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On the structure of space-time

and linear evolution equations

Panagiotis N. Koumantos1

Abstract

Let {Tυ : υ ∈ [0, c)} the one-parameter semi-module of Lorentz op-
erators on R4 with infinitesimal generator T , where c is the constant
speed of light in vacuum. In this paper the space-time of special theory
of relativity is considered as affine and ordered vector space. We study
the topology of space-time and we consider the velocity differential evo-
lution equation

(
d
dυ −A

)
y(υ) = f(υ) where f : [0, c) → R4 is a given

function and the corresponding linear time differential evolution equa-
tion, where A is the corresponding matrix of the infinitesimal generator
T .
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1 Introduction

In special theory of relativity if F and F′ are two inertial frames of reference
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2 Structure of space-time and linear evolution equations

and F′ is moving relative to F with constant velocity υ among the direction of

x-axis, then the coordinates (x, y, z, t) and (x′, y′, z′, t′) of a pointevent relative

to F and F′ respectively are connected through the Lorentz transformation

x′ = x−υtq
1−υ2

c2

, y′ = y, z′ = z, t′ =
t− υ

c2
xq

1−υ2

c2

with |υ| < c, where c is the speed of light in vacuum.

As is well-known the above transformations are linear and consist an one-

parameter group (the identity transformation is given for υ = 0 and the inverse

transformation replacing υ by −υ).

Assuming 0 ≤ υ < c, for the Lorentz transformations, we have a semi-

module structure.

A semi-module (G, ◦) is an assosiative and commutative groupoid, i.e. (i)

for every (a, b) ∈ G×G there is a unique element a ◦ b ∈ G, (ii) a ◦ (b ◦ c) =

(a ◦ b) ◦ c, for all a, b, c ∈ G and (iii) a ◦ b = b ◦ a for all a, b ∈ G.

In section 2 we describe the geometrical and ordering structure of space-

time.

Following Weyl [1] an affine space is defined as a triple (S, V, ϕ), where

S is a non-empty set, V is a real (linear) vector space and ϕ : S ×S → V :

(x, y) → ϕ(x, y) is a map such that: (i) for each x ∈ S the map ϕx : S →
V : y → ϕx(y) := ϕ(x, y) is bijection and (ii) for all x, y, z ∈ S it follows

ϕ(x, y) + ϕ(y, z) + ϕ(z, x) = 0 ∈ V (triangle property).

For more details in affine geometry and special relativity, and axiomatic

approaches of space-time we refer to Efimov [2], Weyl [1] and Wilson and Lewis

[3]; Carathéodory [4], Einstein et al. [5] and Reichenbach [6].

In general a non-empty set A is called partially ordered if there is a relation

∅ 6=≺⊆ A× A with the properties: (i) x ≺ x (reflexive), (ii) x ≺ y and y ≺ x

implies x = y (antisymmetric) and (iii) x ≺ y and y ≺ z implies x ≺ z

(transitivity).

Let A be a real vector space and P ⊆ A. The subset P is called cone of

vertex 0 if λP ⊆ P for all λ > 0. In particular P is called convex cone of

vertex 0 if P+P ⊆ P and λP ⊆ P for all λ > 0. A convex cone of vertex 0 is

proper if P ∩ (−P) = {0}. Then the elements of the cone are called positive

and the cone P is positive cone of the ordered vector space A. When the cone

P is proper a partial order is defined as: a ≺ b if and only if (b− a) ∈ P.
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We note that if A is a normed vector space, then a cone P is normal if

satisfies the property: exists δ > 0 such that for all u, v ∈ P, ‖u + v‖ ≥
δ ·max {‖u‖ , ‖v‖} .

Also in case of Rκ the dual cone P∗ of P by Riesz’s representation theorem

is P∗ = {u ∈ Rκ : 〈u, x〉 ≥ 0, for all x ∈ P}, where 〈u, x〉 :=
∑κ−1

j=0 ujxj is the

usual inner product in Rκ.

