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Abstract 

Heston volatility model has received a growing attention amongst academics and 

practitioners for derivative pricing applications. Yet, the sensibility of the model 

parameters and instabilities of its analytic characteristic function for large 

derivatives and complex derivations make the model inconsistent and unreliable. 

As these parameters and function are defined and used in the complex plane, they 

potentially include ‘branching’. Therefore, additional parameter restrictions are 

required. This paper aims at providing insight on the sensitivity of the model 

parameterization and establishing an algorithm to ensure the stability of the 

analytic characteristic function under full dimensional and unrestricted parameter 

space. 
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1  Introduction  

 The Black-Scholes model (BSM) developed by Fischer Black and Myron 

Scholes in 1973 [1] was revolutionary in its impact on the financial industry. Ever 

since the introduction of the model, academics and practitioners have made 

numerous attempts to relax the restrictive assumptions that make the model 

inconsistent with observed prices in the market. Particular interest has been 

directed towards the assumption of constant volatility, which makes the model 

unable to generate non-normal return distributions and the well-known volatility 

smile, consistent with empirical findings on asset returns [2].  

Examples of extensions of BSM include models that allow for stochastic volatility 

in the underlying return process. When stochastic volatility is applied, it improves 

on the BSM assumption by making volatility dependent on additional parameters 

such as distribution of returns and variance itself. Many different stochastic 

volatility models have been proposed [3-11], but one that has received a growing 

attention amongst academics and practitioners for derivative pricing is the Heston 

Model [11]. 

Heston Model’s attractiveness lies in the powerful duality of its tractability 

and robustness relative to other stochastic volatility models. The major advantages 

of the model include equity returns and implied volatility of the option prices, 

flexibility for non lognormal probability distributions, mean-reverting volatility 

and a closed form analytic characteristic function for fast calibration of option 

prices. While these parameters and analytic characteristic function have been well 

studied, their formulation and analysis have shown discontinuity/instability in the 

time domain which arises from the branch cut of the principle branch of logarithm.  

Investigators [12-15] of the branches of the logarithm on Heston’s 

characteristic function have suggested that the associated logarithm is continuous 

on the time domain whenever restrictive conditions are imposed on the model 
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parameters. However, for large enough maturities under certain parameters, 

instabilities are observed [15]. To perform well across large time interval of 

maturities, unrestricted parameter space is necessary to guarantee the stability of 

the model. Rather than imposing restrictive conditions on the Heston characteristic 

function, we show in this paper that continuity and stability of Heston’s model is 

guaranteed under full dimensional and unrestricted parameter space.  

The rest of the paper is structured as follows: In section 2, we formulate 

Heston stochastic volatility model for price option. We follow the model 

formulation by a sensibility analysis on the model’s initial conditions and 

parameters in section 3. The analytic characteristic function generation and its 

stability analysis for unrestricted parameter space are established in section 4. 

Conclusion follows in section 5.  

 

 

2  Model Formulation 

Consider { : 0 }tS S t T= < <  as a stock price process and ( )TΦ   as the 

characteristic function of the nature logarithm of the terminal stock price 

ln( )T Ts S= . Let tW  denotes a Wiener process and the constants r  and δ  

representing, respectively, the continuous interest rate and dividend gained. Then, 

the stochastic volatility model underlying the dynamics of the spot price is given 

by Heston [11] as 

 

1

2

1 2
0 0

( ) ,

( ) ,

, , ( 0) , ( 0) .

t
t t

t

t t t t

t t

dS r q dt dW
S

dV V dt dW

Cov dW dW dt S t S V t V

σ

κ θ ςσ

ρ

= − +

= − +

  = = = = = 

              (1) 

As usual tS  denotes the spot at time t , tV  is either the volatility (i.e. when 

t tVσ = ) of or the variance (i.e. when t tVσ = ) of the underlying, r  is the 
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risk-free rate of return, q  is the dividend yield, 1 2
0{ , }t t tW W ≥  representing the 

two Wiener processes with constant correlation coefficient ρ  such that 1ρ < , 

and the parameters , andκ θ ς  denoting the rate of mean reversion, the long-run 

mean of the variance and the volatility of the variance process, respectively, are all 

nonnegative.  

