1bry + α1µH + α1δ2 − α1b)βHB

xn0 = (γ1kµHB − bγ1kB − βHδ2)α1

xd1 = (cδ1α1kry − α1δ1ry + cδ2γ1krx − α1δ2 + α1δ1)βHB (23)

xd0 = (δ1k − δ2)α1γ1B

yn1 = (cγ1kµHrx − α1µHrx − bcγ1krx + α1brx − α1µH − α1δ1 + α1b)βHB

yn0 = (−γ1µHB + bγ1B + βHδ1)α1

By substituting (16) into (14) we get

y(βM(x+ ky) + µM) =
cβH

α1

βMm(rxx− ryy)(x+ ky). (24)

Calculations show that βM(xn0 +kyn0)+µMxd0 = 0 and thus substituting (22)

into (24) the numerator gives a third order equations in m as follows:

q3m
3 + q2m

2 + q1m = 0, (25)

where the coefficients

q3 = βHβMc(kyn1 + xn1)(ryyn1 − rxxn1)

q2 = α1βMkyn1
2 + 2βHβMckryyn0yn1 + α1βMxn1yn1 + βHβMcryxn0yn1

− βHβMckrxxn0yn1 + α1µMxd1yn1 + βHβMcryxn1yn0

− βHβMckrxxn1yn0 − 2βHβMcrxxn0xn1 (26)

q1 = 2α1βMkyn0yn1 + α1βMxn0yn1 + α1µMxd0yn1 + βHβMckryyn0
2

+ α1βMxn1yn0 + βHβMcryxn0yn0 − βHβMckrxxn0yn0 + α1µMxd1yn0

− βHβMcrxxn0
2.

Solving equation (25), we obtain three values of the ratio m between the

mosquito and host population at equilibrium. We consider the positive value

of m and substituting this value into (22) we get the values of x and y, after

which we can calculate the values of the other variables from (15), (16) and

from s = 1 − x − y − r and u = 1 − z. The equations (20) and (21) have

positive solutions only for µH < b < 4b+ µH .
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3.3 Numerical results

Extensive numerical experiments indicate that the endemic equilibrium for

the simplified system is a global attractor when it exists and the disease-free

equilibrium is globally attracting when there is no endemicity.

From numerical solutions of equation (25) we observe there is exactly one

solution when µH < b < 4b + µH and calculating the eigenvalues of the

Jacobian matrix, we find that the equilibrium is a saddle with one dimensional

unstable set.

For other systems (like Chitnis et al and Ngwa et al) there might be a

stable equilibrium on the slow motion curve attracting all solutions. Whether

this equilibrium can be reached in realistic time, depends on the concrete

parameter values and the initial conditions. In Chitnis et al there is sometimes

the possibility for more than one equilibria.

The ratio K = βHβMm
γµM

is an important approximative bifurcation param-

eter, so that there is a transcritical bifurcation for the simplified system at

K = 1 and endemic solution exists only for K > 1. The proportion of suscep-

tible population is approximately 1/K. We can get the value of K analytically

by requiring the determinant of the Jacobian matrix to be zero at the disease-

free equilibrium.

Experiments show that by varying different parameters and initial condi-

tions for the first 3 years, the simplified NDM model approximates well, to

the original NDM model with a relative error of less than 2 percent. This

situation occurs if the simplified model has an endemic equilibrium with a size

not too small (i.e., the value of K is not too near to the bifurcation value) and

in addition the sizes of some of the populations are not less than 1 percent of

the total population.

Experiments also show that in the long term the dynamics follows the curve

Ce which might have a saddle point on it. The Figures 2 and 3 depicts the

long term behavior of the system.

