Scheduling a Three-machine Flow-shop Problem with a Single Server and Equal Processing Times

Shi Ling ${ }^{1}$ and Chen Xue-guang ${ }^{2, *}$

Abstract

We consider the problem of three-machine flow-shop scheduling with a single server and equal processing times, we show that this problem is $N P$-hard in the strong sense and present an improved $Y-H$ algorithm for it with worst-case bound $4 / 3$.

Mathematics Subject Classification : 90B35
Keywords: three-machine , flow-shop, single server, complexity , $N P$-hardness

1 Introduction

In the three-machine flow-shop scheduling problem we study, the input instance consists of n jobs with a single server and equal processing times. Each job J_{j}

[^0]Article Info: Revised : June 27, 2011. Published online : October 31, 2011
requires three operations $O_{1 j}, O_{2, j}$ and $O_{3 j}(j=1,2, \ldots, n)$, which are performed on machine M_{1}, M_{2} and M_{3}, respectively. The processing times of job J_{j} on machine M_{i}, i.e., the duration of operation $O_{i, j}$, is $p_{i, j}(i=1,2,3)$. In this paper we will focus on equal processing times, that is $p_{i, j}=p$. For each job, the second operation cannot be started before the first operation is completed. A setup times $s_{i, j}$ is needed before the first job is processed on machine M_{i}. Each setup operation must be performed by the server, which can only perform one operation at a time. The objective is to compute a non-preemptive schedule of those jobs on m machines that minimize makespan. In the standard scheduling notation [2], the problem can be described as the $F 3, S 1\left|p_{i j}=p\right| C_{\text {max }}$ problem.

It is well known, S.M. Johnson [4], the $F 3\left|\mid C_{\max }\right.$ problem has a maximal polynomial solvable. P. Brucker [1] show that the $F 2, S 1\left|p_{i j}=p\right| C_{\text {max }}$ problem is $N P$-hard in the ordinary sense. In this paper, we will show that the $F 3, S 1\left|p_{i j}=p\right| C_{\max }$ problem is $N P$-hard in the strong sense.

The remainder of this paper is organized as follows. In section 2, we will discuss the complexity of the $F 3, S 1\left|p_{i j}=p\right| C_{\max }$ problem and prove that this problem is $N P$-hard in the strong sense. In section 3, we will present an improved $Y-H$ [5] algorithm and shown that the worst-case is $4 / 3$, the bound is tight.

2 Complexity of the $F 3, S 1\left|p_{i j}=p\right| C_{\text {max }}$ problem

In this section, we consider problem in which we have three machines M_{1}, M_{2}, M_{3} a single server M_{s} and n jobs J_{j} with processing times $p_{1, j}, p_{2, j}, p_{3, j}$ and server times $s_{1, j}, s_{2, j}, s_{3, j}$ on machine M_{1}, M_{2} and M_{3}, respectively.

Lemma 2.1 [6] Consider the $F 3, S 1\left|p_{i j}=p\right| C_{\text {max }}$ problem with processing times $p_{i, j}$ and server times $s_{i, j}$, where $i=1,2,3$ and $j=1,2, \ldots, n$. Then

$$
\begin{align*}
C(\sigma, \tau)=\max _{1 \leq k \leq n}\left\{\sum_{i \leq \sigma^{-1}(k)}\left(s_{1, \sigma(i)}+p_{1, \sigma(i)}\right)\right. & +\sum_{i \leq \tau^{-1}(k)}^{\pi^{-1}(j)}\left(s_{2, \tau(i)}+p_{2, \tau(i)}\right) \\
& \left.+\sum_{l \geq \pi^{-1}(j)}\left(s_{3, \pi(l)}+p_{3, \pi(l)}\right)\right\} \tag{2.1}
\end{align*}
$$

where $\sigma^{-1}(k), \tau^{-1}(k)$ and $\pi^{-1}(j)$ denote the positions of job k in sequence σ, τ, π, respectively.

Theorem 2.1 The $F 3, S 1\left|p_{i j}=p\right| C_{\max }$ problem is $N P$-hard in the strong sense.
Proof. We prove the $F 3, S 1\left|p_{i j}=p\right| C_{\text {max }}$ problem is $N P$-hard in the strong sense through a reduction from the 3 - Partition problem [3], which is known to be $N P$-hard in the strong sense, to the $F 3, S 1\left|p_{i j}=p\right| C_{\max }$ problem. The 3-Partition problem is then stated as:

3-Partition: Given a set of positive integers $X=\left\{x_{1}, x_{2}, \ldots, x_{3 r}\right\}$, and a positive integer b with:

$$
\begin{equation*}
\sum_{j=1}^{3 r} x_{j}=r b, \quad b / 4<x_{j}<b / 2, \quad \forall j=1,2, \ldots, r \tag{2.2}
\end{equation*}
$$

