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Abstract 

Genetic Algorithms have been successfully used for a long time in solving 

optimization problems in so many diversified fields. Most of the research effort 

focused on devising a suitable mapping for the problem in hand, or proposing 

efficient types of operations, finding an optimal set of parameters like crossover 

and mutation rates, mutation step size and crossover format, or selection methods 

towards optimizing the search in the sense of reducing the run time, computational 

burden, escaping local minima, etc.. In this research work, we present an intensive 

mutation with fitness based step size as a main player in the space exploration and 

exploitation. The test results show that mutation can be as good as the crossover 

operation in upgrading the population fitness, and the longer time it takes to 

execute population-wide mutation pays off in terms solution quality under time 

constraint and chance of getting an optimal solution, compared to the classical 

genetic algorithm.     
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1 Introduction 

Genetic Algorithms have been applied to a wide range of problems, with 

acceptable performance despite of  the long run time, which is quite natural due to 

its evolutionary nature. GAs are exceptionally good in solving problems with large 

solution space and non-differentiable fitness landscape. Typically, they use two 

basic functions to change the individuals of  a population towards more fit one 

generation after generation. The evolution process employs three main operators; 

selection, crossover and mutation. The first operator selects the fittest individuals 

to survive to the next and transfer the genetic content to new populations in each 

generation, the second operators mates highly fit pairs of individuals to produce 

new individuals with a good probability of having higher fitness values. Mutation, 

on the other hand is a low rate unary operator; one or more of the offspring is 

slightly disturbed to get a clone. Mutation is necessary to maintain an acceptable 

diversification degree in the population, which might get at risk due to successive 

selection of most fit individuals for crossover operations. 

The encoding and parameters settings depends on the problem in hand, but 

the general behavior of  the Classical Genetic Algorithm can be expressed by the 

following outline: 

1. Choose the initial population of individuals randomly 

2. Compute the fitness of each individual in the initial population 

3. While Stopping Criteria = False, 

3.1. Select the best-fit individuals for reproduction 

3.2. Apply crossover operation to give birth to offspring 

3.3. Apply mutation operation to one of the offspring 

3.4. Compute the fitness of the new individuals 

3.5. Replace least-fit population with new individuals 

The effects of genetic operators on the search vary widely, and hence a good 

mix is needed; selection alone tends to fill the population with copies of the best 
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individuals from the population, while mutation alone induces a random walk 

through the search space. However, selection and crossover operators together 

tend to cause the algorithm to converge on a local optima; a good but sub-optimal 

solution, while selection and mutation together create a parallel, noise-tolerant, 

hill climbing algorithm. The wise use of those three operations with properly sized 

population offer a search strategy with good possibility of converging at global 

optima within practically reasonable amount of time. Typical sopping criteria 

include; time limit, number of generations, less than threshold improvement rate, 

sufficient fitness achieved, etc. 

Most of the previous work in this fields assumed a relatively low rate of 

mutation in an effort to mimic the nature from which the concept was borrowed; 

evolutionary theorem's survival of the fittest. A typical mutation rate of 1/ n  for n   

binary values chromosome, and operation carried out on the offspring following a 

crossover operation. Also, a light disturbance is recommended in what is known as 

step size. In this research, we consider the mutation as an active player in both the 

exploration and exploitation process, in its rate and step size aspects. We apply 

mutation with the following three things in mind: stand alone primary operation 

that gets applied to solutions rather than offspring, relatively high rate compared 

to the standard genetic algorithms and typically involve every individual in the 

population, and a step size that is determined by the fitness of the individual to be 

mutated or cloned. 

Adaptation of strategy parameters and genetic operators has become an 

important and promising area of research in genetic algorithms. Today, the focus 

is more on solving optimization problems using adaptive techniques as away to 

cope with the dynamics of the solution spaces. 

As an alternative to the fixed rate mutation, being relatively high or low, and 

to the adaptive mutation operations which most of the time adapts the rate to the 

dynamics of the population, the "mutative"  scheme pushes the rate to the limit by 

operating on every individual, but with an adaptive size. 
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The inspiration of this idea came from the psychology, where "mutative" 

was coined by Strachey (1934) in relation to transference interpretations aimed at 

modifying the superego. To achieve this not one but a great number of mutative 

interpretations might be needed. Today it is more appropriate to use this happy 

term in a broader sense to refer to all those procedures and events in therapy, 

which bring about a shift, a change in the patient. In the context of optimization 

and using genetic algorithms in particular, a patient  is a low fitness solution in the 

population and intensive mutation (in rate and step size) is what would bring such 

a solution into a higher fitness state causing the whole population to get better, 

which is highly likely to produce an optimal solution. 