By using the standard values of the NDM system and varying the b pa-

rameter, a saddle point is seen to exist in the interval for b and this is found

to be approximately in the range [0.000055, 0.000065]. In Figure 2 we see

the result of simulations of the NDM system with standard values but pa-

rameter b = 0.00006 for initial value a little bit above the stable set of the

saddle point. The coordinates are in relative host populations. First there
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Figure 2: Relative coordinates on slow motion curve when host population

grows

is slow movement out from the saddle point along the unstable set showing

almost constant values of variables, but growing faster when population grows

and then changing slowly until the population is so great that we have the

disease-free situation. In this part of the unstable set, the relative size of the

susceptible host population, starts from a low value near the saddle point and

grows until it approaches a disease free situation.

The relative size of all other host populations decrease until they disappear

for disease-free cases. Also the total host population is growing, implying a

decrease in the mosquito-host ratio m, leading to disease-free in the long run.

In Figure 3 we see the result of simulations of the NDM system with stan-

dard values but parameter b = 0.00006 for an initial value a little bit below the

stable set of the saddle point. We see slow movement to the situation when

total population is zero and the mosquito-host ratio m grows to infinity. The

relative size of all other host populations, except the re-infectious is decreasing

and for small total host population the re-infectious class is dominating. The

susceptible host population is always low.

In both of these cases there is a good agreement with the curve Ce and a
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Figure 3: Relative coordinates on slow motion curve when host population

decreases

point on that curve corresponds to the sizes of the populations at a given time

in the figures.

4 Conclusion

Most mathematical models of malaria can be divided into two classes.

Those simplified, assuming total host and vector population constant, and

those allowing at least the host population to change. In general the change in

the size of the total host populations are slow compared with the other devel-

opments and then the system can be very well approximated by a simplified

system. An exception is when the migration factor is greater as in Chitnis [6]

and [7], and then affecting essentially the dynamics for some initial conditions.

Here we assumed the mosquito population constant and thus did not consider

the interesting question of oscillating mosquito population.

In simplified models, we have at least one equilibrium that is the disease-

free situation. Disease-free equilibrium points are steady state solutions where
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there is no malaria in either the human or mosquito populations.

In most models for some parameter ranges we also have endemic equilibria,

where the disease persists in the population (all state variables are positive).

In some models (and this is usual in models with non-linear incidence terms)

we can have more than one endemic equilibrium.

In the model where the host population changes, the motion can often be

divided into fast motion and slow motion. First there is a fast motion as a result

of coming near to an attracting point of a corresponding simplified system with

constant host populations (often about 3 years). This fast motion is often

very well approximated by the solution curve of the corresponding simplified

system. After that there is a slow motion along approximately a curve of

endemic equilibria for simplified systems for different total host populations.

On this curve, the system with changing host population can have one or more

equilibria which are saddles or attractors, or the motion will increase the host

population to infinity or decrease it to zero. In reality only a small part of this

curve is seen to be realized as it might take millions of days to move far away.

The equilibrium points are usually either stable or saddle points. If they

are stable they have a basin of attraction determining global behavior. In

the simplified Ross and NDM-model and the full Ngwa et al model we have

only two possibilities. Either there is no endemic and the disease-free is a

global attractor and we have no possibility for endemic or there is endemic

and the endemic equilibrium is attracting everything except the disease-free

equilibrium, so we will reach endemic independently of the initial situation.

In other models there is the possibility that both disease-free and endemic

equilibria are stable. Between the stable equilibria there is usually a saddle

endemic equilibria, determining the boundary of the basins of attractions of

equilibria. In these cases it depends on the initial conditions whether we get

endemic or disease-free situation.

Usually the endemic equilibrium appears at a transcritical bifurcation at

the disease-free equilibrium. This is the case for the simplified Ross and NDM-

model and full Ngwa et al model and usually also for the Chitnis et al model.

There is also a possibility for saddle-node bifurcations where two endemic

equilibria arise suddenly, one stable and the other of a saddle type. This

can happen in the Chitnis et al model and is usually in models with non-

linear incidence. In Chitnis et al [6], this sometimes happens on the slow
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motion curve but never for the simplified versions. In the NDM-model the

existence of a real endemic equilibriums depends approximately on the value

of a quantity of four essential parameters and the ratio between mosquitos and

host populations and this is also usual for many other models.
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