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Abstract 

Efforts aimed at reducing child mortality in developing countries, including Ghana, are 
not likely to meet the criteria set under the Millennium Development Goals Four. Part of 

the problem is the non-availability of adequate data and absence of rigorous statistical 

analysis. In this study, non parametric Survival analysis techniques, using a moving 
cohort, with some of the data right-censored, were used to estimate the survival and 

hazard functions and identify associated risk factors. The Weibull and Log-logistic 

distributions fitted child survival data appropriately. The study showed that 10% of 

children born would not survive by year five. Furthermore, the age of the mother, level of 
education and residence of mother, significantly influenced child survival. The factors 

suggested cultural practices or norms play substantial roles in child survival, and that 

female education must be given high priority. 
 

Keywords: Censoring, Contraceptive use, Prognostic factors, Weibull distribution 

 

 

1  Introduction  

Child survival and its converse mortality are key indicators of child health and significant 
indicators of a country’s priorities and values. Research on Child mortality and the 

phenomenon that influence it has been led by Social and Medical approaches. While 

Social approaches have emphasized the roles of socioeconomic and cultural factors, 
Medical approaches have emphasized biological processes of diseases [1]; these 

approaches however, have not focused on the techniques of measurements of mortality. 

However, the appropriate understanding and management of this phenomenon are 
dependent on accurate, precise and informative measurements. 
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With the apparent failure to achieve Millennium Development Goal (MDG) 4, the need to 

explore the use of alternative statistical methods is imperative to the understanding of this 
crisis [2]. The increasing interest in better measures continues to lead to the development 

of more accurate and less expensive methods [3]. However, these methods must provide 

better and more informative statistics on Child Survival. The lack of this, over the years, 

has been partly due to the problem of non-availability of adequate and reliable data and 
the problem of robust statistical estimators. 

Despite the extreme importance of appropriate and effective measures, child mortality has 

seen only the application of basic statistical methods that do not allow for detailed and 
rigorous analysis of this phenomenon. These techniques do not differentiate forecast from 

actual measurements and give no indication of confidence around point estimates [2]. 

Central rates, particularly child mortality rates as well as their specific rates, are the most 
widely used measures of estimating child mortality and hence survival. These static 

measures do not consider the obvious effect of time on mortality, and are influenced by 

overlaps (since the deaths during a period usually do not match the risk of that period), 

population composition (and therefore do not allow for fair direct comparison) and lack 
measures of precision:  The consequence of this lack of precision is lack of predictive 

value and confidence in future results and limitation to statistical manipulations. 

In this study, we apply survival analysis techniques, as an alternative to the central rates, 
and demonstrate its advantage as a more informative measure of Child survival.  

 

 

2 Methodologies 

2.1 Data Set 

The data for this study was obtained from the Ghana Statistical Service and was collected 

in the Ghana Maternal Health Survey of 2007. The Survey which was the first of its kind 

in Ghana provided reliable and nationally representative data to study this phenomenon 
[4]. The current cohort is used in this study. By this method, a single cross section of time 

is used and manipulated to represent a cohort. Thus, different individuals may have 

different start points within the selected study time frame (2002 to 2007). Time to death 
from birth, for the dead, and the period of observation from birth, for those alive, is 

derived from the data as estimates of each child survival during the period. These are 

classified as censored (for those not dead) and uncensored (for those dead). Thus, the age 

of a child at death and the age of a child at the date the data was collected are used. Since 
the date of birth for children are known, all censored data are right censored. Some 

socio-economic and demographic covariates are also extracted for study of their impact 

on child survival. 

 

2.2 Methods 

In estimating the survival function𝑆(𝑡), we assumed that the times at which the deaths of 
children occur are a realization of some random process; thus child survival are a 

probabilistic or stochastic process. The time to death for any Child, 𝑇, is therefore a 

random variable having a probability distribution 𝑓(𝑡) and consequently a cumulative 

distribution function 𝐹(𝑡) and from which the hazard function 𝑕 𝑡 , can be found. 
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2.2.1 Basic concepts in survival 

Let T, denote the survival time from birth. The distribution of T can be characterized by 
three equivalent functions [5]. 