 

 

2 Literature Review  

In 1975, John Holland laid the foundation for Genetic Algorithms (GAs), 

which have been since then used as a popular alternative to the classical 

optimization methodologies [1]. Since then, researchers have suggested different 

static mutation probabilities for GAs. These static mutation probabilities are 

derived from experience or by trial-and-error; 0.001, 0.005, 0.01,  1/n,  0.5/n, 2/n, 

2.5/n, and even 1.75/(N * n 1/2), where N and n are the population size and length 

of individual, respectively. It is very difficult to find an appropriate parameter 

setting for the optimal performance [2]. 

Instead of fixed operator and parameters, an ensemble of mutation strategies 

and control parameters from a pool may coexists throughout the evolution process, 

to compete in offspring production. In [3], performance improvements was 

demonstrated through a set of bound-constrained problems in comparison with 

conventional methods and several state-of-the-art parameter adaptive variants. The 

problem with this approach is that it needs pre-processing time to figure out 

strategies and parameters for such a pool. 
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Typical self-adaptation mutation starts with a small frequency, that increases 

generation after generation. Tests results show success through reducing the 

chance of premature convergence to a local minima due to the use of the elitism in 

the selection process [4]. The mutation probability increases generation after 

generation, test on knapsack problems shows that it outperforms state of the arts 

algorithms [5]. A mutation operator, based on greedy search and a distortion 

element [6], has increased the genetic algorithm performance in solving the TSP; 

two different greedy search methods tested on 14 different TSPLIB examples have 

shown more effective results in terms best and average error values. Another 

adaptive mutation rate [7] makes use of the state of the sandpile and the fitness 

values of the population. The results show that, at least under the proposed 

framework, a genetic algorithm with the sandpile mutation self-adapts the 

mutation rates to the dynamics of the problem and to the characteristics of the 

base-function.  

The feasibility of using adaptive operators in genetic algorithms as opposed 

to using fixed parameters found using some methods of optimal ones was 

examined through a set of experiments, with a conclusion that although the 

adaptive genetic algorithms tend to need longer time to run, the price  is worth to 

pay as the time spent finding the optimal mutation operator and rate for the non-

adaptive versions can be considerable [8]. 

Another way to maintain sufficient diversity in the population, is a gene 

based adaptive mutation scheme [9], where the information on gene based fitness 

statistics and on gene based allele distribution statistics are correlated to explicitly 

adapt the mutation probability for each gene locus over time. A convergence 

control mechanism is combined with the proposed mutation scheme to. 

Experimental results show that the proposed mutation scheme efficiently improves 

the genetic algorithm performance.  

A selective mutation method for improving the performances of genetic 

algorithms [10], ranks individuals then mutates one bit in a part of their strings 
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which is selected in correspondence with their ranks. Tests on four optimization 

problems have shown that it could escape local minima and find an optimal 

solution faster. 

However, the performance of different adaptive mutation operators depends on 

the test problem and the gene level adaptive mutation operators are usually more 

efficient than the population level adaptive mutation operators, as reported by [2], 

in a comparative analysis of different population-level and gene-level adaptive 

mutation operators for genetic algorithms based on a set of benchmark 

optimization problems. 

 

 

3 The Problem 
As a proof of concept, the binary or 0/1 knapsack problem is used for 

evaluation. The general problem can be described as follows: given two sets of n   

items and m  knapsack constraints (or resources), for each item j  a profit jp  is 

assigned and for each constraint i  a consumption value ijw  is designated. The 

goal is to determine a set of items that maximizes the total profit, not exceeding 

the given constraint capacities ci. Formally: 

Maximize 𝑧 = ∑ 𝑝𝑗𝑥𝑗𝑛
𝑗=1               (1) 

Subject  

 

∑ 𝑤𝑖𝑗𝑥𝑗𝑛
𝑗=1 ≤

    

i=1, 2, 

  

(2) 

Where 𝑥𝑗 ∈ {0,1}  j=1, 2, 

  

(3) 

This problem is included in the general class of covering and packing 

problems. According to Gottlieb [11], these two types of problems are structurally 

equivalent since we can locate the global optima on the boundaries of the feasible 

regions. In the particular case of the MKP, the feasible solutions contained on the 

boundary cannot be improved since the insertion of more items will cause the 

violation of resource capacities. While the uni-dimensional knapsack problem is 

solvable in pseudo-polynomial time (only weakly NP-Hard), the multi-
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dimensional knapsack problem is strongly NP-Hard [12]. Hence, exact techniques 

and exhaustive search algorithms are only of practical use in solving instances of 

small size, making evolutionary algorithms more significant in instance of large 

size. 