Since the process 0{ }t tS ≥  can be written as the exponential of a smooth 

functional of the variance process, it has a strong unique solution. The main 

property of a strong solution of 0{ }t tS ≥   is with respect to the filtration 0{ }t tF ≥ . 

This implies that heuristically the solution should be a measurable function of the 

initial condition and the Wiener process. However, since the square-root function 

is not smooth at the origin, understanding the behavior of the variance process at 

that point is vital.  

Ideally one would like a variance process which is strictly positive, because 

otherwise it degenerates to a deterministic function for the time it stays at zero. 

Feller condition, [16], given by 2

4 2κθα
ς

= ≥  where α  is the dimensionality of 

the corresponding Bessel process normally assures strictly positive variance 

process. Unfortunately, when calibrating the Heston model to market option prices 

it is not uncommon for the parameters to violate the Feller condition.  It is also 

seen that model equation (1) is incomplete when comparing the number of random 

process (two Wiener process) with the number of the risky traded assets (only the 

underlying spot). Therefore, it is not possible to obtain a unique price for any 

contingent claim using only the underlying spot. That is why one has to add a 

European call, for example, when completing market with Heston Model. 
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3    Initial and Calibration Parameters 
To reduce dimensionality problem, it is important to understand the initial 

parameter ( 0V ) and calibration parameters ( , ,κ ρ ς ) under Heston model. 

Changing the initial variance, 0V , of the model allows adjustment in the height of 

the curve rather than the shape. Increasing the initial volatility level moved the 

implied volatility curve upwards, (see Figure 1a). However, increasing the 

volatility of variance ς  has significant impact on the implied volatility. As 

shown in Figure 1b, increasing ς  makes the smile more prominent in addition to 

creating heavy tails on both sides. This makes sense because higher volatility of 

variance means volatility is more volatile and so the market has a greater change 

of extreme movements. So, writers of puts must charge more and those of calls 

less, for a given strike. Also, this impact produces barrage of distributions which 

make the model more robust and therefore creates framework for option price  

variety. 

The long-run mean θ  and 0V  have similar influence upon the implied 

volatility curve (Figure 2a). It seems efficient to choose the initial variance a priori, 

e.g. setting the root of 0V  as the implied at-the-money (ATM) volatility, and only 

allow θ  varying. In particular, a different initial variance for different maturities 

would be inconsistent for our model. 

The mean reversion rate κ  can be interpreted as the degree of volatility 

clustering, meaning large moves are followed by large moves while small moves 

are followed by small moves. The parameter κ  controls the curvature of the 

curve. Increasing κ  flattens the implied volatility smile, see Figure 2b. 

Decreasing the mean reversion has a similar effect as increasing the volatility of 

variance in terms of curvature. In addition, the high values of rate at which the 

variance process reverts to θ , (that is κ ), essentially turn the stochastic volatility 

into a time dependent deterministic model. Moreover, the influence of κ  is often 

compensated by a stronger ς . This suggests that can fix κ  at some level, (say 
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1.5) and calibrate only the remaining three parameters. However, if the obtained 

parameters do not satisfy the Feller condition, then it might be worthwhile to fix 

higher κ  and re calibrating the other parameters to check if Feller condition is 

satisfied.   
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Figure 1a

v0 = 0.010

v0 = 0.008

v0 = 0.012

10 30 50 70 90
9

9.5

10

10.5

11

11.5

12

12.5

13
Effects of Volatility of Variance

Number of underlying units [%]

Im
p

lie
d

 v
o

la
til

ity
 [%

]

 

 

