
Journal of Statistical and Econometric Methods, vol.2, no.2, 2013, 85-106

ISSN: 1792-6602 (print), 1792-6939 (online)

Scienpress Ltd, 2013

Joint robust parameter estimation for
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Abstract

In this paper we present a robust parameter estimation method for
jointly estimating shape parameter α, scale parameter γ and location
parameter δ of a symmetric stable distribution. The proposed estima-
tion method is based on Probability Integral Transformation (PIT) and
robust M-estimators. The procedure is ready to use as besides the theo-
retical description we provide the numerical algorithm and all constants
and approximations of functions necessary to compute the estimators.
Robust characteristics and the asymptotic behaviour of estimator α̂ is
investigated. A simulation sequence was carried out to examine statisti-
cal properties of the estimator α̂. We perform an application for a data
set of returns of some assets listed in Budapest Stock Exchange.
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1 Introduction

Stable distributions are often mentioned as limit distributions of normalized
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sum of independent, identically distributed (iid) random variables:

Definition 1.1. Let X,X1, X2, ... be iid random variables. The distribution

of X is stable, if it is not concentrated at one point and if for each n there

exist constants an > 0 and bn such that

X1 + X2 + ... + Xn

an

− bn (1)

has the same distribution as X.

Definition 1.2. If there exist an > 0 and bn such that (1) converges in

distribution to a non-degenerate random variable X, then X1 is in the domain

of attraction of X.

Let’s assume, that variables X, X1, X2, ... have finite variance then we have

the central limit theorem (CLT) and the normal law as a limit distribution. In

that way stable distributions have an important role in probability theory as

this is the only possible distribution family which can be the solution for the

domain of attraction problem derived from generalized CLT, i.e., determin-

ing what random variables are attracted to what limiting random variables

regardless the finite variance assumption.

Studying the stable distribution family is an active field of research both

in theory and practice. For an extensive bibliography with the latest papers

of stable laws we refer to Nolan’s webpage [13]. Practitioners came upon

stable distributions again and again in various applications at the fields of

biology, physics, economics, information technology, etc. Characteristics of the

observed data usually coming from summing huge number of small amounts

with high or infinite variance often coincides with a stable distribution.

A wide theoretical research work was made on characterization of stable

laws, some recent monographs are Zolotarev [22], Uchaikin and Zolotarev [20]

and Samorodnitsky and Taqqu [19]. Interestingly, for the probability density

function (pdf) of stable random variables no closed formula is known, except

for the normal (α = 2, β = 0), Levy (α = 0.5, β = 1) and Cauchy distribution

(α = 1, β = 0). The characteristic function (chf) can be used to describe a

stable distribution which depends on four parameters: characteristic exponent

or index of stability α ∈ (0, 2], skewness or symmetry β ∈ [−1, 1], scale γ > 0,

location δ ∈ R.
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The characteristic function of stable random variable Z is

φ(u|α, β, γ, δ) = E exp(iuZ) = exp(−γα[|u|α + iβη(u, α)] + iuδ), (2)

η(u, α) =

{
−(sign(u))tan(πα/2)|u|α, if α 6= 1,

(2/π)u ln |u|, if α = 1.

Besides the absence of closed pdf, another obstacle in applications is that

the variance of a stable variable is infinite. Furthermore, all moments E|X|p
with p ≥ α do not exist, if α < 2. These properties make stable distributions

difficult to use in practice and force researchers to find alternative statistical

methods. In [1] various practical techniques are collected primarily for data

analysis of heavy-tailed data sets.

About proposed estimators of stable law parameters Weron [21] gives a well

established survey providing comparison between methods by performance,

reliability and computational issues. The estimation of parameters has to be

based on special characteristics of stable laws since the classical maximum

likelihood (ML) estimation which involves pdf cannot be computed directly.

The estimators can be classified basically to procedures concerning the tail

behaviour, the sample quantiles and the empirical characteristic function.

Nolan [14] presented STABLE program that includes routines for evalu-

ation of ML estimators for all parameters numerically. For numerical calcu-

lations of pdf two approach were proposed, a method based on Fast Fourier

Transform and direct integration, see Nolan [15]. The most problematic part of

using ML is the very high computational demand. ML estimation has usually

the best statistical properties among estimation methods, but it is certainly

the slowest one. As Weron [21] points out good performance may not worth

such computational effort and for real time (online) calculations this method

is unusable. Advantages of ML estimation are the attractive feature of consis-

tency and asymptotic normality.