 

Survival Function [S(t)]  

𝑆 𝑡 = 𝑃 𝑎 𝐶𝑕𝑖𝑙𝑑 𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑠 𝑙𝑜𝑛𝑔𝑒𝑟 𝑡𝑕𝑎𝑛 𝑡 = 𝑃(𝑇 > 𝑡)         
                                                                                

From the definition of the cumulative density function, 𝐹 𝑡 , of 𝑇, 
 

𝑆 𝑡 = 1 − 𝑃(𝑎  𝐶𝑕𝑖𝑙𝑑 𝑑𝑖𝑒𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡) = 1 − 𝐹(𝑡)                            (1)  

                                                                                                                 

𝑆 𝑡  is a non increasing function of time with properties 

𝑆 𝑡 =  
1     𝑓𝑜𝑟 𝑡 = 0

0    𝑓𝑜𝑟 𝑡 = ∞
  

 
Probability Density function [f(t)] 

The survival time has a probability density function defined as the limit of the probability 

that a Child dies in the short interval 𝑡 to Δ𝑡  per unit width  Δ𝑡,  or simply the 

probability of dying in a small interval per unit time. It can be expressed as: 

 

𝑓 𝑡 =
lim Δt→0P[a Child  dying  in  the  interval   t ,t+Δt ]

Δ𝑡
 =

lim ∆𝑡→0 𝑃[𝑥∈ 𝑡,𝑡+∆𝑡 ]

∆𝑡
                                               

Where 𝑥 is a Child dying 

𝑓(𝑡) is a non negative function such that; 

𝑓 𝑡 =  
≥ 0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0
= 0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 < 0

  

 

Hazard function [h(t)] 

The hazard function, 𝑕 𝑡 , gives the conditional failure rate. It is the probability of a 
Child dying in a small interval of time assuming that the Child has survived to the 

beginning of that time interval. 

 

𝑕 𝑡 =
𝑙𝑖𝑚 Δ𝑡→0𝑃 

𝑎 𝐶𝑕𝑖𝑙𝑑  𝑑𝑦𝑖𝑛𝑔  𝑖𝑛  𝑡𝑕𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙   𝑡 ,𝑡+Δ𝑡 

𝑔𝑖𝑣𝑒𝑛  𝑡𝑕𝑒 𝐶𝑕𝑖𝑙𝑑  𝑕𝑎𝑠  𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑  𝑡𝑜  𝑡
 

Δ𝑡
 =

lim ∆𝑡→0 𝑃[𝑥𝑡∈ 𝑡,𝑡+∆𝑡 ]

∆𝑡
                                                 

Where 𝑥𝑡  is a Child dying after he/she has survived to time 𝑡 
The hazard is also known as the instantaneous failure rate, the force of mortality, the 

conditional mortality rate or the age specific death rate. All these three functions can be 

depicted graphically and are related by 
 

𝑕 𝑡 =
𝑓(𝑡)

𝑆(𝑡)
                                                             (2) 

                                                                                                                                                                             

2.2.2 Estimating the survival functions 

In this study we used a non parametric method, the Life Table method (LT), to estimate 

the survival functions. LT estimates the survival functions for each interval, and utilizes 
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their mid points to estimate the hazard and density functions and the upper limit to 

estimate survival functions as follows [6];  

For the 𝑖𝑡𝑕  interval, let 𝑡𝑖  be the start time and 𝑞𝑖  be the conditional probability of 

dying. Then: 
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Where 

𝑡𝑚𝑖  is the mid-point of the 𝑖𝑡𝑕  interval, 

𝑑𝑖   is the number of children dying in the 𝑖𝑡𝑕  interval, 

𝑛𝑖   is the number of children exposed in the 𝑖𝑡𝑕  interval, 

𝑞𝑖 =
𝑑𝑖

𝑛𝑖
 is the conditional probability of dying in the 𝑖𝑡𝑕  interval, 

𝑝𝑖 = (1 − 𝑞𝑖) is the conditional probability of dying in the 𝑖𝑡𝑕  interval, 

𝑏𝑖  is the width of the 𝑖𝑡𝑕  interval. 