Figure 1b
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Figure 1: In Figure 1a, increasing the initial volatility 0V  level moved the implied  

volatility curve upwards but did not affect the shape of the curve. However, 

increasing the volatility of variance ς  affected the implied volatility curve 

significantly, as shown in Figure 1b. It creates heavy tails on both sides of the 

smile curve. This phenomenon provides a framework to price a variety of options 

that are close to reality.  All smiles plotted in solid blue lines are obtained for 

0 0.01,V =  1.5,κ = 0.015, 0.2θ ς= =  and 0.05ρ =  
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Figure 2b
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Figure 2b

κ = 1.5

κ = 0.5
κ = 3.0

 
Figure 2: Figure 2a shows that the effect of the long-run mean θ  on the implied 

volatility smile curve is similar to the effect of initial variance on the smile curve. 

In Figure 2b, increasing the mean reversion parameter κ  flattens the implied 

volatility smile and decreasing κ  has a similar effect as increasing ς  in terms 

of curvature. 

 

 

The correlation ρ , which interprets the association between the log-returns 

and volatility of the asset, affects the implied volatility smile and the heaviness of 

the tails. Intuitively if 0ρ > , the volatility will increase as the asset price/return 

increases. Conversely, if 0ρ < , the volatility will increase when the asset 

price/return decreases. Uncorrelated case produces a smile curve that is not 

perfectly symmetric but centered at-the-money, see Figure 3a. Changing ρ  

changes the degree of symmetry. Thus, since lower returns are accompanied by 

higher volatility, negative ρ  induces negative smile in the returns distribution. 

The reverse is true for positive correlation, Figure 3b.  
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Figure 3a
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Figure 3b

ρ = 0
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Figure 3: The effects of changing the correlation parameter ρ  on the shape of 

the smile are given. For uncorrelated case, the smile curve is almost symmetric 

and centered, Figure 3b. Changing ρ  changes the degree of symmetry. For 

positive correlation, volatility increases as the asset price/return increases. For 

negative correlation, volatility increases when asset price/return decreases. 

Varying ρ  also impacts the shape of the implied volatility smile. Thus, the 

model can apply a variety of volatility smiles. 

 

 

 

4 Stability of Heston Characteristic Function 

There are three state variables in (1): the observed tS , unobserved tV  and 

observed current time [0, ]t T∈ . Denoting the time to expiration by T tτ = −  and 

assuming that the process ln( )t ts S=  satisfies the stochastic differential equation 

(1), we closely follow Gatheral [17] to generate the characteristic function of Ts  
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denoted by ( )T ϕΦ  in the form 

                           0 0( ) ( , , ),i
T S f V Tϕϕ ϕΦ =       (2) 

where i  is the imaginary unit and 

0 0

2

2

2 2 2

1

( , , ) exp[ ( , ) ( , ) ],

1( , ) ( ) ( ) 2 ln ,
1

1( , ) ,
1

( ) ( ),

( )( ) .

dT

dT

dT

f V T A T B T V

geA T r q Ti i d T
g

i d eB T
ge

d i i

g i d i d

ϕ ϕ ϕ

κθϕ ϕ κ ϕρσ
σ

κ ϕρσϕ
σ

κ ϕρσ σ ϕ ϕ

κ ϕρσ κ ϕρσ

−

−

−

−

= +

  −
= − + − − −  −  

 − − −
=  − 

= − + +

= − − − +

               (3) 

We prove the necessary but sufficient stability condition of the characteristics 

function under the full dimensional and unrestricted parameter space. 