A remarkable class of estimators are based on empirical percentiles. Among

the first contributors of studying parameter estimation for stable distributions

Fama and Roll [3] proposed estimators for α and γ at the symmetric case

(β = 0, δ = 0 ). McCulloch [12] improved their method and gave estimators

for all four parameters with restriction α > 0.6. Estimation is fast and simple

to compute, but gives inaccurate results. The method can be used as an

initial estimation in iterative procedures. Disadvantages of these estimators
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besides inaccuracy are that they include some asymptotic bias and there are

restrictions for α and β.

Literature of empirical characteristic function based methods is also signifi-

cant. Press [17] proposed a branch of methods based on transformations of the

stable chf. His estimators are consistent but no information about efficiency

is given. Moreover, properly determining auxiliary values for the algorithm is

still an open question. Koutrouvelis(1980) [10] presented a regression-type es-

timator of the four parameters. The method concerns a linear regression model

in α where the number of base points tk, k = 1, ..., K depend on the sample

size and parameter α. Computational time is significant while the method

requires numerical inversion of n×n matrices in a recursive algorithm. Kogon

and Williams [11] improved the regression method by simplifying calculation

and achieved better performance. Their method is most likely recommended

according to the simulation results presented in [21].

Tail index estimators are used to determine α. This parameter is gener-

ally in focus at model definitions, because shape parameter α is the primary

parameter that describes heaviness of the tails and the leptokurtic behaviour.

The well-known Hill estimator, [7], and its vast number of modifications use

the fact that asymptotically the tails are Pareto distributed. The drawback

of these procedures is that nobody knows where the power decay starts that

effect the distribution. In fact, there is no simple formula for determining

which outliers should be investigated. It was shown, that power decay also

depends on the parametrization, and it is a difficult function of parameter

α and β, Nolan [14]. Results with acceptable estimation errors may require

large samples. Borak et. al [2] show an example where a generated α-stable

sample with α = 1.9 resulted tail index estimation α̂ = 3.7 which is an inci-

sive critic of these procedures. These methods are very simple but should not

be used solely while they can result parameter estimates far beyond the valid

parameter space 0 < α ≤ 2, hence indicating rejection of a stable model fit.

We mention some very recent paper which represents new methods based

on Bayesian inference. Garcia et. al [5] uses indirect inference which involves

the use of an auxiliary skewed-t distribution model, where parameters of the

skewed t-distribution are associated to stable parameters and calculation is

through the pseudo-likelihood of the auxiliary model. The method by Oral

and Erdemir [16] uses Metropolis random walk chain and direct numerical
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integration.

Indeed, parameter estimation is a well studied field of theory of stable

laws, but the lack of fast, easy to compute and reliable methods especially

for practical applications motivated us to turn to robust statistics. In Section

2 we introduce a new estimation procedure based on the concept of robust

statistics introduced by Huber[8] and Hampel et. al [6] called M-estimators.

Our method provides joint (simultaneous) estimation of all three unknown

parameters of a symmetric (β = 0) stable distribution. The motivation is to

take advantage of down-weighting of outliers and known robustness properties

of M-estimators.

The rest of our paper is arranged as follows: in Section 3 we give numer-

ical approximations of the used functions in order to utilize application of

the method. Section 4 is devoted to some simulation results. We investigate

asymptotic normality of the estimator α̂ and present tables about performance

properties. Finally, in the last section we perform an application of presented

estimators for a data set of logarithmic returns of some stocks listed in Bu-

dapest Stock Exchange (BSE).

2 Method and Main Results

2.1 Estimators of location and scale

M-estimators (maximum likelihood type estimators) are generalizations of

ML estimators while instead of minimizing
∑n

i=1− log f(xi), the M- estimator

minimizes
∑n

i=1 ρ(xi), where ρ is an appropriate function. The minimization

can be done by differentiation of ρ with ψ(x) = dρ(x)/dx and then solving∑n
i=1 ψ(xi) = 0. Choices of ρ and ψ yields different estimators. M-estimators

were originally proposed by Huber [9].

