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Abstract 

D-order processes is a sort of important stochastic processes, it  is a class of useful 

stochastic processes in practices, its study is very value. In this paper, we study 1-order 

processes using haar wavelet and wavelet transform on R. We study its some properties 

and wavelet expansion. 
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1  Introduction 

We will take wavelet and use them in a series expansion of signal or function. Wavelet has 

its energy concentrated in time to give a tool for the analysis of transient, nonstationary or 

time-varying phenomena. It still has the oscillating wavelike characteristic but also has 

the ability to allow simultaneous time and frequency analysis with a flexible mathematical 

foundation. We take wavelet and use them in a series expansion of signals or functions 

much the same way a Fourier series the wave or sinusoid to represent a signal or function. 

In order to use the idea of multiresolution ,we will start by defining the scaling function 

and then define the wavelet in terms of it. 

With the rapid development of computerized scientific instruments comes a wide variety 

of interesting problems for data analysis and signal processing. In fields ranging from 

Extragalactic Astronomy to Molecular Spectroscopy to Medical Imaging to computer 

vision, one must recover a signal, curve, image, spectrum or density from incomplete, 

indirect and noisy data .Wavelets have contributed to this already intensely developed and 

rapidly advancing field. 

Wavelet analysis consists of a versatile collection of tools for the analysis and 

manipulation of signals such as sound and images as well as more general digital data 

sets, such as speech, electrocardiograms, images. Wavelet analysis is a remarkable tool for 
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analyzing function of one or several variables that appear in mathematics or in signal and 

image processing .With hindsight the wavelet transform can be viewed as diverse as 

mathematics ,physics and electrical engineering .The basic idea is always to use a family 

of building blocks to represent the object at hand in an efficient and insightful way, the 

building blocks themselves come in different sizes and are suitable for describing features 

with a resolution commensurate with their size . 

There are two important aspects to wavelets, which we shall call “mathematical” and 

“algorithmical”. Numerical algorithms using wavelet bases are similar to other transform 

methods in that vectors and operators are expanded into a basis and the computations take 

place in the new system of coordinates .As with all transform methods such as approach 

hopes to achieve that the  computation is faster in the new system of coordinates than in 

the original domain, wavelet based algorithms exhibit a number of new and important 

properties .Recently some persons have studied wavelet problems of stochastic process or 

stochastic system [1]-[19]. 

In this paper, we study it using haar wavelet and wavelet transform on R. We study its 

some properties and wavelet expansion. 

 

 

2  Basic Definitions 

Definition 1: Let   
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we call X(t) is D-order processes on R. 

we study 1-order processes. 

let d=1 
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                                                                 Definition 2: Let ｛x(t) , t∈R｝is a stochastic 

processes on probability space（Ω, g, P), we call:  
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is wavelet transform of x(t), where, ψ is mather wavelet([11]). 

Then, we have: 
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Definition 3: Let mother wavelet ψ(x) is function: 
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ψ(x) is the Haar wavelet. 

Then, we have: 

1,
2

( )

1,
2

s
x t x

x t

ss
x s t x




   

 
    


                                                                                     (6) 

1,
2

( )

1,
2

s
x t x

x t

ss
x s t x

 




 


      

 
      


                                                                  (7) 

 

 

 

3  Some Results about Density Degree 

We have: 

1
1 1

( ) [ ( , ) ( , )]

1 1
[ ( ) ( ) ][ ( ) ( ) ]

R R

R E w s y w s y

y ty t
E x t dt x t dt

s s s s

 


 

 

 
  

 

2

1
1 12

1
[ ( ) ( ) ( ) ( ) ]

R

y ty t
E x t x t dtdt

s s s


 

 
                                   

1
1 12

1
[ ( ) ( )] ( ) ( )

y ty t
E x t x t dtdt

s s s


 

 
   

2

1
12

1
(1 )) ( ) ( )

R

y ty t
st dtdt

s s s


 

 
   = I 

Where, 

2

1
12

1
(1 ) ( ) ( ) ]

R

y ty t
I st dtdt

s s s


 

 
    

Then, we have: 

 

I 
2 2

1 1
1 1 12 2

1 1
( ) ( ) ] ( ) ( ) ]

2 2R R

y t y ty t y t
dtdt tt dtdt

s s s s s s

 
   

    
   

/2

1 1 1 12 /2 /2 /2

1
[ (1 ) (1 )

2

y y y y s

y s y s y s y s
tt dt dt tt dt dt

s

 

 

  

     
           

                                              



24                                                                                                                         Xuewen Xia 

(8) 

              

the zero density degree of W(s , y) is: 
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4  Wavelet Expansion  

Let real function   is standard orthogonal element of multiresolution analysis 
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Use (8) and (10), we can obtain value of
j k

n mE d d   . 

If we let normalized scaling function to have compact support over [0,1],then a solution is 

a scaling function that is a simple rectangle function 
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