For details on the theory of partially ordered spaces we refer to Krein and

Rutman [7], Peressini [8] and Vulikh [9].

Let E be a Banach space and L(E,E) the space of all linear operators with

domain E and range E. If {Tt : t ≥ 0} ⊆ L(E, E) satisfy the conditions: (i)

Tt◦Ts = Tt+s for t, s ≥ 0, (ii) T0 = I and (iii) `im
t→t0

Tt(x) = Tt0(x) for each t0 ≥ 0

and each x ∈ E, then {Tt : t ≥ 0} is called a semi-group of class (C0). The

notion of the infinitesimal generator T of the family {Tt : t ≥ 0} is defined by

T := `im
h→0+

1
h

(Th − I). In case of semi-module of operators we have analogue

notions (cf. Hille and Phillips [10]).

The semi-module property of the family of operators {Tυ : 0 ≤ υ < c} that

we are intrested in, is given by Tυ1 ◦ Tυ2 = Tυ1⊕υ2 , where υ1 ⊕ υ2 := υ1+υ2

1+
υ1υ2

c2
,

with υ1, υ2 ∈ [0, c). We recall that the subset [0, c) of the real numbers R
with the above operation ⊕ is usually refered as Einstein’s numbers and the

triple ((−c, c),⊕,¯) consist an algebraic field consernig operation ⊕ on (−c, c)

and a second operation ¯ on (−c, c), defined by the formula υ1 ¯ υ2 := c ·
tanh

[
tanh−1

(
υ1

c

) · tanh−1
(

υ2

c

)]
(cf. Baker [11]).

In section 3 we establish solution for the velocity differential evolution

equation
(

d
dυ
−A)

y(υ) = f(υ), where f : [0, c) → R4 is a given function.

We conclude studying the corresponding time differential evolution equa-

tion
(

d
dt
− (λ + µφ2(t))A)

y(φ(t)) = (λ + µφ2(t))f(φ(t)) with φ a real linear

map, λ, µ real constants and A is the corresponding matrix of the infinitesimal

generator T .

For classical notions and more details on functional analysis, semi-groups,

semi-modules and differential evolution equations we refer to Hille and Phillips

[10] and Yosida [12].



4 Structure of space-time and linear evolution equations

2 Geometrical and Topological Structure of

space-time

The space-time can be concidered as affine space as well as a space with

quadratic form. Indeed, Lorentz transformation leaves invariant the quadratic

form Q : R4 → R, with Q(x, y, z, t) := c2t2 − x2 − y2 − z2 and conversely as-

suming that the above quadratic form is invariant under linear transformations

and combining the physical postulates of special relativity we find the Lorentz

transformation. Thus space-time is affine and Minkowski space. Combining

this structures we can introduce a partial order in space-time and therefore

space-time is also a partially ordered vector space.

Let the real vector space R4 and the map ϕ : R4 × R4 → R4 defined by

the formula ϕ ((x′, y′, z′, t′), (x, y, z, t)) :=

(
x−υtq
1−υ2

c2

, y, z,
t− υ

c2
xq

1−υ2

c2

)
= (x′, y′, z′, t′),

where |υ| < c.

The map ϕ is well-defined and we consider the partial map ϕ(x′,y′,z′,t′) :

R4 → R4 : (x, y, z, t) → ϕ(x′,y′,z′,t′)(x, y, z, t) := ϕ((x′, y′, z′, t′), (x, y, z, t)). This

map is injection and linear. Also its kernel is trivial. Thus its image coincidence

with R4 and therefore the partial map is also surjection.