Now let us consider the multiparameter problem defined by Huber [8]

(Chapter 6) called simultaneous M-estimate of location and scale parame-

ters Tand S, respectively. The estimation is formulated through the implicit

functions:
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∑
ψ

(xi − Tn

Sn

)
= 0, (4)

∑
χ
(xi − Tn

Sn

)
= 0, (5)

where xi denotes the sample elements, Tn and Sn are estimates of T and S, ψ

and χ are smooth functions, which control the weighting. This simultaneous

version of M- estimation can be applied to any location-scale family of densities
1
S
f
(

x−T
S

)
where T and S is a location and a scale parameter of the family. We

define a new multiparameter M-estimator with ψ an χ functions of equations

(4) and (5) for a symmetric stable variable X ∼ S(α, 0, γ, δ). Our notations

follow Fegyverneki [4] and Huber [8].

Let F (x) = F0((x − T )/S), F and F0 has the same type, F0 is a special

representative of the type. For example, with normal underlying it can be

considered as the standard normal cdf Φ. Location T and scale parameter S

are defined according to F0.

We use Probability Integral Transformation (PIT) to construct a new uni-

form variable using the inverse distribution function method. If cdf F of a

continuous random variable ξ can be inverted, then F (ξ) is uniformly dis-

tributed on [0, 1]. From the method of moments applied to the transformed

uniform variable we have:

EF

(
F0

(ξ − T

S

))
=

1

2
, (6)

D2
F

(
F0

(ξ − T

S

))
=

1

12
. (7)

From these moments Huber’s functions ψ(x) and χ(x) of equation (4) and (5)

are now defined as

ψ(x) = F (x)− 1

2
, (8)

χ(x) =
(
F (x)− 1

2

)2

− 1

12
, (9)

and the equation system from (6) and (7) is

∑
ψ

(xi − Tn

Sn

)
= 0, (10)

∑
ψ2

(xi − Tn

Sn

)
= (n− 1)B, (11)
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where B denotes a constant. It is equal to 1
12

if the sample has the same type

as F0 and it is

B = D2
Fξ

(ψ(ξ)), (12)

otherwise.

For solving equation system (10) and (11) if B is known, i.e. the estima-

tion procedure is used for a completely characterised underlying distribution

function Fξ of the sample, e.g. Φ(x), an iterative algorithm called ping-pong

method was constructed, where only the scale and location parameters are the

unknowns, see Fegyverneki [4]. The numerical algorithm is based on the modi-

fied Newton method, and convergence of approximations follows from Banach’s

fixpoint theorem, as the procedure is a contraction. In each step equations (13)

and (14) are evaluated in turns until reaching a predefined precision.

Step for location parameter:

T (m+1)
n = T (m)

n +
1

n
S(m)

n

n∑
i=1

ψ
(xi − T

(m)
n

S
(m)
n

)
, (13)

Step for scale parameter:

[S(m+1)
n ]2 =

1

(n− 1)B
n∑

i=1

ψ2
(xi − T

(m+1)
n

S
(m)
n

)
[S(m)

n ]2, (14)

where the initial approximations are

T (0)
n = med{xi}, (15)

S(0)
n = C ·MAD, (16)

where med{xi} is the median, MAD denotes median absolute deviation MAD =

med{|xi−med{xi}|}, S
(m)
n and T

(m)
n are current estimations of S and T in step

m of the iteration, respectively. Constant C = F−1
0 (3/4) is used to have the

initial estimation unbiased (F0 is symmetric). Huber [8] shows that the median

and median absolute deviation are consistent estimators of location and scale

parameters, if constant C is properly chosen.

2.2 Estimator of characteristic exponent α

If we want to apply the above described method for the stable param-

eters, B involves the shape parameter α through cdf Fξα in equation (12).
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Our estimation procedure avoids direct use of the unknown α-stable cdf by a

modification in B. The modification is done by fixing in (12) the distribution

function F at ψ(x) = F (x)− 1/2 to the known cdf’s of stable family members

Cauchy and normal cdf, respectively.