 

 

4 Intensive Mutation Approach 

Research in the evolutionary algorithms has focused on applying them to 

specific problems, with two major lines of approach; applying a standard 

implementation of an evolutionary algorithm to a new problem, and proposing 

techniques to improve the performance of previous approaches. The focus has 

always been on showing a way to solve a problem with these algorithms, with less 

attention to how the proposed approach was able to deal with the dynamics of the 

solution space. 

The choice of mutation rate is a vital factor in the success of any genetic 

algorithm, and for permutation representations this is compounded by the 

availability of several alternative mutation operators. It is now well understood 

that there is no one “optimal choice”; rather, the situation changes per problem 

instance and during evolution. This is why self-adaptation pops up as a choice;  it 

has been proven to be successful for mutation step sizes in the continuous domain, 

and for the probability of applying bitwise mutation to binary encodings, and [8] 

examines whether this can translate to the choice and parameterization of mutation 

operators for permutation encodings. 

The proposed algorithm, Mutative Genetic Algorithm, is a two-phase 

variant; in phase one we perform crossover operation only, just like classical 

genetic algorithm but with no mutation, and in the second phase, perform mutation 

operation only. the mutation is intensive in the sense that it involves every 

individual, but with a step size inversely proportional to its fitness. The least fit 
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among all are dropped to maintain the population size fixed. The outline of the 

proposed is depicted in the pseudo-code below:  

1. Choose the initial population of individuals randomly 

2. Compute the fitness of each individual in the initial population 

3. Repeat on this 2-phase generation until termination (time limit, sufficient 

fitness achieved, etc.):  

3.1. Crossover Phase 

3.1.1. Select the best-fit individuals for reproduction 

3.1.2. Apply crossover operation to give birth to offspring 

3.1.3. Compute the fitness of new individuals 

3.1.4. Replace least-fit population with new individuals 

3.2. Mutation Phase 

3.2.1. Compute the mutation step size for every individual 

3.2.2. Apply mutation operation to individuals with own step sizes to 

create a clone   

3.2.3. Compute the fitness of new individuals 

3.2.4. Replace least-fit population with new individuals 

The idea behind the variable step size mutation is that high fit solutions may 

need only a small perturbation to get to a better state while a large perturbation is 

likely to move it to a far state with possible decrease in fitness. On the other hand, 

low fit solutions have not much to lose, in the sense that large perturbations are 

likely to take them into better states, while small ones are likely to keep them 

around the low fitness part of the solution space. However, in the unlikely event 

that this leads to an unwanted outcome, they get ejected from the population soon. 

This approach enhances the chances of escaping local minima that the selection 

process is likely to fall into. With this in mind, we introduce a step size that is 

inversely proportional to the fitness and with pre-set limit: 

                                     ( ) ( )1 ( 1) max

max min

F F iS i L
F F

−
= + −

−
                                             (4) 
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where S(i) is the step size of the ith solution, ( )F i  is the fitness of the ith solution, 

minF  and maxF  are the minimum and maximum fitness of the population, and the 

L  is a limiting value, representing the largest step size, we will use / 4L n=  for 

an n-value string representing a solution. 

The 2-phase loop of each generation takes more time than the classical 1-

phase loop due to the intensive mutation, but this extra computational burden is 

greatly compensated for by the outcome after every generation, which pays off 

immediately in better chance of more ones. The step size represents the amount of 

change to clone an individual; in the binary knapsack problem it represents the 

number of bits to be flipped. This mutation scheme adapts to the population 

characteristics; when the population is highly diversified and fitness span wider 

range, the step size automatically decreases, and this happens naturally in the early 

stage, while it tends to enlarge when the crossover starts giving birth to quite 

similar individuals.         

Mutation and crossover operations are performed alternatively; the 

population undergoes a crossover in a generation and mutation in the next, and 

each stage involves all the individuals. In the crossover turn, the highest fit half of 

the population is mated as random pairs, while in the mutation turn, every 

individual is mutated with a step size determined by its fitness. the selection 

process at the end of each generation maintains the population fixed. 