Let (xi, yi, zi, ti) ∈ R4, i = 1, 2, 3, χ := x1 + x2 + x3, ψ := y1 + y2 + y3,

ζ := z1 + z2 + z3, τ := t1 + t2 + t3 and k :=
√

1− υ2

c2
. The triangle property

follows since the linear system





1
k
χ− υ

k
τ + 0ψ + 0ζ = 0

0χ + 0τ + 1ψ + 0ζ = 0

0χ + 0τ + 0ψ + 1ζ = 0

− υ
kc2

χ + 1
k
τ + 0ψ + 0ζ = 0

is homogeneous

with nonzero determinant.

Hence, the triple (R4,R4, ϕ) is an affine space.

The affine Klein geometry of space-time is ((R4, +),R4, α), where the ad-

dition group of R4 is acting strictly transitivity to the carrier R4 of the above

affine space, through the (right) action map α : R4×(R4, +) → R4 : ((x′, y′, z′, t′), (x, y, z, t))

→ α((x′, y′, z′, t′), (x, y, z, t)) := `(x,y,z,t)(x
′, y′, z′, t′) := ϕ−1

(x′,y′,z′,t′)(x, y, z, t),

where

`(x,y,z,t) : R4 → R4 : (x′, y′, z′, t′) → `(x,y,z,t)(x
′, y′, z′, t′) := ϕ−1

(x′,y′,z′,t′)(x, y, z, t)

belongs in Aut(R4).

Let the Minkowski space M := (R4, Q), with Q : R4 → R the quadratic
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form Q(x) := x2
0 − x2

1 − x2
2 − x2

3, x = (x0, x1, x2, x3), and the subset K :={y =

(y0, y1, y2, y3)∈R4 : y0 ≥ 0 and y2
0 − y2

1 − y2
2 − y2

3 ≥ 0} of R4.

Then (R4,Â) is a partially ordered vector space with set K to be convex,

proper, selfdual, closed and normal cone; and the partial order Â in R4 is de-

fined as y Â x if and only if (y−x) ∈ K if and only if
(
y0 ≥ x0 and (y0 − x0)

2 −∑3
i=1(yi − xi)

2 ≥ 0
)
.

The assertion follows by classical set theoritic arguments and the Cauchy -

Schwartz inequality. For example, let as prove that the cone is normal. If y, x ∈
K, then y0x0 ≥

√∑3
i=1 y2

i

√∑3
i=1(−xi)2 ≥ |∑3

i=1 yi(−xi)| ≥
∑3

i=1 yi(−xi).

Thus y0x0 +
∑3

i=1 yixi ≥ 0. Hence,
√∑3

i=0(yi + xi)2 ≥
√∑3

i=0 y2
i and thus

||y + x|| ≥ ||y||. Similarly ||y + x|| ≥ ||x||. Hence exists δ = 1 > 0 such that

for all y, x ∈ K, ||y + x|| ≥ 1 ·max {||y||, ||x||}.
In general a cone K is normal in a space E, if and only if for all functionals

f ∈ E∗ it follows f = g − h, where g, h ∈ K∗ (cf. Krein [7]). In our case we

have the space R4, the cone K is normal and selfdual (K = K∗).

Thus, space-time of special theory of relativity is generating partially or-

dered space, i.e. for all z ∈ R4 there exist x, y ∈ K such that z = x− y.

The element e1 := (1, 0, 0, 0) ∈ R4 is also an element in the positive cone

K. Then the open sphere S(e1,
1
3
) ⊆ K, and therefore the interior set of the

positive cone K is not empty, i.e. Int(K) 6= ∅. Hence space-time is Krein space.

Also because of the previous properties of the positive cone K it follows that

exists strong order unit, i.e. exists e ∈ K such that for all x ∈ R4 exists λ > 0

such that −λe ≤ x ≤ λe. Actually every positive element is order unit since in

a Krein space the concepts of a strong unit and of a strongly positive element

are equivalent (cf. Vulikh [9]).