Definition 2.1. (Normal distribution, α = 2)

f(γ, δ; x) =
1√
4πγ2

exp
(
− (x− δ)2

4 γ2

)
,

Definition 2.2. (Cauchy distribution, α = 1)

f(γ, δ; x) =
1

π

γ

γ2 + (x− δ)2
.

Denote Fξα = Fα. Substitution of normal cdf Φ(x) and cdf of Cauchy

distributions into (12) we have

∫ ∞

−∞

( 1

π
arctan x

)2

dFα =

∫ ∞

−∞

( 1

π
arctan x

)2

fα(x)dx = B1(α), (17)

when F0 is considered as standard Cauchy, and

∫ ∞

−∞

(
Φ(x)− 1

2

)2

dFα =

∫ ∞

−∞

(
Φ(x)− 1

2

)2

fα(x)dx = B2(α), (18)

when F0 is considered as standard normal.

Function B has a key role in the joint estimation of the parameters, while

it effects the scale parameter approximation in ping-pong method. This mod-

ification adds some sort of bias in each case to the scale parameter estimation,

because not the sample’s correct α was used for F0,α. This bias is intentional

and will be used to estimate the shape parameter. Although calculation of B
also requires the pdf fα and through fα it depends on the shape parameter,

both B1(α) and B2(α) functions were pre-calculated for different α’s and ap-

proximated by a rational fraction function between these points, see Section

3.

For the joint estimation of the three parameters we construct another it-

eration around ping-pong method in an external level, in which α̂ changes

systematically. Initially, both α̂ = 1 and α̂ = 2 are chosen, and with ping-

pong method according to both functions B1(α) and B2(α) scale parameter

estimations are calculated. Denote the scale parameter estimation calculated
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with B1(α) in equation (14) as S1(α) and with B2(α) as S2(α). Note, that S1

and S2 are dependent on α only through the B functions.

With initial α̂ = 1 and α̂ = 2 we have four scale estimation S1(1), S2(1),

S1(2) and S2(2). The scale estimations involve the bias because of the modi-

fication in B, that means for both α = 1 and α = 2 the two scale estimation

differs, but at α = 1 and α = 2 the opposite one is greater. If we would choose

some estimation for α, say a in interval (1, 2) and calculate scale parameter

S1(a) and S2(a) the difference between scale estimations would be smaller, and

by getting closer to sample’s α, the difference would tend to zero.

Hence, if we treat S1 and S2 as functions of α, then S1(α) and S2(α) form

two concave, monotonically increasing functions on interval α ∈ (1, 2). The two

scale parameter curve have only one intersection point where S1(a) = S2(a),

where the bias from choosing F0,α incorrectly appears. Estimation of shape

parameter is then α̂ = a.

Intersection point of curves S1(α) and S2(α) is determined by cut-and-try

method, with arbitrary precision. Estimators of location δ and scale γ are due

to the last iteration of cut-and-try method. We provide the algorithm of the

external iteration. It’s logic is familiar to bisection search.

Algorithm

1. Set ε accuracy.

2. Set a0 = aL = 1 and a1 = aU = 2 and calculate scale estimations S1(aL),

S2(aL), S1(aU), S2(aU).

3. The initial condition is S1(aL) < S2(aL) and S2(aU) < S1(aU) basically

true, otherwise there is no intersection point and the method failed (re-

turn -1).

4. While |ai−1 − ai| > ε

Set ai = (aU + aL)/2 and calculate S1(ai) and S2(ai).

If S1(ai) < S2(ai), then set aL = ai, else set aU = ai.

5. return ai as α̂
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Computation time of cut-and-try method is logarithmic (log2), as in each

iteration we consider only the half of the interval of the previous iteration.

However, we calculate approximations S1 and S2 only at discrete points found

by cut-and-try algorithm, S1(α) and S2(α) were perceived as continuous func-

tions of α. In Figure 1. some scale parameter curves are plotted in case

of various sample sizes and α parameters. One can see, how the procedure

become more accurate, when the sample size is increased.