 
The standard errors are estimated [6] [7] by: 

𝑠. 𝑒.  𝑆  𝑡𝑖  ≃ 𝑆 (𝑡𝑖)  
𝑞 𝑗

𝑛𝑗 (1 − 𝑞 𝑗 )

𝑖−1

𝑗=1

 

 

𝑠. 𝑒.  𝑕  𝑡𝑚𝑖   ≃ 𝑕 (𝑡𝑚𝑖 )
 
 1 −  

1
2
𝑕 (𝑡𝑚𝑖 )𝑏𝑖 

2

 

𝑛𝑖𝑞 𝑖
 

 

𝑠. 𝑒.  𝑓  𝑡𝑚𝑖   ≃ 𝑆 (𝑡𝑖)𝑞 𝑖
 
  

𝑞 𝑗
𝑛𝑗 (1 − 𝑞 𝑖)

+
(1 − 𝑞 𝑖)
𝑛𝑗𝑞 𝑗

𝑖−1
𝑗=1  

𝑏𝑖
 

 

2.2.3 Log rank test 

The Log-rank test [8], a non parametric test, was used in this study to test for any 

difference in the survival functions of the groups. This test is the most widely used 
technique when data are censored and measures the difference in survival for the different 

groups at each of the given time. For a 𝑘 factor group, this test the hypothesis that; 

 

𝐻𝑜 : 𝑆1 𝑡 = 𝑆2 𝑡 = ⋯ = 𝑆𝑘(𝑡)    for all 𝑡 
 

Against the alternative: 
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𝐻1 :     𝑛𝑜𝑡 𝑎𝑙𝑙 𝑆𝑗  𝑡  𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙.           𝑗 = 1, 2, . . 𝑘. 

 

where 𝑆𝑗 (𝑡) is the survival function for the 𝑗𝑡𝑕  group 

 
The log-rank test is tested as a chi-square test which compares the observed numbers of 

failures to the expected number of failure under the hypothesis. 

Thus, given that 𝑂𝑗  and 𝐸𝑗   is the observed and expected number of deaths respectively 

for the 𝑗𝑡𝑕  group, the test statistic is given by; 

 

𝜒2 =  
 𝑂𝑗 − 𝐸𝑗 

2

𝐸𝑗

𝑘

𝑗=1

 

 

where  
 

𝐸𝑗 =  𝑒𝑗𝑡
𝑎𝑙𝑙  𝑡

 

 

𝑒𝑗𝑡 =
𝑛𝑗𝑡

 𝑛𝑗𝑡𝑎𝑙𝑙  𝑗
× 𝑑𝑡  

 

and 

 

𝑛𝑗𝑡  is the number of children still exposed to the risk of dying at time up to 𝑡 for the 𝑗𝑡𝑕  

group 

𝑑𝑡   is the total number of deaths for all groups at time 𝑡. Thus: 
 

𝑑𝑡 =  𝑑𝑗𝑡
𝑎𝑙𝑙  𝑗

 

 

has approximately the chi-square distribution with 𝑘 − 1 degrees of freedom. A large 

chi-square value will lead to a rejection of the null hypothesis in favor of the alternative 

that the 𝑘 groups do not have the same survival distribution. 
 