Consider 2 2 2( ) ( ) ( )d u i iκ ϕρσ σ ϕ ϕ= − + +  given in (3), where now the 

dependence on ϕ  is well-defined.  At the negative real axis in the complex 

plane, we always have Re[ ( )] 0d ϕ > . In most Fast Fourier approaches for the 

calculation of option prices, the evaluation of the term [ ( 1) ]T iϕ αΦ − +  for 

0ϕ >  is necessary, where α  is a positive constant such that the 

( 1)-thα + moment of the stock price exists. For simplicity, we denote 

( ) ( ( 1) )d d iϕ ϕ α= − − + . Implying 

2 2 2 2( ) [ { ( 1) } ] { ( 1) } { ( 1) } .d i i i i iϕ κ ρς ϕ α ς ϕ α ς ϕ α= − − − + + − + + − +         (4) 

In other to avoid a discontinuity of  ( )d ϕ  at 0ϕ = , we choose 
0

(0) lim ( )
x

d d ϕ
→

=  

and so 0ϕ > .  

Theorem 4.1: The function * *( ) ( ( 1) )d d iϕ ϕ α= − +  does not cross the negative 

real axis as ϕ  increases from zero to infinity. 

Proof: Equation (4) can be expanded as 
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2 2 2 2 2( ) (1 ) ( ( 1)) ( 1) ( (2 1) 2 ( ( 1))).d iϕ ς ϕ ρ κ ρς α ς α α ϕ ς α ρς κ ρς α= − − + − + − + − + + − +
                                                                  (5) 

Defining * *( ) ( ( 1) )d d iϕ ϕ α= − + , we examine five cases with respect to the signs 

of the three quantities ( 1),κ ρς α− +  2 (2 1) 2 ( ( 1))ς α ρς κ ρς α+ + − +  and ρ  to 

prove that *( )d ϕ  does not cross the negative real axis. For 0ρ ≤ , we see that 

( 1) 0κ ρς α− + ≥  and so two cases are examined: 

CASE 1: 20 and (2 1) 2 ( ( 1)) 0.ρ ς α ρς κ ρς α≤ + + − + ≤ Thus 

 * ( )( 1) ( 1)( ) 1 1 .
( ) ( )

d ti id e
d d

ϕκ ρς α ρςϕ κ ρς α ρςϕϕ
ϕ ϕ

   − + − − + −
= + − −   − −   

    (6) 

The real part of ( 1) 0
( )

i
d

κ ρς α ρςϕ
ϕ

− + −
≥

−
, as Re[ ( )] 0d ϕ <  and Im[ ( )] 0d ϕ < . 

Therefore, 

 ( 1) ( 1)1 1 ,
( ) ( )

i i e
d d

ακ ρς α ρςϕ κ ρς α ρςϕ
ϕ ϕ

−− + − − + −
+ ≥ −

− −
 

Hence for ( 1)Re 1 0
( )

i
d

κ ρς α ρςϕ
ϕ

 − + −
+ > − 

, only the positive real axis can be 

crossed. 

CASE 2: 20 and (2 1) 2 ( ( 1)) 0.ρ ς α ρς κ ρς α≤ + + − + >  

In this case * *Re( ( )) 0 and Im( ( )) 0d dϕ ϕ< >  holds. Also notice that the square 

root expression of (5) can be written in the form  

 
2 2 2 2

sgn .
2 2

i iϒ + ϒ + Ζ −ϒ + ϒ + Ζ
ϒ + Ζ = + Ζ  

Thus,  

2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) ( )
( ) ,

2 2
A C B C A A C B C A

d i
ϕ ϕ ϕ ϕ ϕ ϕ

ϕ
 − + − − − + + − = − −
 
 
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where  

 

2 2

2

2 2

(1 ) 0,
(2 1) 2 ( ( 1)) 0,
( 1) ( ( 1)) .

A
B
C

ς ρ

ς α ρς κ ρς α

ς α α κ ρς α

= − >

= + + − + >

= + − − +

 

Therefore, we are left to show that  

              *

( 1)0 arg
( ) 2

i
d

κ ςρ α ςρϕ π
ϕ

 − + −
≤ ≤ − 

                               (7) 

Recall that the numerator of (7) lies in the first quadrant while the denominator 

lies in the fourth quadrant. Clearly, (7) is true when 0ρ = . For 0ρ <  and 

0ϕ = , equation(7) becomes 

    *

; 0( 1)0 arg 2
( ) 0; 0.