Decide whether there exists a partition of X into r disjoint 3-element subset

$$
\begin{equation*}
\left\{X_{1}, X_{2}, \ldots, X_{r}\right\} \text { such that } i=1,2, \ldots, r \tag{2.3}
\end{equation*}
$$

Given any instance of the 3 -Partition problem, we define the following instance of the $F 3, S 1\left|p_{i j}=p\right| C_{\max }$ problem with four types of jobs:
(1) P-job: $s_{1, j}=x_{j}, p_{1, j}=b, s_{2, j}=0, p_{2, j}=b, s_{3, j}=0, p_{3, j}=b \quad(j=1,2, \ldots, 3 r)$
(2) U-job: $s_{1, j}=0, p_{1, j}=b, s_{2, j}=2 b, p_{2, j}=b, s_{3, j}=2 b, p_{3, j}=b \quad(j=1,2, \ldots, r)$
(3) V-job: $s_{1, j}=b, p_{1, j}=b, s_{2, j}=0, p_{2, j}=b, s_{3, j}=0, p_{3, j}=b \quad(j=1,2, \ldots, r)$
(4) W-job: $s_{1, j}=0, p_{1, j}=b, s_{2, j}=0, p_{2, j}=b, s_{3, j}=0, p_{3, j}=b \quad(j=1,2, \ldots, r)$

The threshold $y=4 b r+10 b$ and the corresponding decision problem is: Is there a schedule S with makespan $C(S)$ not greater than $y=4 b r+10 b$?

Observe that all processing times are equal to b.To prove the theorem we show that in this constructed if the $F 3, S 1\left|p_{i j}=p\right| C_{\max }$ problem a schedule S_{0} satisfying

$$
C_{\max }\left(S_{0}\right) \leq y=4 b r+10 b
$$

exists if and only if the 3 -Partition problem has a solution.
Suppose that the 3 -Partition problem has a solution, and $X_{j}(j=1,2, \ldots, r)$ are the required subsets of set X. Notice that each set X_{j} contains precisely elements, since

$$
b / 4<x_{j}<b / 2
$$

and

$$
\sum_{j=1}^{3 m} x_{j}=r b, \quad \text { for all } j=1,2, \ldots, r
$$

Let σ denote a sequence of the elements of set X for which

$$
X_{j}=\{\sigma(3 j-2), \sigma(3 j-1), \sigma(3 j)\}
$$

for $j=1,2, \ldots, r$.
The desired schedule S_{0} exists and can be described as follows. No machine has intermediate idle time. Machine M_{1} process the P-jobs, U-jobs, V-jobs, and W-jobs in order of the sequence σ, i.e., in the sequence

$$
\sigma=\left(P_{1,1}, P_{1,2}, P_{1,3}, U_{1,1}, V_{1,1}, W_{1,1}, \ldots, P_{1,3 r-2}, P_{1,3 r-1}, P_{1,3 r}, U_{1, r}, V_{1, r}, W_{1, r}\right)
$$

While machine M_{2} process the P-jobs, U-jobs, V-jobs, and W-jobs in the order of sequence τ, i.e., in the sequence

$$
\tau=\left(U_{2,1}, P_{2,1}, P_{2,2}, P_{2,3}, V_{2,1}, W_{2,1}, \ldots, U_{2, r}, P_{2,3 r-2}, P_{2,3 r-1}, P_{2,3 r}, V_{2, r}, W_{2, r}\right)
$$

machine M_{3} process the P-jobs, U-jobs, V-jobs, and W-jobs in the order of sequence π, i.e., in the sequence

$$
\pi=\left(U_{3,1}, P_{3,1}, P_{3,2}, P_{3,3}, V_{3,1}, W_{3,1}, \ldots, U_{3, r}, P_{3,3 r-2}, P_{3,3 r-1}, P_{3,3 r}, V_{3, r}, W_{3, r}\right)
$$

as indicated in Figure 1.

Figure 1: Gantt chart for the $F 3, S 1\left|p_{i j}=p\right| C_{\max }$ problem

Then we define the sequence σ, τ and π shown in Figure 1. Obviously, these sequence σ, τ and π fulfills $C(\sigma, \tau, \pi) \leq y$.

Conversely, assume that the flow-shop scheduling problem has a solution σ, τ and π with $C(\sigma, \tau, \pi) \leq y$.