2.2.4 Proportional hazard regression 

The Cox proportional regression as proposed by Cox [9], was used to determine the effect 

of some socio economic and demographic factors on Child survival. In this model, the 
hazard for an individual is assumed to be related to the covariates through the equation; 

 

𝑕𝑖 𝑡 = 𝜆0 𝑡 exp⁡{𝛽1𝑥𝑖1 + ⋯+ 𝛽𝑘𝑥𝑖𝑘 }   
                                        

Taking the logarithm of both sides, the model can also be written as 

 

log 𝑕𝑖(𝑡) = 𝛼 𝑡 + 𝛽1𝑥𝑖1 + ⋯+ 𝛽𝑘𝑥𝑖𝑘        
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where 𝛼 𝑡 = log 𝜆0(𝑡).  

 

While 𝛼 𝑡 , can be specified for particular distributions, its specification is however 

unnecessary in a Cox model and it can take any form. The ratio of the hazard for two 

individuals 𝑖 and 𝑗  is given by; 

 
𝑕𝑖(𝑡)

𝑕𝑗 (𝑡)
=

𝜆0 𝑡 exp⁡{𝛽1𝑥𝑖1 + ⋯+ 𝛽𝑘𝑥𝑖𝑘 }

𝜆0 𝑡 exp⁡{𝛽1𝑥𝑗1 + ⋯+ 𝛽𝑘𝑥𝑗𝑘 }
 

 

= exp⁡{𝛽1 𝑥𝑖1 − 𝑥𝑗1 + ⋯+ 𝛽𝑘(𝑥𝑖𝑘 − 𝑥𝑗𝑘 ) 

 

𝛽1, … , 𝛽𝑘  are therefore a measure of the relative risk for the 𝑖𝑡𝑕  child, over the 𝑗𝑡𝑕  with 

respect to the change in the 𝑥𝑙
𝑡𝑕  covariate, 𝑙 = 1,… , 𝑘 respectively. 

 

2.2.5   Determining the Survival Models 

Survival models are useful in summarizing the survival pattern, suggesting further studies, 

and generating hypothesis. In this study the graphical approach was used to fit the 
survival distribution, with the hazard plot guiding the choice of the probable distributions. 

From the shape of hazard plot (Figure 1) the Weibull and Log-logistic distributions were 

assumed appropriate. 

The hazard plotting technique [10] involves the plotting of the survival function (or a 
function of it) against the cumulative hazard function (or a function or it): They are 

designed to handle censored data. The cumulative hazard function, 𝐻(𝑡), is defined as; 

𝐻 𝑡 =  𝑕 𝑡 𝑑𝑡

𝑡

0

 

Where from equation (1) and (2) 

𝑕 𝑡 =
−𝑆|(𝑡)

𝑆(𝑡)
 

and thus 

𝐻 𝑡 = −ln⁡[𝑆 𝑡 ] 
  

For our assumption of a Weibull distribution,  

 

𝑓 𝑡 = 𝜆𝛾(𝜆𝑡)𝛾−1exp⁡[−(𝜆𝑡)𝛾 ] 
 

𝑆 𝑡 =  exp⁡[−(𝜆𝑡)𝛾 ] 
 
And hence the cumulative hazard is given by 

 

𝐻 𝑡 =  𝜆𝑡 𝛾           𝑤𝑕𝑒𝑟𝑒 𝑡 > 0 
 
Thus  

𝑡 =
1

𝜆
 𝐻(𝑡) 

1
𝛾  
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ln 𝑡 =
1

𝛾
ln𝐻(𝑡) + ln

1

𝜆
 

 

Thus a graph of ln 𝑡 against ln 𝐻(𝑡) yielded a straight line graph with intercept ln
1

𝜆
 

and gradient 
1

𝛾
 which lead to the estimation of shape (𝛾) and scale (𝜆) parameter of 

the Weibull distribution. 
 