Let E be an ordered vector space. The order topology τ0 on E is the finest

locally convex topology τ on E for which every order bounded subset of E is

τ -bounded. A neighborhood basis of 0 for τ0 is the class of all convex, circled

subsets of E that absorb all order bounded subsets of E. If E is a Banach space

with strong topology τs ordered by a τs-closed positive cone P containing an

order unit e, then τs = τ0 if and only if P is normal (cf. Peressini [8]).

R4 is a Banach space with strong topology τd ordered by the closed positive

and normal cone K and is a Krein space. Hence if τ0 is the corresponding order

topology we have τd = τ0. Hence, in space-time of special theory of relativity

the order topology and the strong topology are coincidence.

The above results can be extend in the case of Rκ, κ ∈ N, κ > 4, with
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Q(x) := x2
0−

∑κ−1
i=1 x2

i . Also the same results hold in the Hilbert space of square

summable sequences `2 :=
{
x = (xn)n∈N :

∑∞
n=1 |xn|2 < +∞}

, with positive

cone the subset K := {x ∈ `2 : x1 ≥ 0 and x2
1 −

∑∞
n=2 x2

n ≥ 0} (see Krein and

Rutman [7] and Peressini [8]). Furthermore, for the order structure on space-

time we refer in our paper [26]. This is where we studied the mean ergodic

theorem for Lorentz operators introducing methods of functional analysis in

space-time.

All the topologies suggested, since Zeeman suggested the fine topology, for

Minkowski space-time M := (R4, Q) of special relativity, with the exception of

the order topology, are finer than the Euclidean topology and therefore Haus-

dorff. The fine topology on M is defined to be the finest topology satisfying the

property: “The topology on M induces the 3-dimensional Euclidean topology

on every space axis and the 1-dimensional Euclidean topology on every time

axis”. The fine topology enjoys the properties: (i) The fine topology is not

locally homogeneous, and the light cone through any point can be deduced

from the fine topology and (ii) The group of all homeomorphisms of the fine

topology is generated by the inhomogeneous Lorentz group and dilatations.

Also the fine topology is Hausdorff, is finer than the Euclidean topology, it is

not normal; and although it is connected and locally connected it is not locally

compact, nor does any point have a countable base of neighbourhouhds (cf.

Zeeman [14]). The order topology is the one generated by the positive cone

at the origin and its translates. More precisely a positive cone at the origin is

defined by K = {x ∈ M : Q(x) > 0, x0 > 0} which gives rise to the usual order

on M as x > y if and only if (x− y) ∈ K. Another positive cone at the origin

is defined by L = {x ∈ M : Q(x) ≥ 0, x0 > 0} which again defines another

partial order on M by x >> y if and only if (x − y) ∈ L. For each x ∈ M

the translates of the positive cones K and L are K + x = {y + x : y ∈ K} and

L + x = {y + x : y ∈ L}. Also for each x ∈ M the cones K∗x := (K + x) ∪ {x}
and L∗x := (L + x) ∪ {x} are defined. The cones {K∗x : x ∈ M} generate a

topology on M, the order topology or the Zeeman-order topology on M. This

topology is not Hausdorff, it is not T1 but it is T0. It is also not compact though

it is locally compact. It is connected and locally connected (cf. Nanda and

Panda [15]). Also, we refer to Williams [16], Whiston [17], Zeeman [13], Nanda

[18]-[21], Dossena [22], Agrawal and Shrivastava [23], Bălan [24], Bochers and

Hegerfeldt [25] for other topologies (A-topology, t-topology and s-topology),
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and results and remarks for those topologies on space-time.

Finally, we note that the order topology we introduced earlier is not the

same with the above order topology (Zeeman’s order topology) and we should

avoid confusion in terminology.

3 Differential Evolution Equations

Let the family of operators Tυ : R4 → R4, 0 ≤ υ < c, corresponds to

Lorentz transformations defined by the formula:

Tυ(x, y, z, t) :=


 x− υt√

1− υ2

c2

, y, z,
t− υ

c2
x√

1− υ2

c2


 = (x′, y′, z′, t′)

Note that operator Tυ is related with the partial map ϕ(x′,y′,z′,t′) introduced in

the proof of the affine structure of space time.