Our method has some limitations. It considers only symmetric α-stable

distributions, where 1 ≤ α ≤ 2. Usage of Cauchy and normal distribution

highly lean on symmetry. Our method is probably extendible to the case

where α < 1, at least approximations can be computed numerically. However,

in this case the expectation does not exist, that’s why for the practical point

of view this case has much more lower relevance.2

Fegyverneki [4] shows results about the convergence of M-estimators of lo-

cation and scale parameter. Let ξ = ση + µ where the distribution of variable

η is F0(x). Let Tn and Sn the estimator of location µ ∈ R and scale parameter

σ > 0, respectively. Given the sample ξ1, ξ2, ..., ξn and cdf. F0(x), the distri-

bution of ξi is F0

(
(x− µ)/σ

)
.

Theorem 2.3. (Fegyverneki [4], Theorem 2.) If F0(x) is differentiable,

strictly monotone increasing and F0(0) = 0.5 then the two-dimensional joint

distribution of (Tn, Sn) converges to a normal one,

√
n((Tn, Sn)− µ, σ) → N(0, Σ).

Covariance matrix Σ is also given in Fegyverneki [4]. Note that conver-

gence to normality alters according to type F0 because covariance matrices are

depend on the underlying distribution.

2Generally the expectation play a significant role in real data models, for example in
portfolio selection problem the expectation coincides the return or log-return of the invest-
ment and if α < 1, then the problem has no solution in the sense that expected return can
not be infinite.
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Figure 1: S1(α) and S2(α) scale parameter curves computed with ping-pong

method with modified B functions, B1(α) and B2(α) (I. sample size 1000 el-

ements, α = 1.3(top-left); II. sample size 3000 elements, α = 1.3 (top-right);

III. sample size 3000 elements, α = 1.8 (bottom-left); IV. sample size 3000

elements, α = 1.6 (bottom-right)

3 Numerical Approximations of Functions B
In this section we present numerical approximations of functions B which

is necessary to apply the proposed PIT estimation procedure. While in equa-

tion (17) and (18) expressions involve the α-stable density, we are faced to

the problem of unknown α-stable pdf. Obviously, B1(α) and B2(α) have to be
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approximated numerically. To avoid high computational demand of numeri-

cal integration that could extremely slow down the algorithm, a polynomial

approximation for B s was determined.

The rational fractional function had to be determined only once, hence, no

further time consuming computation is needed. Evaluation of the algorithm

requires no integration, that’s why faster than the proposed methods which

calculates the density during the procedure.

Recall, that function B is the expectation of (ψ(x))2, hence can be approx-

imated with the mean because of the law of large numbers:

B1(α) ≈ 1

n

n∑
i=1

(Φ(xi)− 0.5)2, (19)

B2(α) ≈ 1

n

n∑
i=1

( 1

π
arctan xi

)2

. (20)

Table 1: Values for B1 and B2 depend on α

α B1(α) B2(α)

1 0.0833333333333333 0.126807877965645

1.1 0.0758844534723818 0.118966259082521

1.2 0.0697612892957584 0.112284032323310

1.3 0.0646999988570841 0.106570898511029

1.4 0.0604648399039825 0.101682622480835

1.5 0.0569093151515006 0.097443890906153

1.6 0.0538933607717261 0.093798682214659

1.7 0.0513226066667932 0.090637100836610

1.8 0.0491126022363082 0.087875629036068

1.9 0.0472087085432832 0.085445768785679

2 0.0455654051822800 0.083333333333333

In order to approximate (19) and (20) samples with parameters α = 1, α =

1.1, α = 1.2, ..., α = 2 of 20 million elements were generated. Table 1. shows

calculated values of B1(α) and B2(α) in α = 1, α = 1.1, α = 1.2, ..., α = 2 base

points. Afterwards, a rational fraction function approximation for B1(α) and
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Table 2: Coefficients for the rational fraction function

coef. B1 B2

b3 -3.83008202167381 -5.44424585925350

b2 4.78393407388667 8.41128641608921

b1 -2.07519730244991 -0.91519048820337

b0 0.18011293964047 -4.11676503125739

a5 0.00557315701358 0.02536047583564

a4 -0.02655295929925 -0.20581738159343

a3 0.12169846973572 0.84848196461615

a2 -0.31598423581221 -2.18605774383017

a1 0.34060543137722 3.06692780009580

a0 -0.12044269481921 -1.68393473522529

B2(α) were constructed, based on the base points of Table 1. The approxima-

tion formula is

Bi(x) =
a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x + a0

x4 + b3x3 + b2x2 + b1x + b0

, (21)

where i = 1, 2. Coefficients a5, ..., a0, b3, ..., b0 were calculated from the linear

equations system build up from data in Table 1. The equations system is

overdetermined, while we have twelve equations and eleven unknown variables.