By setting

$$
\sigma(j)=j(j=1,2,3), \tau(j)=1, \pi(j)=1
$$

in (2.1), we get for all sequence σ, τ and π :

$$
\begin{aligned}
C(\sigma, \tau, \pi) \geq\left(s_{1,1}\right. & \left.+p_{1,1}+s_{1,2}+p_{1,2}+s_{1,3}+p_{1,3}\right) \\
& +U_{1,1}+U_{2,1}+\sum_{\lambda=1}^{n}\left(s_{3, \pi_{\lambda}}+p_{3, \pi_{\lambda}}\right)=4 r b+10 b=y .
\end{aligned}
$$

Thus, for the sequence σ, τ and π with

$$
C(\sigma, \tau, \pi)=y .
$$

We may conclude that:
(1) machine M_{1} process jobs in the interval $[0,4 r b+4 b]$, without idle times,
(2) machine M_{2} process jobs in the interval [$\left.3 b, 4 r b+7 b\right]$, without idle times,
(3) machine M_{3} process jobs in the interval $[6 b, 4 r b+10 b]$, without idle times,
(4) server S process jobs in the interval [$0,4 r b+4 b]$, without idle times.

Now, we will prove that the

$$
\sum_{i \in X_{1}}\left(s_{1, i}+p_{1, i}\right)=4 b .
$$

If $\sum_{i \in X_{1}}\left(s_{1, i}+p_{1, i}\right) \geq 4 b$, then U_{21}-job cannot start processing at time $4 b$, which contradicts (2). If $\sum_{i \in X_{1}}\left(s_{1, i}+p_{1, i}\right) \leq 4 b$, then there is idle time before machine M_{1} process job $U_{1,1}$, which contradicts (1). Thus, we have

$$
\sum_{i \in X_{1}}\left(s_{1, i}+p_{1, i}\right)=4 b .
$$

Since $p_{1,1}=p_{1,2}=p_{1,3}=b, s_{1, i}=x_{i}$, then

$$
\begin{aligned}
& \sum_{i \in X_{1}}\left(s_{1, i}+p_{1, i}\right)=\left(s_{1,1}+p_{1,1}+s_{1,2}+p_{1,2}+s_{1,3}+p_{1,3}\right)=3 b+\sum_{i \in X_{1}} x_{i}=4 b \\
& \sum_{i \in X_{1}} x_{i}=b
\end{aligned}
$$

The set X_{1} give a solution to the 3 -Partition problem.
Analogously, we show that the remaining sets $X_{2}, X_{3}, \ldots, X_{r}$ separated by the jobs $1,2, \ldots, r$ contain 3 -element and fulfill

$$
\sum_{j \in X_{j}} x_{j}=b, \quad \text { for } \quad j=1,2, \ldots, r .
$$

Thus, $X_{1}, X_{2}, \ldots, X_{r}$ define a solution of the 3-Partition problem.

3 Algorithm for the $F 3, S 1\left|p_{i j}=p\right| C_{\text {max }}$ problem

For the $F 3, S 1\left|p_{i j}=p\right| C_{\max }$ problem, we consider an improved $Y-H$ simple algorithm.

Algorithm 1

Step 1 If

$$
\begin{aligned}
& \min \left\{s_{1, i}+p_{1, i}, s_{2, j}+p_{2, j}\right\} \leq \min \left\{s_{1, j}+p_{1, j}, s_{2, i}+p_{2, i}\right\} \\
& \min \left\{s_{1, i}+p_{1, i}, s_{3, j}+p_{3, j}\right\} \leq \min \left\{s_{1, j}+p_{1, j} . s_{3, i}+p_{3, i}\right\} \\
& \min \left\{s_{2, i}+p_{2, i}, s_{3, j}+p_{3, j}\right\} \leq \min \left\{s_{2, j}+p_{2, j}, s_{3, i}+p_{3, i}\right\}
\end{aligned}
$$

Arrange job J_{i} before job J_{j}.
Step2 Repeat step1 until all jobs are scheduled.

Theorem 3.2 The $F 3, S 1\left|p_{i j}=p\right| C_{\text {max }}$ problem, let S_{0} be a schedule created by Algorithm 1, S^{*} be the optimal solution for the $F 3, S 1\left|p_{i j}=p\right| C_{\text {max }}$ problem, then

$$
C_{\max }\left(S^{0}\right) / C_{\max }\left(S^{*}\right) \leq 4 / 3 .
$$

The bound is tight.
Proof. For a schedule S, let $I_{i}(S)(i=1,2,3)$ denote the total idle times on machine M_{i}.