Operator Tυ is positivity preserving for x − υt ≥ 0, i.e. (x, y, z, t)∈K and

x− υt ≥ 0 implies Tυ(x, y, z, t) = (x′, y′, z′, t′) ∈ K.

Also Tυ is linear and relative to the usual orthocanonical base ē of R4 it has

coresponding matrix Aυ = (Tυ : ē) =




1
k

0 0 −υ
k

0 1 0 0

0 0 1 0
−υ
c2k

0 0 1
k


, where k :=

√
1− υ2

c2
.

As is well-known if V is a vector space with dimR(V) < ∞ then every linear

operator T : V → V is continuous (equivelantly bounded). Therefore operator

Tυ is continuous, and ||Tυ|| := sup {||Tυ(u)||R4 : ||u||R4 ≤ 1} < +∞ is the norm

of the bounded operator Tυ.

The eigenvalues of matrix Aυ are µ0 = 1 (double), µ1 = 1q
1−υ2

c2

(
1− υ

c

)
and

µ2 = 1q
1−υ2

c2

(
1 + υ

c

)
, i.e. µj ∈ R, j = 0, 1, 2. Also the matrix norm of Aυ is

‖Aυ‖∞:=max
{∑4

j=1 |aij| : 1 ≤ i ≤ 4
}

= (1+υ)c√
c2−υ2 < +∞.

The infinitesimal generator T of the one-parameter semi-module of class
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(C0) of Lorentz transformations has corresponding matrix

A := `im
h→0+

1

h
(Ah − I) = `im

h→0+

1

h




1q
1−h2

c2

− 1 0 0 −hq
1−h2

c2

0 0 0 0

0 0 0 0
−h

c2
q

1−h2

c2

0 0 1q
1−h2

c2

− 1




.

Calculating the limits by L’Hôspital’s rule we find A =




0 0 0 −1

0 0 0 0

0 0 0 0

− 1
c2

0 0 0




and A2 = A · A =




1
c2

0 0 0

0 0 0 0

0 0 0 0

0 0 0 1
c2


 .

Inductively we conclude Aκ =





1
cκ−1A, if κ is odd

1
cκ−2A2, if κ is even

(cf. [26]).

The eigenvalues of matrix A are λ0 = 0 (double), λ1 = −1
c

and λ2 = 1
c
.

Thus λj ∈ R, j = 0, 1, 2, and of A2 are ν0 = 0 (double) and ν1 = 1
c2

(double).

Also by elementary calculation we conferm thatA·(x, y, z, t)tr = T (x, y, z, t),

for all (x, y, z, t) ∈ R4.

3.1 Velocity Differential Evolution Equation

Let the differential evolution equation
(

d

dυ
−A

)
y(υ) = f(υ), (3.1)

where f is a given R4-valued function in [0, c) ⊆ R+.

Let the functions f, y : [0, c) → R4, with f(υ) := (f1(υ), f2(υ), f3(υ), f4(υ))tr

and y(υ) := (y1(υ), y2(υ), y3(υ), y4(υ))tr are sufficiently continuous, differen-

tiable and integrable respectively.

Firstly we consider the homogeneous differential equation

d

dυ
y(υ) = Ay(υ)
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⇔




ẏ1

ẏ2

ẏ3

ẏ4


 =




0 0 0 −1

0 0 0 0

0 0 0 0

− 1
c2

0 0 0







y1

y2

y3

y4


 ⇔





ẏ1 = −y4

ẏ2 = 0

ẏ3 = 0

ẏ4 = − 1
c2

y1

where for simplicity we have replace d
dυ

by the notation of a simple dot and we

have omit the argument υ.

From the second and third equation immediately we have y2 = ξ1 and

y3 = ξ2, with constants ξ1, ξ2 ∈ R.

