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Abstract

We are interested to the coefficientof the non-linear convection term
estimation of the Hamilton-Jacobi equation, in two-dimensional, with
the Cauchy-Dirichlet conditions. We validate numerically some proper-
ties of the KPZ equation with the same conditions mention above while
making a correlation with the surface-growth phenomenon.
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1 Introduction

We use the compact adjoint technique to estimate the parameter ”a” ,

which is the coefficient of the convection term of the Hamilton-Jacobi problem

defined by: 
∂u

∂t
−∆u = a | ∇u |p in Ω×]0, +∞[

u = 0 on ∂Ω×]0, +∞[

u(., 0) = u0 in Ω

(1)

where a ∈ R, a 6= 0 and Ω is a bounded open subset of R2.

The technique we used belong to the family of the variational methods based

on the optimal control theory [2],[3],[10],[11],[16],[18], [20],[22], [27]. We manu-

ally generate the compact adjoint codes by using the spectral method based on

the Chebyshev points [24], [26]. Such an approach is proved to be very efficient

in the inverse problems resolution, governed by partial differential equations

(PDE) [12].We carried out the various simulations in MatLab. There are au-

tomatic differentiation packages that generate the associated codes. However,

those developed in MatLab require refinement [23], [25].

Several works have been done in the setting of the existence and uniqueness

of solution of the Hamilton-Jacobi problem [4],[5],[8],[9],[13],[19],[21].

We also conduct the numerical study of the problem (1) when a = 1 and

p = 2, corresponding to the KPZ problem which translate the surface-growth

phenomenon [8],[9],[14],[15],[28].

This work is organized as follows: In the first section we present the inverse

problem formulation that permits to estimate the parameter ”a” of (1). In the

second section, we conduct the numerical scheme validation and verify numer-

ically some theoretical results as the solution extinction, in finite time, of the

Cauchy-Dirichlet problem of the KPZ equation. In the last section, we present

numerical simulations of the parameter estimation.

2 Inverse problem formulation

Let’s consider the functional

Jλ(a) = 1
2

∫ T

0

‖ Λ.S(a; t)− U obs ‖2
O dt +

λ

2
‖ a− ab ‖2 . (2)
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where O is the observation space, Λ is the observation operator, U obs is the

observation, and ab is the first guess.

The problem is to minimize the functional (2) under constraint (1). We use the

variational data assimilation techniques based on the compact adjoint method

[1].

By using a paryial discretization in space, the problem (1) drives us to an

ordinary differential equation of the shape
dU

dt
= F (U, a), t ∈]0, T [

U(0) = u

(3)

where U(t) is the state belonging to the Hilbert space H ≡ RN .

We get the complete numerical scheme by using the explicit Euler method:{
Uk+1 = Uk + ∆tF (Uk, a), k = 0 : M − 1

U0 = u
(4)

where Uk is the approximation vector of U(t), solution of the problem (3),

in RN at the time tk = k∆t. Let’s denote by P the admissible space of the

estimate parameter and a ∈ P . Let’s make the following hypothesis:

Hypothesis 2.1. Given a ∈ P and T > 0, we assume that there exists a

unique function U ∈ H, solution of the problem (3), which depends continu-

ously on the parameter ”a”. Otherwise, the application

S : P −→ H
a 7−→ S(a) = U(a; t)

is continuous for all t ∈ [0, T ].

Hypothesis 2.2. We assume that the application S is Frchet differentiable

for all t ∈ [0, T ]. In particular, for all δa ∈ P and for all t ∈ [0, T ]:

U(a + δa; t) = U(a; t) + DU(a; t).δa + o(‖ δa ‖P)

where DU(a; t) is the derivative of the state U(t) at the point a.

For the purposes of numerical processing it should be assumed that O is a

finite dimensional vector space or a subset of a finite dimensional vector space.