Ci
d C

π
κ ςρ α ςρϕ

ϕ

 > − + − ≤ =  −   ≤

                                (8) 

For 0ϕ > , we have 

( )1

2 2 2 2 2

* 1

2 2 2 2 2

( ) ( )
2arg ( ) tan .

( ) ( )
2

A C B C A

d
A C B C A

ϕ ϕ ϕ

ϕ
ϕ ϕ ϕ

− −

 − + + − 
 − =  

− + − − 
 
 

 

So, equation (70 becomes 

2 2 2 2 2
1 1( )

0 tan tan ,
2 ( 1) 2

C A B C A
B

ϕ ϕ ϕ π ςρϕ π
ϕ κ ςρ α

− −
 − + + −  − ≤ ≤ − ≤   − +  

   (9) 

which lies between zero and 2π . Thus, applying tan( )⋅  to both sides of (9) we 

have 

2 2 2 2 2( ) ( 1) ,
C A B C A

B
ϕ ϕ ϕ κ ςρ α

ϕ ςρϕ
− + + − − +

≤
−

 

2 2 2 2 2( ( 1)) ( ) .B C A B C Aκ ρς α ςρ ςρϕ ςρ ϕ ϕ⇒ − + + − ≥ − + −                 (10) 

Both sides of (10) are positive since the right hand side is obvious and the left 

hand side is  
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2

2 2 2 2

( ( 1)) (( 1) )
(( 1) (1 ) ) 0

B C A B B Cκ ρς α ςρ ςρϕ κ ρς α

ςρ α ς ρ κ

− + + − = − + −

≥ − + − + >
           (11) 

Squaring both sides of (11) and knowing that (12) is true, we have (13). 
2

2

2 ( ( 1)) (2 ) 0,
( ( 1)) 2 ( (2 1) ( 1) 0.
A B

B C
κ ςρ α ςρ ς κ ςρ

κ ςρ α ςρ ς κ α ςρ α

− + + = − ≥

− + + = + − + ≥
                       (12) 

2 (2 ( ( 1)) )
( ( 1))( ( ( 1)) 2 ) 0.

B A B
B B C

ςρϕ κ ςρ α ςρ
κ ςρ α κ ςρ α ςρ

− − + +
+ − + − + + ≥

                  (13) 

Therefore, inequality (7) is true and so like in CASE 1, 

( 1)Re 0
( )

i
d

κ ρς α ρςϕ
ϕ

 − + −
≥ − 

 and hence  *( )d ϕ  will never cross the negative 

real axis. 

CASE 3: 0 and ( ( 1)) 0.ρ κ ρς α> − + ≥  

Similar to CASE 2, notice that * *Re( ( )) 0 and Im( ( )) 0d dϕ ϕ< >  holds and since 

( ( 1)) 0κ ρς α− + ≥ , it implies that 2 (2 1) 2 ( ( 1)) 0ς α ςρ κ ςρ α+ + − + ≥ . Hence 
*( )d ϕ  will never cross the negative real axis since 

( 1)Re 0
( )

i
d

κ ρς α ρςϕ
ϕ

 − + −
≥ − 

. 

CASE 4: 20, ( ( 1)) 0 and (2 1) 2 ( ( 1)) 0.ρ κ ρς α ς α ρς κ ρς α> − + < + + − + >  
2 (2 1) 2 ( ( 1)) 0 ( )d iς α ρς κ ρς α ϕ µ ν+ + − + > ⇒ = − +  where , 0µ ν >  ϕ∀ ∈ .  

To show that *( )d ϕ  cannot be in the second quadrant, let 

( ) ( )
* ( )1 1( ) ( ( 1)) 1 .