We solved the system of eleven equations by eliminating one equation. Table

2 contains the coefficients for approximations of a5, ..., a0, b3, ..., b0 from the

system with the smallest least squares differences from the twelve base points.

4 Simulation Study

A Monte-Carlo simulation sequence was made to examine statistical prop-

erties of estimators α̂, γ̂ and δ̂ . The examined α values were 1.3, 1.5, 1.7, in

each case samples were generated with n = 50, 100, 400, 2500 elements, and

Monte-Carlo replications were r = 100, r = 400 and r = 2500, respectively.

Random number generation of standard (γ = 1, δ = 0) α-stable samples

was computed according to the formula by Zolotarev [22]. An α - stable
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variable Z is generated as

Z(α, 0) =
sin(αξ)(
cosξ)

1
α

(
cos((1− α)ξ)

η

) 1−α
α

, (22)

where η is a standard exponential variable, ξ is uniform on (−π/2, π/2). For

standardized variables Z(α, 0)/α
1
α can be used.

Our simulations showed that if parameter α is near the endpoints of in-

terval [1, 2] and the sample is small i.e. less than 100 elements, it is possible,

that there is no intersection point because of random effect and inaccuracy of

estimation. Presence of this problem in the simulation could be reduced by

increasing the number of elements of the sample. In practice if the method

fails we suggest to fit a normal or Cauchy model to the data set. Table 3.

shows numbers of valid estimation results in our simulation study.

Table 3: Number of valid estimators (r: Monte-Carlo repl., n: sample size)

r=100 r=400 r=2500

α 1.3 1.5 1.7 1.3 1.5 1.7 1.3 1.5 1.7

n=50 94 99 91 382 388 357 2389 2429 2244
n=100 97 100 99 395 399 387 2479 2493 2443
n=400 100 100 100 400 400 400 2499 2500 2500
n=2500 100 100 100 400 400 400 2500 2500 2500

We examined asymptotic normality of the estimators γ̂, δ̂, α̂ by χ2 goodness-

of-fit test. We summarize resulted p-values in Table 4. for only α̂, while

convergence to normality of the scale and location estimator is proven theo-

retically. In fact, we are interested in the normality of the estimator α̂. Tests

were based on originally 10 bins and calculation was done by function ’chi2gof ’

of MATLAB Software package. We can accept normality if the chosen Type

I. error is smaller than the p-value, generally 0.05. Normality of the estima-

tor is acceptable in most of the simulation cases, except with small samples

(n = 50, n = 100) replicated 2500 times. Rejection of normality is maybe

because of the asymmetry of the samples as they are trimmed near 1 (α = 1.3

case) or 2 (α = 1.7 case).

We also present results on the performance of our new estimators. The

differences (α̂−α), (γ̂−γ), (δ̂−δ), the standard deviations, and correlation of



Csilla Csendes 99

each estimator pairs are calculated. The estimation procedure uses the scale

estimator in the iteration to estimate α, hence it is expectable, that among

α̂ and γ̂ some relation would be found. Correlation coefficients are around

0.4− 0.6. In Table 5. and Table 6. we give results for the case where number

of Monte-Carlo replications was r = 2500. Table 7. contains the asymptotic

(r = 2500) mean squared errors (MSE) for both parameters.

Table 4: p-values to testing for normality with χ2 test of par. estimate α̂

n=50 n=100 n=400 n=2500

α = 1.3 r=100 0.4851 0.3224 0.3312 0.0350

r=400 0.0001 0.0180 0.4774 0.0076

r=2500 0.0000 0.0000 0.2303 0.0000

α = 1.5 r=100 0.0969 0.7050 0.7454 0.2131

r=400 0.3654 0.1979 0.0694 0.7535

r=2500 0.0005 0.0236 0.0666 0.9928

α = 1.7 r=100 0.7340 0.9458 0.2714 0.6293

r=400 0.0000 0.2394 0.5478 0.1210

r=2500 0.0000 0.0002 0.3554 0.4432

5 Application

We present an application of our PIT estimation method to a financial

data set of daily closing prices of some assets. Similar applications are widely

accepted in literature, as the characteristics of price change data was proved

many times to be well fitted to symmetric α-stable distributions, Rachev and

Mittnik[18].