Under the hypothesis 2.1, the solution of the Cauchy problem (3)

U(a; t) = S(a)
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leads us to

Uk = Sk(a) (5)

solution of the discrete system (4), where (Sk) is a sequence of operators which

for the parameter a associates the discrete solution at the instant tk with

S0(a) = u. (6)

3 Numerical schemes validation

In this section, we conduct an analysis of the stability of our numerical

schemes. This analysis is useful in particular for a variational assimilation

problem which we will expose further in this work. We also perform numeri-

cal simulations of the KPZ problem which translate the water surface-growth

phenomenon , as well as some related theoretical results.

3.1 Numerical scheme of the direct problem

To validate the numerical scheme of the problem (1), we use a ”synthetic”

exact solution. This aspect imposes us a source function f(x, y, t). Therefore,

we consider the problem
∂u

∂t
−∆u = a | ∇u |p +f(x, y, t) in Ω×]0, +∞[

u = 0 on ∂Ω×]0, +∞[

u(., 0) = u0 in Ω

(7)

We choose p = 2, a = −1 and Ω = [−1, 1]× [−1, 1].

f is defined by:

f(x, y, t) = π
(
sin(πx) sin(πy)− cos2(πx) sin2(πy)− sin2(πx) cos2(πy)

)
exp(−π2t).

Thus, the problem (7) admits

u(x, y, t) =
1

π
sin(πx) sin(πy) exp(−π2t) (8)
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as analytic solution, where the initial condition is

u0(x, y) =
1

π
sin(πx) sin(πy).

For the discretization, we used, for the variable space (x, y), the Chebyshev

spectral method and the explicit Euler method in time. Then (7) implies
Sk+1(a) = Sk(a) + ∆t(Dxx + Dyy)Sk(a)

+a∆tdiag(DxSk(a))DxSk(a)

+a∆tdiag(DySk(a))DySk(a) + f, k = 0, ...,M − 1

S0(a) = u.

(9)

Before conducting the data assimilation, we first analyse and validate the nu-

merical schemes stability. To analyze the numerical stability of the scheme

(9), we perform numerical simulations of the exact solution (8) and the ap-

proximate solution from (9). The results of these simulations are presented in

Figure 1 and the estimation of error in the table 1.

The different simulations ( Figure 1) show that the numerical scheme (9)

Figure 1: Evolution of the exact solution (first line) and the approximate

solution (second line).

gives a good approximation of the exact solution (8), the error between the

two solutions converges toward 0 with an optimal order in L∞. In fact, in gen-

eral, the maximum error (infinite norm) according to the different simulations

is of the order 10−7 (table 1). We can draw the following conclusions:
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Table 1: Estimation of error between exact and approximate solutions.

iteration 1 3000 4000 4500 5000

Error L∞ 6.1972e-07 2.3161e-06 8.2056e-07 4.9795e-07 3.0255e-07

1. The choice of the pseudo-spectral discretization scheme allowed us to

directly establish a numerical scheme of the problem (7) in matrix form.

This method makes it possible to reduce the use of the loop ”for” in our

algorithm.Thus, we gain in computing time and storage.

2. The explicit Euler scheme with time, with a judicious choice of discretiza-

tion steps ∆t = 0, 0002, guarantees a numerical stability of the scheme

(9).

3.2 Application to the KPZ equation

Assuming a = 1 and p = 2, the problem (1) corresponds to
∂u

∂t
−∆u = | ∇u |2 in Ω×]0, +∞[

u = 0 on ∂Ω×]0, +∞[

u(., 0) = u0 in Ω

(10)

known as the Cauchy-Dirichlet problem of the KPZ equation. In practice,

the problem (10) can reflect the phenomenon of the surface growth ( shallow

water for example).u(x, y, t) represents the surface height’s, at time t and at

the point (x, y) ∈ Ω ⊂ R2.

We numerically validate the extinction of the solution in finite time whatever

the initial condition randomly chosen. This translates, in practice, whatever

the disturbance carried out at the level of the water surface, at the initial time

t0, the surface stabilizes horizontally at the absence of a permanent source of

disturbance.