( ) ( )

d t d t
d te ed i e

d d

ϕ ϕ
ϕϕ κ ρ α ςρϕ

ϕ ϕ
− −

= − + − + +
− −

                  (14) 

Observe that 
( )

1 11 sinarg tan tan
( ) cos

d t

t

e t
d e t

ϕ

µ

µ ν π
ϕ ν ν

− − −    = − ≤     − −    
. So,  

( )10 arg
( )

d te
d

ϕ

π
ϕ

 −
≤ ≤ − 

. 
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If 
( )1arg

( ) 2

d te
d

ϕ π
ϕ

 −
≥ − 

, then 
( )1Re ( ( 1) ) 0

( )

d tei
d

ϕ

κ ςρ α ςρϕ
ϕ

 +
− + − ≥ − 

 and so the 

real part of *( )d ϕ  is nonnegative since ( )( )Re 1 0d te ϕ− ≥ . Hence *( )d ϕ  cannot 

be in the second quadrant. However, if 
( )1arg

( ) 2

d te
d

ϕ π
ϕ

 −
< − 

, then 

( )1
( )

d tei
d

ϕ

ρςϕ
ϕ

 −
−  − 

 is in the fourth quadrant and hence it is sufficient to confirm 

that 
( )

( )1( ( 1)) 1
( )

d t
d te e

d

ϕ
ϕκ ςρ α

ϕ
−

− + + +
−

 cannot be in the second quadrant. Let 

( 1) 0Cκ ςρ α− + = − < , then 

 
( )

( )1 1 cos sin1 cos sin 1
( )

d t t t
d t t te e t ie tC e C e t ie t

d i

ϕ µ µ
ϕ µ µν ν ν ν

ϕ µ ν

− −
− −− − −

− + + = − + + +
− −

 

2 2

2 2

2 2

2 2
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e t C e t t
e

t C e t ti
e

µ µ

µ

µ

µ
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µ ν ν ν ν ν µ ν
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+ + − − +
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+

             (15) 

Thus, * 2 2Im( ( )) 0 ( )sin ( cos sin )td t C e t tµϕ µ ν ν ν ν ν µ ν> ⇒ + > − −  and since 

( cos sin ) 0tC e t tµν ν ν µ ν− − > , it follows that sin tν  has to be positive and so 

2 2 ( cos sin )( ) .
sin

tC e t t
t

µν ν ν µ νµ ν
ν

− −
+ >  Thus, 

 

* 2 2
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t t t t
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µ µ µ µ

ϕ µ ν ν µ µ ν ν ν

ν ν ν µ ν ν µ µ ν ν ν
ν

ν µ ν ν ν µ

= + + − − +

 − −
≥ + − − + 

 
= − − ≥ − − =

 

Therefore, if *Im( ( )) 0d ϕ > , then *Re( ( )) 0d ϕ >  and so *( )d ϕ  cannot be in the 

second quadrant. 

CASE 5: 20, ( ( 1)) 0 and (2 1) 2 ( ( 1)) 0.ρ κ ρς α ς α ρς κ ρς α> − + < + + − + ≤  
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Consider ( )d iϕ µ ν= − −  where , 0µ ν >  ϕ∀ ∈ , then if 
2 (2 1) 2 ( ( 1)) 0ς α ρς κ ρς α+ + − + < , we have 

2 2( ( 1)) ( 1) 0κ ρς α ς α α− + − + > and so µ ν> . Also 

  

* ( ) ( )

2 2

2 2

( 1)Im( ( )) Im 1 (1 )
( )

( )sin ( )( cos ) ,
( )

d d

t

t

id e e
d

t e t
e

ϕ ϕ

µ

µ

κ ρς α ρςϕϕ
ϕ

µ ν µω ρςνϕ ν µρςϕ ων ν
µ ν

 − + −
= + + − − 
− + + + − − −

=
+

     (16) 

where ( 1) 0ω ρς α κ= + − > . To show that our expression (16) is non-positive, 

we already know that the denominator 2 2( ) 0teµµ ν+ > . From the numerator, we 

notice that 

  