Assets investigated are the dominant papers at Budapest Stock Exchange

(BSE): BUX (official index), OTP, Richter, Egis, Magyar Telekom (MTelekom),

MOL. Samples contain around 2700 observations except OTP, that paper is

investigated from March 2002, the other papers from January, 2001. If a daily

closing price was missing from the data set, the price change was calculated

from the price of the following day.
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Table 5: Accuracy for estimates α̂, γ̂, δ̂, Monte-Carlo replication r = 2500

α n α̂− α γ̂ − γ δ̂ − δ

1.3 50 0.06246 0.05074 -0.00018
100 0.02878 0.02032 -0.00026
400 0.00664 -0.00081 0.00013

2500 0.00192 -0.00699 0.00033

1.5 50 0.03528 0.02199 -0.00226
100 0.02435 0.01191 -0.00067
400 0.00840 0.00362 0.00104

2500 0.00133 0.00041 0.00011

1.7 50 -0,00452 0.00542 -0.00944
100 0.01020 0.00968 0.00227
400 0.00524 0.00152 -0.00040

2500 0.00012 0.00098 -0.00044

Asset price changes are examined in the logarithmic model, called contin-

uously - compounded rate of returns:

rlog = ln
Pi+1

Pi

, (23)

where Pi denotes the price of the asset in time i. Note, that another possibility

is the use of the so called discrete returns rdiscrete = (Pi+1−Pi)/Pi, but for small

returns, logarithmic and discrete returns are close, if x ≈ 0 then log(x+1) ≈ x.

In Table 8. one can see estimations of parameters α̂, γ̂, δ̂ assuming that

price changes follow a symmetric stable distribution. Confidence intervals

for estimation is with σ(α̂) = 0.03 according to Table 6. and n ≈ 2500 is

α̂ ± 1.96 ∗ (0.03)/
√

2500 = α̂ ± 0.0113. Based on calculated α̂ parameters we

can classify the assets into a riskier (BUX, Egis, OTP) and a less riskier group

(MOL, MTelekom, Richter), as a lower α value means a more volatile and

hence risky investment.

In Figure 2, histograms of logarithmic returns computed from daily closing

prices of the assets with normal curves are displayed. It is seen, that the data

is not really fit the normal curve. We tested both the normal nullhypothesis

and the α-stable nullhypothesis with χ2 and Kolmogorov-Smirnov (KS) type

goodness-of fit tests using our estimated parameter values. Data sets of returns
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Table 6: Standard deviation and correlation coefficients for estimates α̂, γ̂, δ̂,

Monte-Carlo replication r = 2500

α n σ(α̂) σ(γ̂) σ(δ̂) rα,γ rα,δ rγ,δ

1.3 50 0.20375 0.21203 0.19909 0.56971 -0.01833 0.02058
100 0.15317 0.15684 0.13783 0.62494 0.01291 0.02614
400 0.07359 0.07872 0.06765 0.60536 -0.02671 -0.00753

2500 0.02979 0.03183 0.02716 0.36814 -0.00482 -0.00743

1.5 50 0.21196 0.18609 0.17820 0.54814 -0.00804 -0.00410
100 0.15722 0.13100 0.12392 0.59489 -0.01344 -0.01445
400 0.07691 0.06304 0.06139 0.56732 -0.01081 -0.02274

2500 0.03081 0.02546 0.02456 0.58733 0.00812 0.00336

1.7 50 0.18222 0.15643 0.15853 0.48490 -0.02716 -0.02113
100 0.14298 0.10729 0.11421 0.50638 0.01945 -0.02351
400 0.07412 0.05346 0.05642 0.51379 -0.00698 0.00765

2500 0.02951 0.02148 0.02215 0.51498 0.00720 0.03302

Figure 2: Histograms of logarithmic returns of some stocks listed in BSE

(2001-2010) computed from daily closing prices (with fitted normal curve)

are standardized with the mean and standard deviation, and location and scale

parameter, respectively, and was tested against standard cdf’s. Because precise

critical values for the stable underlying hypothesis were not available for us,
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Table 7: Asymptotic MSE values of PIT estimators of α, γ, δ (Monte Carlo

repetition=2500)