 

 

5 Results 

Tests on fitness landscape using fitness distance measures and correlation 

measures have shown that the selection of a suitable representation is crucial when 

solving combinatorial optimization problems, and that encodings with a strong 

heuristic bias are more efficient and the addition of local optimization techniques 

further enhance its performance [13]. The standard test problem sets available lack 
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sufficient diversity particularly in the correlation structure and the constraint 

slackness settings, and using test problems that provide an insufficient breadth of 

diversity leads to questionable heuristic performance generalization, particularly 

since the structure of industrial problems are ill-defined [14]. 

To avoid encoding problems, the uni-dimensional knapsack problems is 

used, due to its simple straightforward encoding, and to avoid any performance 

bias due to ill-defined data sets, we opted to use Knapsack instances with random 

integral values (in the range 1 to 100 for the weight and profit vectors), with low 

complexity set of instances: 20, 30 and 40 objects, where the optimal solution can 

be found for every instance in a reasonable amount of time, and medium 

complexity: 40, 60, 80 and 100 for the best effort tests. Most of the tests were 

conducted using concurrent runs of the same code on laboratory machines with i7 

CPU at 3.4 GHz, 8 MB Cache and 4 GB DRAM running C programs generated 

from Matlab Scripts and clock based seeds for the random number generators. 

 

Table 1: Mutative vs. Classical Performance 

 GA-Classical GA-Mutative 

Quality Time 

(min) 

Generations Time 

(min) 

Generations 

80% 7.15 10,234 7.30 10,076 

85% 8.93 12,793 8.98 12,393 

90% 11.35 16,246 10.96 15,120 

95% 14.86 21,283 13.48 18,598 

 

Table 1 shows how the proposed model performs in comparison with the 

classical genetic algorithm; GA- Classical seems to perform better only when the 

expectations are low, while the GA-Mutative beats it when higher quality 

solutions are to be found. In this experiment, Time (min) and Generations to reach 
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Target Quality (% of Optimal), Size=40 Objects, Capacity=1863, Optimal =3246, 

and population size of 40. 

Table 2 compares the performance in terms of the success rate; the 

possibility of getting an optimal solution in a given amount of time. The two 

versions have equal performance in problems with small size, while the mutative 

version has significant increase in success rate for larger problems. We made 20 

runs per instance, and population size=number of objects. 

   

Table 2: Mutative vs. Classical Success Rate 

  Success Rate 

Problem Size  Run Time 

(min) 

GA-Classical GA-Mutative 

20 20 70 % 70 % 

30 30 65 % 70 % 

40 40 55 % 65 % 

 

 

Table 3: Mutative vs. Classical Population Fitness Stats 

  Final Population Stats (Values) 

 Initial 

Population 

GA-Classical GA-Mutative 

Max 1857 2982 3145 

Min 1225 2743 2794 

Mean 1604.6 2761.7 2974.3 

Range 632 239 351 

Std. Dev. 172.8 81.3 126.2 
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Table 3, shows the population fitness characteristics of the two algorithms, 

the range (difference between max and min fitness values), stays relatively large, 

which is a sign of more diversified population when read in the context of larger 

standard deviation. We used 10 runs for 40 minutes each; Size=40 Objects, 

Capacity=1863, Optimal=3246, and Population Size=40. 

Figure 1 shows the progress of the two algorithms over time, while the 

average is about the same in the early stages, the mutative algorithm (solid line) 

continues to improve the population average fitness at better rates. The setting 

used here is: Size=60 Objects, Capacity=2638, Optimal=3109, Population 

Size=40. 

 

 
Figure 1: Mutative vs. Classical, Average Fitness Against Time (min) 

 

 

6 Conclusion 

Compared to the classical genetic algorithm, the variable step size intensive 

mutation proposed has shown slightly better performance in some aspects like the 

likelihood of finding global optima, which  contradicts some of the findings that 

claims insignificant advantage of higher rates of mutation, and supports the 
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significance of adaptability in general. This opens the doors for better mutation 

application towards higher performance implementation while providing a general 

framework for optimization with genetic algorithms, as opposed to the genetic 

algorithm variants, that tends to be problem specific, through a set of tailored 

operations or parameters. While this approach is only slightly better than the 

classical implementation of genetic algorithms, several tests have shown that this 

improvement becomes more significant in handling larger solution spaces. Future 

work may focus on using MKP benchmarks, apply to other problems like TSP, 

reduce time by performing mutation every other generation, finding a better value 

for the limit L. Study ergodicity trend of the algorithm using a distance measure 

based homogeneity index.   
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