From the fourth equation applying d
dυ

in both sides we get ÿ4 = − 1
c2

ẏ1.

Thus from the first equation we have ÿ4 − 1
c2

y4 = 0 which is a second order

homogeneous with constant coefficients. Calculating the characteristic poly-

nomial we find that e
1
c
υ and e−

1
c
υ are two linear independent solutions and

therefore y4 = ξ3e
− 1

c
υ + ξ4e

1
c
υ, with ξ3, ξ4 ∈ R. Then by the fourth equation

follows y1 = −c2ẏ4 and thus y1 = ξ3ce
− 1

c
υ − ξ4ce

1
c
υ.

Therefore,

yhom(υ) =




ξ3ce
− 1

c
υ − ξ4ce

1
c
υ

ξ1

ξ2

ξ3e
− 1

c
υ + ξ4e

1
c
υ


 = ξ1




0

1

0

0


+ξ2




0

0

1

0


+ξ3e

− 1
c
υ




c

0

0

1


+ξ4e

1
c
υ




−c

0

0

1


 ,

where ξ1, ξ2, ξ3, ξ4 ∈ R.

Now for the non-homogeneous equation we have

d

dυ
y(υ)−Ay(υ) = f(υ)

⇔




ẏ1

ẏ2

ẏ3

ẏ4


−




0 0 0 −1

0 0 0 0

0 0 0 0

− 1
c2

0 0 0







y1

y2

y3

y4


 =




f1

f2

f3

f4


 ⇔





ẏ1 + y4 = f1

ẏ2 = f2

ẏ3 = f3

ẏ4 + 1
c2

y1 = f4

Applying the well-known method of variation of parameters we find a spe-

cial solution of the above system and the general solution is given by

y(υ) = yhom(υ) + yspec(υ) = (y1(υ), y2(υ), y3(υ), y4(υ))tr

with

y1(υ) = ξ1ce
− 1

c
υ−ξ2ce

1
c
υ− 1

2c

∫ [
e−

1
c
υ

∫
e

1
c
υf1(υ)dυ − e

1
c
υ

∫
e−

1
c
υf1(υ)dυ

]
dυ
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−1

2

∫ [
e−

1
c
υ

∫
e

1
c
υf4(υ)dυ + e

1
c
υ

∫
e−

1
c
υf4(υ)dυ

]
dυ +

∫
f1(υ)dυ,

y2(υ) =

∫
f2(υ)dυ, y3(υ) =

∫
f3(υ)dυ,

y4(υ) = ξ1e
− 1

c
υ + ξ2e

1
c
υ +

1

2c

[
e−

1
c
υ

∫
e

1
c
υf1(υ)dυ − e

1
c
υ

∫
e−

1
c
υf1(υ)dυ

]

+
1

2

[
e−

1
c
υ

∫
e

1
c
υf4(υ)dυ + e

1
c
υ

∫
e−

1
c
υf4(υ)dυ

]
.

For the final form of the above expressions we have also apply integration

by parts.

Similarly we can solve the differential evolution equations d
dυ

y(υ) = A2y(υ)

and d
dυ

y(υ) = A2y(υ) + f(υ). In this case calculations are made easier and

we find yhom(υ) =




ξ1
c2

eυ

ξ2

ξ3

ξ4
c2

eυ


 and y(υ) =




e
1
c2

υ
(∫

e−
1
c2

υf1(υ)dυ + ξ1

)
∫

f2(υ)dυ∫
f3(υ)dυ

e
1
c2

υ
(∫

e−
1
c2

υf4(υ)dυ + ξ4

)




, with

constants ξ1, ξ2, ξ3, ξ4 ∈ R, respectively.

Hence we can solve the equation d
dυ

y(υ) = Aκy(υ) + f(υ), for all κ ∈ N.