α n MSE(α̂) MSE(γ̂) MSE(δ̂)

α = 1.3 50 0.045396 0.047511 0.039618

100 0.024279 0.025002 0.018990

400 0.005457 0.006195 0.004574

2500 0.000891 0.001062 0.000737

α = 1.5 50 0.046154 0.035099 0.031747

100 0.025300 0.017296 0.015351

400 0.005984 0.003986 0.003768

2500 0.000950 0.000648 0.000603

α = 1.7 50 0.033211 0.024488 0.025209

100 0.020538 0.011600 0.013044

400 0.005520 0.002859 0.003182

2500 0.000870 0.000462 0.000490

we used the commonly known tables for KS test.

The χ2 test resulted 0.0000 p-value for all asset in case of testing for nor-

mality as we expected. For the tested α-stable goodness-of-fit the p-values are

overall greater, increased in compare to the normal case, but they not always

exceed 0.05. Hence, the α-stable fit is not perfect, but the well-known draw-

backs of the χ2 test as by grouping it can mask over tail behaviour and number

of the intervals and the edges of grouping can have an effect on the statistic

may indicate this phenomena.

On the other hand, the KS test gave reasonable results. The absolute

differences between empirical cdf and hypothetised cdf’s according to KS test

are smaller in the case of stable nullhypothesis than in the case of normal

nullhypothesis for every investigated asset. Apart from a few paper, there is

no reason to reject the stable model fit. Table 9. and Table 10. show results

of performed χ2 and KS test for the distribution fitting of logarithmic returns.

We also note, that empirical studies of such financial time series data are

based on either on a time series approach either an independent, identically

distributed model. Here, we did not consider elements of time series theory
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Table 8: Parameters estimated with PIT method assuming symmetric stable

laws of logarithmic returns from BSE data set

Asset α̂ γ̂ δ̂

BUX 1.7525 0.0132 0.0003

Egis 1.6890 0.0171 0.0002

MOL 1.7265 0.0176 0.0004

M. Telekom 1.7518 0.0162 -0.0004

OTP 1.7062 0.0203 0.0007

Richter 1.7977 0.0175 0.0003

i.e. autocorrelation or partial autocorrelation functions of the data.

Table 9: Resulted p-values and test statistic values with χ2 goodness-of-fit test

to estimated stable parameters of BSE data set

normal fit stable fit

Asset p -value test statistic p -value test statistic

BUX 0.0000 23.2047 0.3441 10.0796

Egis 0.0000 69.7031 0.0001 35.1439

Mol 0.0000 130.4229 0.0167 20.2015

M. Telekom 0.0000 98.4660 0.1516 13.2507

OTP 0.0000 109.4452 0.7635 5.7621

Richter 0.0000 118.9237 0.0120 21.1394
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Table 10: Resulted p-values and test statistic values with Kolmogorov-Smirnov

goodness-of-fit test to estimated stable parameters of BSE data set

normal fit stable fit

Asset p -value teststat. p -value teststat. critical value

BUX 0.0000 0.0515 0.6246 0.0144 0.0260

Egis 0.0000 0.0687 0.0676 0.0249 0.0260

Mol 0.0000 0.0576 0.3997 0.0171 0.0261

M. Telekom 0.0000 0.0531 0.0589 0.0254 0.0260

OTP 0.0000 0.0655 0.6236 0.0161 0.0291

Richter 0.0004 0.0395 0.0481 0.0262 0.0260

6 Summary

In this paper we presented a parameter estimation method which is used

to determine α, γ, δ parameters of a symmetric stable distribution jointly.

We used Probability Integral Transformation to derive our procedure, which

is a variant of M-estimates. Characteristics of the estimation procedure is in-

vestigated in a Monte-Carlo simulation sequence. Our method is similar in

performance to other proposed methods in literature. The method is applied

to a financial data set and it was shown that it can be useful for stable portfolio

optimization. Further work is to investigate asymptotic behaviour of parame-

ter estimation more theoretically.
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