2 2

2 2

( )( sin ) ( ) ( ) ( )
(
( ( ) 2 ).

t t t t
t
t

µω ρςνϕ ν µ µρςϕ νω ν µω ρςνϕ µ µρςϕ νω

µνω ρςν ϕ ρςµ ϕ µνω

ρς ν µ ϕ µνω

+ − − − ≤ + − −

= + − +

= − +

    (17) 

So, setting 2 2 2(1 ) 0, 2 ( 1) ) (2 1) 0A Bς ρ ρς α ρς κ ς α= − > = + − − + >   and 

2 2( ( 1) ) ( 1) 0,C ρς α κ ς α α= + − − + >  we can rewrite ( )d ϕ  as 

 

2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) ( )
( ) .

2 2
A C B C A A C B C A

d i
ϕ ϕ ϕ ϕ ϕ ϕ

ϕ
 + + + − + + − + = − +
 
 

        

 

Using the new notation, 2 2 2( ( ) 2 ) ( ( )t t B A Cρς ν µ ϕ µνω ϕ ω ρς ϕ− + = − +  . Since 

0B Cρς− < , it follows that  

2 3 2 2

2 2 2 2

2 2 2 2

( ( 1) ) ( ) (2 1)( ( 1) )
(1 ) ( ) ( 1)(1 )( ( 1) )
(1 )( ( 1) 2 ) ( ) (1 )( ( 1) ).

B Cω ρς ρς ρς α κ ρς α α ς α ρς α κ

ς ακ ρ ρςκ ρς κ ς α ρ ρς α κ

ς α ρ ρς α κ ρςκ ρς κ ς ρ ρς α κ

− = + − + + − + + −

= − − − − + − + −

= − − + − − − − − + −


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Since 0 2 0B ρς κ> ⇒ − >  and so (17) is non-positive. Thus, to show that (16) 

is non-positive it suffices to prove that 
2 2( )sin ( cos )( ) 0tt e t tµµ ν ν µ ν µρςϕ ων− + − − − − ≤ . This is true when tν π≤  

and so as µ ν≥  we can assume that tµ π>  and verify that 

cos 2te t t tµ µ ν µ− − > . Thus, 

 

2 2

2 2 2 2 2 2 2

2 2 2 2

( )sin ( cos )( )

( ) 2 ( ( ) ( ) )

( 2 ) ( ) .

tt e t t

t t A C B A C B
B

t B A C B
B

µµ ν ν µ ν µρςϕ ων
µν µ ν µ ρς ϕ ϕ ρς ϕ ω

ν ρςµ ϕ ϕ

− + − − − −

≤ + − + + + + −

≤ − + +

    



  



 

Since 2 2 2 2 2 2 2 24 4 2C C B B Bµ ρ ς ρ ς µ ρςµ= ⇒ ≥ ⇒ ≥ ⇔ ≥     . Also, using the 

fact that 
2 (2 1)( ( 1) )

2
ς αρς ρς α κ +

+ − > , we have  

 

2
2 2 2 2 2 2 4 2

4 2 2 2 2

4 2 2 4

4 (2 1)4 (2 1) 4 ( ) (2 1)
2

(2 1) 4 ( )
4 ( )(1 ) 0.

C B ς αρ ς ς α ρ ς α α ς α

ς α ρ ς α α

ς α α ρ ς

+
− ≥ + − + − +

= + − +

= + − + >

 

 

Hence, the proof is complete. 

 

 

5  Conclusion 

Detailed investigation on the sensibility of Heston model parameters for 

options pricing using numerical approach is given. The analytic characteristic 

function of the model where there existed a potential branch-cut is examined for 

discontinuity and instability. Condition under which the characteristic function 

guaranteed stability for full dimensional and unrestricted parameter space is 

established. 
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