Consider a unit cubic vase filled with water at a height h0 which representing

the observation origin of the surface u in Ω = [−1, 1]2. At rest, this surface u

is in the horizontal plane passing through the origin h0 = 0. By making the

following assumptions:
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1. the water quantity is invariant;

2. the non-existence of a permanent source of disturbance of this water;

3. the initial condition u0 of the problem (10) represents the water surface

behavior following a sudden disturbance at the initial time t0.

Then this surface u(x, y, t) is between the two horizontal planes passing through

the global extrema of u0. It covers its state u = 0 in finite time. We find explic-

itly (Figure 2) this phenomenon through different simulations of the numerical

scheme of the problem (10).

This gives the mathematical result as follows. Assuming a = 1 and p = 2

for all initial condition u0, the problem (10) admits a unique classical solution

u ∈ C2,1(Ω× (0, T ) ([5],[19]) satisfying

min
Ω

u0 ≤ u(x, y, t) ≤ max
Ω

u0, (x, y, t) ∈ [−1, 1]2 × [0,∞[.

It’s possible to prove that this solution converges towards a stable state, the

null function.In the practical case, relating to the water surface growth, this

stable state is reached and we have u ≡ 0 in [−1, 1]2× [0,∞[ in the absence of

a permanent perturbation source. u ≡ 0 represents the water surface state at

rest.

Remark 3.1. Even if the boundary conditions are not Dirichlet type, the

behavior of the solution remains valid [7].

We give an extinction property in finite time of the solution of the problem

(10).

Theorem 3.2. Assume that a = −1, p = 2 and the initial condition u0

depend on a bounded Random measure in Ω = [−1, 1]2.Denoting by u the

corresponding classical solution of (10),

1.

min
Ω

u0 ≤ u(x, y, t) ≤ max
Ω

u0, (x, y, t) ∈ Ω× [0,∞[.

2. there exists T ∗ > 0 such that

u(x, y, t) = 0 for each (x, y, t) ∈ Ω× (T ∗, +∞). (11)
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Figure 2: Behavior of the water surface after a sudden disturbance at the initial

time.

For proof, it suffices to realize, in practice, whatever the initial condition

u0, at a certain time t∗, u(x, y, t∗) belongs to C0(Ω). Thus, one can have a

frame of the solution.

When p = 2, global solutions converge to zero in L∞(Ω) as time goes to infinity

and this property remains true for all global solutions which are bounded in

C1(Ω) when p ∈ (1, 2].

For more detail, we can refer to [5], [6], [7],[8],[17].

After this result, we proceed to present the numerical scheme of the inverse

problem.

3.3 Numerical scheme of the inverse problem

We have developed a compact adjoint technique for the numerical resolu-

tion of inverse problems in [1]. such an approach is proved to be very efficient

in the approximation of solution of inverse problems governed by the partial

differential equations (PDE), especially for the schemes which combine the

pseudo-spectral methods and the compact approach of adjoint codes determi-

nation .
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The discrete analog of the functional (2) can be written as follows:

J(a) =
1

2
∆t

M−1∑
k=0

‖ ΛN .Sk+1(a)− U obs
k+1 ‖2 +

λ

2
‖ a− ab ‖2 (12)

where ΛN is the discrete observation operator, ab is a background estimate of

parameter a, U obs
k is the observation vector at the time tk of the state variable

U . Let ã denote a perturbation on a, then the calculation of the directional

derivatives at (4) gives us the discrete tangent linear model{
Ûk+1 = Ûk + ∆tF̂U .Ûk + ∆tF̂a.ã, k = 0 : M − 1

Û0 = 0
(13)

where F̂U = ∂F
∂U

(Uk) and F̂a = ∂F
∂a

(Uk), the directional derivative of the cost

function J can be expressed as follows:

Ĵ(a).ã = ∆t
M−1∑
k=0

〈ΛT
N .(ΛN .Sk+1(a)− U obs

k+1), Ûk+1〉+ λ〈a− ab, ã〉. (14)

We can determine the gradient of the functional if we succeed to express the

linearity of Ĵ(a).ã. To achieve this, we calculate a scalar product of each

member of (13) by qk ( adjoint state) and we make the summation of the

terms. Which gives us:

M−1∑
k=0

〈Ûk+1, qk〉 =
M−1∑
k=0

〈Ûk, qk〉+ ∆t
M−1∑
k=0

〈F̂U .Ûk, qk〉+ ∆t
M−1∑
k=0

〈F̂a.ã, qk〉

which is written again after reduction

M−1∑
k=0

〈Ûk+1, qk − qk+1 −∆tF̂ ∗U .qk+1〉 = −〈ÛM , qM〉 − 〈ÛM , F̂ ∗U .qM〉+ ∆t
M−1∑
k=0

〈ã, F̂ ∗a .qk〉.

(15)

If one defines the adjoint qk of Ûk as solution of the following system
qk − qk+1

∆t
− F̂ ∗U .qk+1 = ΛT

N .(ΛN .Sk+1(a)− U obs
k+1), k = 0 : M − 1

qM = 0,
(16)

then equation (15) becomes

M−1∑
k=0

〈Ûk+1, Λ
T
N .(ΛN .Sk+1(a)− U obs

k+1)〉 = ∆t
M−1∑
k=0

〈F̂ ∗a .qk, ã〉 (17)
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and the directional derivative of the cost function can be written:

Ĵ(a).ã = 〈∇aJ, ã〉

= λ〈a− ab, ã〉+ ∆t
M−1∑
k=0

〈F̂ ∗a .qk, ã〉
(18)

We deduce the gradient:

∇aJ = λ(a− ab) + ∆t
M−1∑
k=0

F̂ ∗a .qk (19)

Remark 3.3. The discrete scheme chosen in this part is the explicit Euler

method. Another choice (implicit Euler, leap-frog, ...) would have resulted in

a solution expressed differently.

In this approach, to determine the gradient of the functional with respect

to the control variable, it is sufficient to solve the direct model (4), then solve

the adjoint model (16) and finally apply the formula (19) to have the gradient.

This procedure is performed by solving the following optimality system:

U0 = u

Uk+1 = Uk + ∆tF (Uk, a)
qk − qk+1

∆t
− F̂ ∗U .qk+1 = ΛT

N .(ΛN .Sk+1(a)− U obs
k+1)

qM = 0

∇aJ = λ(a− ab) + ∆t
M−1∑
k=0

F̂ ∗a .qk

(20)

Remark 3.4. It is possible to transform a sub-constrained optimization

problem into an unrestrained optimization problem that can be solved with rel-

atively conventional and high-performance algorithms (such as the descent al-

gorithm). The method consists of adding the state equation as a constraint

of the cost function to be minimized. The function J and its augmented La-

grangian will have the same extrema. We can show that we achieve the same

result by using the Lagrangian.

3.4 Gradient test

In the optimization mechanism, it is necessary to correctly evaluate the

gradient of the cost function with respect to the control variable in order to



Abani M. Ali, B. Saley and B. Mampassi 11

obtain the correct descent direction. The accuracy of the gradient calculation

acts on the speed of the minimization convergence and the exact value of the

optimal control parameter. For this, we check the accuracy of the calculation

of the gradient obtained before starting the optimization step.

The first order of the Taylor’s expansion allows, in an efficient way, to val-

idate experimentally the accuracy of the gradient. In fact, for a perturbation

v ∈ RN in the direction w̃, chosen so that ‖ w̃ ‖= 1, the Taylor development

at the point w is given by:

J(w + v) = J(w) + 〈∇J(w), v〉+ o(‖ v ‖). (21)

Therefore, if for any direction w̃ ∈ RN , we have

lim
ξ→0

ρ(ξ) = lim
ξ→0

J(w + ξw̃)− J(w)

ξ〈∇J(w), w̃〉
= 1, (22)

the gradient test is checked, linearization of the direct code is correct.