For a Log-logistic model,  

 

𝑓 𝑡 =
𝛼𝛾𝑡𝛾−1

(1 + 𝛼𝑡𝛾 )2
 

 

𝑆 𝑡 =
1

1 + 𝛼𝑡𝛾
 

And hence, the cumulative hazard is given by 

 

𝐻 𝑡 = ln⁡(1 + 𝛼𝑡𝛾) 
 

𝑡𝛾 =
exp⁡[𝐻 𝑡 ] − 1

𝛼
 

 

And hence 
 

ln 𝑡 =
1

𝛾
ln 𝑒𝑥𝑝 𝐻(𝑡) − 1 −

1

𝛾
ln 𝛼 

 

Thus a graph of ln 𝑡  against ln  𝑒𝑥𝑝 𝐻(𝑡) − 1  yielded a straight line graph with 

intercept −
1

𝛾
ln 𝛼 and gradient  

1

𝛾
 which lead to the estimation of shape (𝛾) and scale 

(𝛼) parameter of the log logistic model. 

 

2.2.6 Evaluation of the goodness of fit 

The appropriateness of our models was assessed by the Kolmogorov Smirnov Test. This 
non parametric test, tests the hypothesis that, two samples of data are from the same 

distribution, against the alternative that the underlying distributions are different. The test 

statistic is the maximum absolute difference between their cumulative distribution 
functions. The observed cumulative density functions were therefore tested against the 

expected cumulative density functions generated from the assumed models for any 

significant difference.  

 

 

3  Main Results  

Tables 1 and 2 show the Hazard, Density, Cumulative hazard and Survival estimates with 

their standard errors. The results show the error of estimating these functions are less than 

half a percent (0.005) for the hazard and density estimates and up to about half a percent, 
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for the Cumulative hazard and Survival estimates. The child’s highest risk of dying is in 

the first year of life and generally decreases over time. About 6 percent (probability of 
0.0618903) of children born die in the first year and this represents about 60 percent of 

the total child deaths. About 10 percent of children born die by age 5 years (Survival 

probability of 0.8972530): This translates to about a 1 in 10 chance of a child dying by 

age 5 years.  
 

Table 1: Hazard, and Density estimates for child survival 

Time Hazard, h(t) Standard Error of h(t) Density, f(t) Standard Error of f(t) 

0.5 0.0618903 0.0031248 0.0618903 0.0031248 

1.5 0.0146614 0.0018336 0.0137540 0.0017207 

2.5 0.0151715 0.0022199 0.0140239 0.0020527 

3.5 0.0111297 0.0024748 0.0101317 0.0022533 

4.5 0.0032733 0.0023108 0.0029466 0.0020802 

 

Table 2: Survival and Cumulative hazard estimates for child survival 

Time 

Survival 

Probability, S(t) 

Cumulative 

Hazard, H(t) 

Standard error of S(t) and 

H(t) 

1 0.9381100 0.0638881 0.0031248 

2 0.9243560 0.0786580 0.0035269 

3 0.9103320 0.0939459 0.0040342 

4 0.9002000 0.1051383 0.0045815 

5 0.8972530 0.1084174 0.0050180 

 

Six of the Socio-Economic and Demographic factors are shown in Table 3 to be 

individually significant prognostic factors for Child survival at 5% significance. From the 
regression analysis (Table 4), Singletons, Children born in urban communities and those 

born in areas that had benefited from the R3M interventions and those with Christian 

mothers have better survival chances. The intervention in the R3M regions (Ashanti, 

Eastern and Greater Accra) was designed to reduce maternal morbidity and mortality by 
increasing contraceptive prevalence through availability and utilization of contraceptives 

and comprehensive abortion care. The results suggest a success story for the intervention. 