Considering the path composed of machine M_{1} operations of jobs $1,2, \ldots, r$, machine M_{2} operation of job r, and machine M_{3} operation of job r, we obtain that

$$
C_{\max }\left(S^{0}\right)=\sum_{i=1}^{r}\left(s_{1, i}+p_{1, i}\right)+I_{1}\left(S^{0}\right)+s_{2, r}+p_{2, r}+s_{3, r}+p_{3, r}
$$

Considering the path composed of machine M_{1} operation of job1, machine M_{2}
operations of jobs $1,2, \ldots, r$, and machine M_{3} operation of job r, we obtain that

$$
C_{\max }\left(S^{0}\right)=s_{1,1}+p_{1,1}+\sum_{i=1}^{r}\left(s_{2, i}+p_{2, i}\right)+I_{2}\left(S^{0}\right)+s_{3, r}+p_{3, r}
$$

Considering the path composed of machine M_{1} operation of job1, machine M_{2} operation of job1 and machine M_{3} operations of jobs $1,2, \ldots, r$, we obtain that

$$
\begin{gathered}
C_{\max }\left(S^{0}\right)=s_{1,1}+p_{1,1}+s_{2,1}+p_{2,1}+\sum_{i=1}^{r}\left(s_{3, i}+p_{3, i}\right)+I_{3}\left(S^{0}\right) \\
3 C_{\max }\left(S^{0}\right)=\sum_{i=1}^{r}\left(s_{1, i}+p_{1, i}\right)+I_{1}\left(S^{0}\right)+s_{2, r}+p_{2, r}+s_{3, r}+p_{3, r}+s_{1,1}+p_{1,1}+\sum_{i=1}^{r}\left(s_{2, i}+p_{2, i}\right) \\
\quad+I_{2}\left(S^{0}\right)+s_{3, r}+p_{3, r}+s_{1,1}+p_{1,1}+s_{2,1}+p_{2,1}+\sum_{i=1}^{r}\left(s_{3, i}+p_{3, i}\right)+I_{3}\left(S^{0}\right) \\
=\left(\sum_{i=1}^{r}\left(s_{1, i}+p_{1, i}\right)+I_{1}\left(S^{0}\right)\right)+\left(\sum_{i=1}^{r}\left(s_{2, i}+p_{2, i}\right)+I_{2}\left(S^{0}\right)+\left(\sum_{i=1}^{r}\left(s_{3, i}+p_{3, i}\right)+I_{3}\left(S^{0}\right)\right)\right. \\
\quad+\left(s_{1,1}+p_{1,1}+s_{1,1}+p_{1,1}+s_{2,1}+p_{2,1}+s_{2, r}+p_{2, r}+s_{3, r}+p_{3, r}\right) \\
\leq 4 C_{\max }\left(S^{*}\right)
\end{gathered}
$$

$$
C_{\max }\left(S^{0}\right) / C_{\max }\left(S^{*}\right) \leq 4 / 3 .
$$

To prove the bound is tight, introduce the following example as show in Figure 2 and Figure 3.
(1) $s_{1,1}=0, p_{1,1}=1, s_{2,1}=1, p_{1,2}=1, s_{3,1}=1, p_{1,3}=1$,
(2) $s_{1,2}=0, p_{2,1}=1, s_{2,2}=0, p_{2,2}=1, s_{3,2}=0, p_{3,2}=1$,
(3) $s_{1,3}=1, p_{1,3}=1, s_{2,3}=1, p_{2,3}=1, s_{3,3}=1, p_{3,3}=1$.

Figure 2: $C_{\max }\left(S^{*}\right) \quad C_{\max }\left(S^{*}\right)=6$

Figure 3: $\quad C_{\max }\left(S^{0}\right) \quad C_{\text {max }}\left(S^{0}\right)=8$

So we have

$$
C_{\max }\left(S^{0}\right) / C_{\max }\left(S^{*}\right)=8 / 6=4 / 3,
$$

the bound is tight.

References

[1] P. Brucker, S. Knust, G.Q. Wang, et al., Complexity of results for flow-shop problems with a single server [J], European J. Oper. Res., 165(2), (2005), 398-407.
[2] M.R. Garey, D.S. Johnson and R. Sethi, The complexity of flowshop and jobshop scheduling, Math. Oper. Res., 1(2), (1976), 117-129.
[3] P.C. Gilmore and R.E. Gomory, Sequencing a one-state variable machine: A solvable case of the traveling salesman problem [J], Operations Research, 12, (1996), 655-679.
[4] S.M. Johnson, Optimal two-and-three-stage production schedules with set-up times included [J], Naval Res. Quart., 1, (1995), 461-468.
[5] Yue Minyi and Han Jiye, On the sequencing problem with n jobs on m machines (I), Chinese Scinece, 5, (1975), 462-470.
[6] W.C.Yu, The two-machine flow shop problem with delays and the one machine total tardiness problem, Technische Universiteit Eindhoven, 1996.

[^0]: ${ }^{1}$ School of Science, Hubei University for Nationalities, Enshi 445000, China, e-mail: Shiling59@126.com
 ${ }^{2}$ School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China, e-mail: chengxueguang6011@msn.com

 * Corresponding author.