The gradient test algorithm:: Let us note by D the direct code and AD

the adjoint code. Let U be an input vector of D and V = D(U) an output

vector.Let M be an integer.

Validation can be achieved through the following algorithm:

1. execute the direct code V0 = D(U);

2. calculate J0 = J(V0);

3. calculate the cost function gradient ∇J0 by executing AD;

4. for i=1:M

• ξ = 2−i;

• calculate Vξ = D(U + ξδv) by executing the direct code;

• calculate Jξ = J(Vξ);

• evaluate the quantity

ρ(ξ) =
Jξ − J0

ξ〈∇J0, δv〉
. (23)
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The gradient test is satisfied in the direction δv if ρ(ξ) converge towards 1

when i becomes large. In practice, after increasing convergence towards 1,

there is a perturbation around 1. One of the results of this test is presented

in Table 2. When ξ varies from 2−2 to 2−40, the function ρ(ξ) tends to 1.

Table 2: Gradient test with ξ → 0.

ξ ρ(ξ) ξ ρ(ξ) ξ ρ(ξ)

2−2 0.373700210353322 2−15 1.001014920052647 2−28 1.001087251476291

2−3 0.697737981268313 2−16 1.001050737137807 2−29 1.001087219853407

2−4 0.851921740138193 2−17 1.001068645442983 2−30 1.001088389900115

2−5 0.927122123615446 2−18 1.001077599115940 2−31 1.001087915556855

2−6 0.964257670860460 2−19 1.001082077938499 2−32 1.001083235370023

2−7 0.982710300924212 2−20 1.001084316230316 2−33 1.001100817693525

2−8 0.991907956573396 2−21 1.001085430936977 2−34 1.001070712707960

2−9 0.996499635322196 2−22 1.001085991872587 2−35 1.001115743694772

2−10 0.998793689397904 2−23 1.001086286484221 2−36 1.000918416898628

2−11 0.999940270354718 2−24 1.001086409022897 2−37 1.000894130523718

2−12 1.000513449343803 2−25 1.001086485609569 2−38 1.000979132835903

2−13 1.000800010971361 2−26 1.001086518220668 2−39 1.000938655544386

2−14 1.000943284765760 2−27 1.001086508338517 2−40 1.000728173628499

Table 2 guarantees a convergence of the quotient (23) to the real number 1.

After the gradient test, we proceed to the estimation process of the coefficient

a by using the descent optimization algorithm.

4 Parameter estimation

The stop criterion considered in our optimization algorithm is based on an

increase of the gradient norm. We consider the first guess value ab = −1, 01 and

the reference value aref = −1. We generated the observations U obs
k , following

the twin experiments method, using aref and disturbing the condition U0.

The principle is to find an excellent estimate of the parameter a whose ideal

would be aref .
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Starting from the initialization value

1. a0 = −1.5 we find an estimate a = −1.000069027494187 after 131 itera-

tions;

2. a0 = −0.7 we find an estimate a = −0.995544157558389 after 119 itera-

tions.

Figure 3: Convergence of the coefficient a towards -1.

The figures (Figure 3), according to the iterations, show that the curve of the

parameter a is asymptotic to the horizontal line passing through −1, indepen-

dently of the initialization value a0 position. By making a comparison of the

absolute errors between the reference value aref and the estimate of a, and

between the first guess ab and the estimate of a. We get the results in table 3.

Table 3: Errors comparaison.

Initialization value: a0 Estimate: a r1 =| aref − a | r2 =| ab − a |
-1,5 -1,0001 0,0001 0,0099

-0,7 -0,9955 0,0045 0,0145

This table shows that a converges towards the reference value aref but not

towards the first guess ab.
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