If we concider x′, y′, z′, t′ as functions of υ and keep the initial variables

x, y, z, t fixed, then dx′
dυ

= − 1

1−υ2

c2

t′, dy′
dυ

= 0, dz′
dυ

= 0 and dt′
dυ

= −
1
c2

1−υ2

c2

x′. Setting

d
dζ

:=
(
1− υ2

c2

)
d
dυ

we deduce dx′
dζ

= −t′, dy′
dζ

= 0, dz′
dζ

= 0 and dt′
dζ

= − 1
c2

x′.

Thus, d
dζ




x′

y′

z′

t′


 =




0 0 0 −1

0 0 0 0

0 0 0 0

− 1
c2

0 0 0







x′

y′

z′

t′


, and therefore we have a physical

explonation for the homogeneus evolution equation coresponds to (3.1). In

particular, setting υ = c · sinϑ then dυ
dϑ

= c · cosϑ and from dυ
dζ

= 1 − υ2

c2

it follows `og
(

1+υ
c

1−υ
c

)
= 2

c
ζ + η, with constant η ∈ R. If we consider initial

value υ = υ0 at ζ = 0, then η = `og
(

1+
υ0
c

1−υ0
c

)
and therefore

1+υ
c

1−υ
c

= e
2
c
ζ
(

1+
υ0
c

1−υ0
c

)
.

Hence υ = c · tanh
(

1
c
ζ
)
, 0 ≤ υ < c. Also from equations dx′

dζ
= −t′ and

dt′
dζ

= − 1
c2

x′ we find the solutions x′(ζ) = A1sinh
(

1
c
ζ
)

+ A2cosh
(

1
c
ζ
)

and

t′(ζ) = −1
c

(
A1cosh

(
1
c
ζ
)

+ A2sinh
(

1
c
ζ
))

, with constants A1, A2 ∈ R. Since

for υ = 0 it is x = x′ and t = t′ we have A1 = −ct and A2 = x. Thus we find

the well-known pseudo-euclidean rotation x′(ζ) = −cxsinh
(

1
c
ζ
)

+ xcosh
(

1
c
ζ
)



Panagiotis N. Koumantos 11

and t′(ζ) = −1
c
xsinh

(
1
c
ζ
)

+ tcosh
(

1
c
ζ
)
; and finally cosh

(
1
c
ζ
)

= 1q
1−υ2

c2

and

sinh
(

1
c
ζ
)

=
υ
cq

1−υ2

c2

. Combining the last results inverse follows the Lorentz

transformation (see Landau and Lifshitz in [27]).

3.2 Time Differential Evolution Equation

In this section we shall deal the time differential evolution equation corre-

sponds to velocity differntial evolution equation (3.1).

Writing d
dυ

= d
dt

dt
dυ

and since t =
t′+ υ

c2
x′q

1−υ2

c2

we have dt
dυ

=
1
c2

1−υ2

c2

x. Therefore

d
dυ

=
1
c2

1−υ2

c2

x d
dt

.

Also from t =
t′+ υ

c2
x′q

1−υ2

c2

it follows (x′2 + c2t2) υ2 + 2c2x′t′υ + c4 (t′2 − t2) = 0.

The discriminant of the above quadratic equation with respect to υ is equal

to 4c4t2 [x′2 − c2 (t′2 − t2)] and since x′2 − c2t′2 = x2 − c2t2 we find that the

discriminant equals to 4c4t2x2 ≥ 0, for all t and for all x. Hence υ = c2(−x′t′±xt)
x′2+c2t2

.

Then, equation (3.1) becomes

(
d

dt
− c2 − ψ2(t)

x
A

)
y(ψ2(t)) =

c2 − ψ(t)

x
f(ψ(t))

with ψ(t) = c2−x′t′±xt
x2+c2t′2 a linear map with respect to t and A is the matrix of

the infinitesimal generator of the semi-module of Lorentz transforamtions.

Thus we shall study the differential equation

(
d

dt
− (λ + µφ2(t))A

)
y(φ(t)) = (λ + µφ2(t))f(φ(t))

with φ(t) a linear map.