 
Table 3: Log rank test of Prognostic factors for Child Survival 

Variable D.F   Chi-Square P-Value 

Socio Economic: 

    R3M Region 1 
 

8.36333 0.004* 
Rural or Urban 1 

 

7.69284 0.006* 

Mother Ever Schooled 1 

 

7.54756 0.006* 

Mother's HLEA** 3 
 

1.41820 0.701        
Mother's Religion 3 

 

9.55382 0.023* 

Demographic: 

    Mother's Firstborn 1 

 

0.41857 0.518 

Singleton or Not 1 
 

39.55300 0.000* 
Child's Gender 1 

 

3.02506 0.082 
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Mother's Age (Categorized) 2   8.11144 0.017* 

*: Means  significant at the 5% level of significance 

**: Mother's HLEA represents Mother’s Highest Level of education Achieved 
 

Table 4: Cox's regression Analysis of Child Survival 

Variable  level D.F B S.E (B) t Sig** Exp(B) 

Socio Economic: 

       

Rural or Urban Urban 1 -0.1700 0.1050 

-1.61

0 0.105 0.8440 

Ever Schooled Yes 1 -0.1120 0.1080 

-1.04

0 0.008* 0.8937 

R3M Region R3M 1 -0.1470 0.1030 

-0.14

4 0.036* 0.8629 

Religion Moslem 3 0.1970 0.1230 1.590 0.406 1.2170 

 

Others 

 

0.1260 0.1840 0.690 

 

1.1350 

 

Trad/Spiri*** 

 

0.2090 0.1950 1.070 

 

1.2330 

Demographic: 

       

Mothers Age 

 

1 -0.0144 0.0076 

-1.89

0 0.044* 0.9857 

First born Yes 1 0.0520 0.1300 0.400 0.320 1.0540 

Child's Gender Male 1 0.1430 0.0898 1.590 0.100 1.1540 

Singleton or Not Single 1 -0.9100 0.1520 

-5.99

0 0.000* 0.4023 

*: Means significant at the 5% level of significance 

**Significance as calculated here is for the corresponding variable and not the 
level 

***Trad/Spiri represents Mothers who are African Traditionalist or Spiritualist 

  

 

 

Figure 1: Hazard Plot for Child Survival 
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The hazard trend, as shown in Figure 1, shows a hazard that is decreasing at a decreasing 

rate and therefore suggests the Weibull (𝛾 < 1) and log-logistic distributions, whose 
hazards behave in such a fashion. Consequently, the corresponding hazard plotting for 

these distributions are shown in Figure 2 and 3, with the estimated shape and scale 

parameters of the assumed distributions shown in Table 5. Table 6 shows the closeness of 

the expected values of child survival for our assumed distributions to the observed values. 
The appropriateness of our assumed distributions is confirmed by the Kolmogorov 

Smirnoff test as shown in Table 7. 

 

 
Figure 2: Graph of ln(t) against ln[H(t)] for Assumed Weibull Distribution 

 

 

 
Figure 3: Graph of ln(t) against ln{exp[H(t)-1]} for Assumed Log-Logistic Model 

 

Table 5: Parameter Estimates for Assumed Distribution 

 

ln t = 2.8676ln H(t) + 7.9158

R² = 0.9902
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ln t = 2.7497ln {exp[H(t)]-1} + 7.5049

R² = 0.9901
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Parameter Estimates 

  Assumed Distribution Shape Scale R-Square 

1 Weibull 0.348724 0.0003649 0.9902 
2 Log-logistic 0.363676 0.0652615 0.9901 
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Table 6: Expected Child Survival Probabilities for assumed Distributions 

  
Expected Survival probabilities 

Time Observed Survival Weibull Assumed Log-logistic Assumed 

1 0.9381100 0.9386969 0.9387366 

2 0.9243560 0.9225988 0.9225331 

3 0.9103320 0.9113790 0.9113163 

4 0.9002000 0.9024979 0.9024890 

5 0.8972530 0.8950366 0.8951104 

 
Both the Weibull and Log-logistic model are shown to fit child survival well and there is 

little to choose between them. Expected percentage of child survival by age 10 and 12 

years are approximately 87% and 86% respectively, by both distributions as shown in 

Table 8. 
 