Setting φ(t) = τ and since φ is linear it follows dφ(t)
dt

= τ̃ = const., and thus
d
dt

= τ̃ d
dτ

.

Hence (
d

dτ
− (a0 + b0τ

2)A
)

y(τ) = (a0 + b0τ
2)f(τ), (3.2)

where a0 = λ
τ̃
, b0 = µ

τ̃
are constants.

Then, if the functions f, y : R → R4, f(τ) := (f1(τ), f2(τ), f3(τ), f4(τ))tr

and y(τ) := (y1(τ), y2(τ), y3(τ), y4(τ))tr are sufficiently continuous, differen-
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tiable and integrable respectively, for the linear equation (3.2) we have




ẏ1

ẏ2

ẏ3

ẏ4


 +




0 0 0 (a0 + b0τ
2)

0 0 0 0

0 0 0 0
a0+b0τ2

c2
0 0 0







y1

y2

y3

y4


 = (a0 + b0τ

2)




f1

f2

f3

f4




⇔





ẏ1 + (a0 + b0τ
2)y4 = (a0 + b0τ

2)f1

ẏ2 = (a0 + b0τ
2)f2

ẏ3 = (a0 + b0τ
2)f3

ẏ4 + a0+b0τ2

c2
y1 = (a0 + b0τ

2)f4

where for simplicity we have replace d
dτ

by the notation of a simple dot and

we have omit the argument τ .

Applying d/dτ in both sides of the first equation and subtitution of y4 by

the first and of ẏ4 by the fourth equation yields

ÿ1 − b0

a0 + b0τ 2
ẏ1 − (a0 + b0τ

2)2

c2
y1 = (a0 + b0τ

2)ḟ1 − (a0 + b0τ
2)2f4 (3.3)

The above differential equation (3.3) with nonconstant coefficients can be

transformed into a differential equation with constant coefficients.

Indeed, for p(τ) = − 2b0
a0+b0τ2 and q(τ) = − (a0+b0τ2)2

c2
the quantity− q′(τ)+2p(τ)q(τ)

2
√
−q(τ)

is constant. Thus the homogeneus differential equation can be written in the

form d2y1

dξ
− y1 = 0 with ξ =

∫ √
−q(τ)dτ = a0

c
τ + b0

3c
τ 3.

Finally, the solution of the system is

y1(τ) =

{
ζ1 +

1

2c

∫
e−

a0
c

τ− b0
3c

τ3

[f ′1(τ)− (a0 + b0τ
2)f4(τ)]dτ

}
e

a0
c

τ+
b0
3c

τ3

+

{
ζ2 +

1

2c

∫
e

a0
c

τ+
b0
3c

τ3

[f ′1(τ)− (a0 + b0τ
2)f4(τ)]dτ

}
e−

a0
c

τ− b0
3c

τ3

y2(τ) =

∫
(a0 + b0τ

2)f2(τ)dτ, y3(τ) =

∫
(a0 + b0τ

2)f3(τ)dτ,

y4(τ) =

∫
(a0 + b0τ

2)

[
f4(τ)−

{
ζ1 +

1

2c

∫
e−

a0
c

τ− b0
3c

τ3

·[f ′1(τ)− (a0 + b0τ
2)f4(τ)]dτ

}
e

a0
c

τ+
b0
3c

τ3

+

{
ζ2 +

1

2c

∫
e

a0
c

τ+
b0
3c

τ3

·[f ′1(τ)− (a0 + b0τ
2)f4(τ)]dτ

}
e−

a0
c

τ− b0
3c

τ3

]
dτ
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with ζ1, ζ2 real constants, and we note that for the matrix A(τ) := (a0 +

b0τ
2) · A holds the commutative property A(τ1)A(τ2) = A(τ2)A(τ1), for all

τ1, τ2 and we have apply the method of variation of parameters.
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