Table 7a: Kolmogorov Smirnoff Test 

Assumed 
Distribution 

Maximum 
Difference 

𝜒2  Value Sample 
size 

P-Value 

Log logistic 0.2000 0.40 5 0.819 

Weibull 0.2000 0.40 5 0.819 

 

Table 7b: Paired T-Test for Observed and Expected Survivals 

  

Mean 

Difference 

T-Valu

e 

Sampl

e Size 

P-Valu

e 

Observed verses Weibull Survivals 0.000008 0.01 5 0.993 
Observed verses Log-Logistic 

Survivals 0.000013 0.02 

5 

0.988 

 

Table 8: Forecasted Probability of Child Survival 

Predicted Probability of Survival 

Time Weibull Assumed Log-logistic Assumed 

10 0.8683052 0.8689786 

12 0.8602934 0.8612430 

 

 

4  Discussion and Conclusions  

The importance of reducing child mortality, as captured in the MDGs, requires a proper 
understanding of the phenomenon of child mortality that can attract the requisite response 

to curb the menace. A rigorous analysis of child survival is therefore of great importance 

in the understanding and management of child mortality.  
This study investigated the application of survival analysis techniques to the measurement 

of child survival.  Estimates of survival, hazard, probability and their corresponding 

errors were calculated, tests and regression of some covariates on survival conducted, 

probability models developed and tested, and forecasts made for child survival. These 
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were obtained from data on the 2007 Ghana maternal health survey. The results obtained 

by our estimates and our model were adequately displayed and discussed. 
Several methods exist for the assessment of child mortality but most of the methods 

usually used are central rates. These static measures do not adequately capture, what they 

are intended to represent. In this study we have demonstrated that survival techniques, 

which are dynamic measures, can be applied to the study of child survival. Survival 
techniques do not only provide more information than the central rates, like child 

mortality rates which are widely used, but also give precision for their estimates and 

enable the modeling of this phenomenon. These models and estimates provide better 
information and predictive potential, and allow for more effective and direct comparisons 

for different countries. Furthermore, this method allows for the use of both parametric and 

non parametric techniques in the analysis of child survival and therefore has the potential 
to lead a more rigorous and deeper analysis of child survival that will enable a better 

understanding of the phenomenon and hopefully, attract the appropriate response to 

address it.  

The results show that Child mortality is approximately 10 percent and that for a child, life 
after birth is well described by the logistic and Weibull models. Child survival shows a 

decreasing hazard rate, decreasing at an increasing rate with age: Survival therefore 

decreases at a decreasing rate. These models showed that the risk of losing a child, faded 
with time and agrees with the first third of the well known bathtub shape of mortality and 

with Hirve & Ganatra’s description of their Kaplan-Meier survival curve [11]. The first 

year after delivery however remains the most crucial period for children survival: It is by 
far the riskiest period of a child’s life and a focus at this period could reduce child 

mortality by up to 60%. The shape and scale parameters for the log logistic models was 

estimated to be 0.348724 and 0.0003649 respectively while those for the Weibull 

distribution that describe them are 0.363676 and 0.0652615 respectively. The shape and 
scale parameters of these distributions, give indication of “aging” and “living longer” 

respectively [12]. 

The risk of dying for any individual is determined by the covariates associated with the 
person. The low risk of dying and hence better survival of singletons, urban children, 

children from regions which benefitted from the R3M interventions, children of Older 

mothers and mothers who had ever been to school, as well as the high risk (worse survival) 

of Male and the first born, are all supported by other studies [13], [14], [15]. Of the four 
factors that significantly affect child survival, three of them are indicative of the state of 

the mother and well within the control of society i.e. whether a Mother had been to school, 

her age, whether a child was from one of the Regions that benefitted from the R3M 
interventions. Thus, discouraging early births, providing basic education for mothers, 

providing for good maternal health issues and perhaps a general focus on the state of 

mothers, could significantly improve child survival. As a child grows, the factors that 
influence his or her survival become increasingly diverse and that becomes a challenge 

for the young and unschooled mother who may not be prepared for the continuum of 

responsibilities associated with child rearing. Cultural practices and norms that tend to 

affect maternal health and female education need to be given serious consideration  
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