Scheduling a Three-machine Flow-shop Problem with a Single Server and Equal Processing Times

Shi Ling¹ and Chen Xue-guang^{2,*}

Abstract

We consider the problem of three-machine flow-shop scheduling with a single server and equal processing times, we show that this problem is NP-hard in the strong sense and present an improved Y - H algorithm for it with worst-case bound 4/3.

Mathematics Subject Classification : 90B35

Keywords: three-machine , flow-shop , single server , complexity , NP -hardness

1 Introduction

In the three-machine flow-shop scheduling problem we study, the input instance consists of n jobs with a single server and equal processing times. Each job J_i

¹ School of Science, Hubei University for Nationalities, Enshi 445000, China, e-mail: Shiling59@126.com

² School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China, e-mail: chengxueguang6011@msn.com

^{*} Corresponding author.

Article Info: Revised : June 27, 2011. Published online : October 31, 2011

requires three operations $O_{1j}, O_{2,j}$ and O_{3j} (j = 1, 2, ..., n), which are performed on machine M_1, M_2 and M_3 , respectively. The processing times of job J_j on machine M_i , i.e., the duration of operation $O_{i,j}$, is $p_{i,j}$ (i = 1, 2, 3). In this paper we will focus on equal processing times, that is $p_{i,j} = p$. For each job, the second operation cannot be started before the first operation is completed. A setup times $s_{i,j}$ is needed before the first job is processed on machine M_i . Each setup operation must be performed by the server, which can only perform one operation at a time. The objective is to compute a non-preemptive schedule of those jobs on m machines that minimize makespan. In the standard scheduling notation [2], the problem can be described as the $F3, S1 | p_{ij} = p | C_{max}$ problem.

It is well known, S.M. Johnson [4], the $F3||C_{max}$ problem has a maximal polynomial solvable. P. Brucker [1] show that the $F2, S1|p_{ij} = p|C_{max}$ problem is *NP* -hard in the ordinary sense. In this paper, we will show that the $F3, S1|p_{ij} = p|C_{max}$ problem is *NP* -hard in the strong sense.

The remainder of this paper is organized as follows. In section 2, we will discuss the complexity of the $F3, S1|p_{ij} = p|C_{max}$ problem and prove that this problem is *NP*-hard in the strong sense. In section 3, we will present an improved *Y*-*H* [5] algorithm and shown that the worst-case is 4/3, the bound is tight.

2 Complexity of the $F3, S1|p_{ij} = p|C_{max}$ problem

In this section, we consider problem in which we have three machines M_1, M_2, M_3 a single server M_s and n jobs J_j with processing times $p_{1,j}, p_{2,j}, p_{3,j}$ and server times $s_{1,j}, s_{2,j}, s_{3,j}$ on machine M_1, M_2 and M_3 , respectively. **Lemma 2.1** [6] Consider the $F3, S1|p_{ij} = p|C_{max}$ problem with processing times $p_{i,j}$ and server times $s_{i,j}$, where i = 1,2,3 and j = 1,2,...,n. Then

$$C(\sigma,\tau) = \max_{1 \le k \le n} \{ \sum_{i \le \sigma^{-1}(k)} (s_{1,\sigma(i)} + p_{1,\sigma(i)}) + \sum_{i \le \tau^{-1}(k)}^{\pi^{-1}(j)} (s_{2,\tau(i)} + p_{2,\tau(i)}) + \sum_{l \ge \pi^{-1}(j)} (s_{3,\pi(l)} + p_{3,\pi(l)}) \}$$
(2.1)

where $\sigma^{-1}(k), \tau^{-1}(k)$ and $\pi^{-1}(j)$ denote the positions of job k in sequence σ, τ, π , respectively.

Theorem 2.1 The $F3, S1|p_{ij} = p|C_{max}$ problem is *NP*-hard in the strong sense. **Proof.** We prove the $F3, S1|p_{ij} = p|C_{max}$ problem is *NP* -hard in the strong sense through a reduction from the 3 – *Partition* problem [3], which is known to be *NP* -hard in the strong sense, to the $F3, S1|p_{ij} = p|C_{max}$ problem. The 3 – *Partition* problem is then stated as:

3-*Partition*: Given a set of positive integers $X = \{x_1, x_2, ..., x_{3r}\}$, and a positive integer b with:

$$\sum_{j=1}^{3r} x_j = rb, \quad b/4 < x_j < b/2, \quad \forall \ j = 1, 2, ..., r$$
(2.2)

Decide whether there exists a partition of X into r disjoint 3-element subset

$$\{X_1, X_2, ..., X_r\}$$
 such that $i = 1, 2, ..., r$ (2.3)

Given any instance of the 3-*Partition* problem, we define the following instance of the $F3, S1|p_{ij} = p|C_{max}$ problem with four types of jobs:

(1) *P*-job:
$$s_{1,j} = x_j$$
, $p_{1,j} = b$, $s_{2,j} = 0$, $p_{2,j} = b$, $s_{3,j} = 0$, $p_{3,j} = b$ $(j = 1, 2, ..., 3r)$
(2) *U*-job: $s_{1,j} = 0$, $p_{1,j} = b$, $s_{2,j} = 2b$, $p_{2,j} = b$, $s_{3,j} = 2b$, $p_{3,j} = b$ $(j = 1, 2, ..., r)$
(3) *V*-job: $s_{1,j} = b$, $p_{1,j} = b$, $s_{2,j} = 0$, $p_{2,j} = b$, $s_{3,j} = 0$, $p_{3,j} = b$ $(j = 1, 2, ..., r)$
(4) *W*-job: $s_{1,j} = 0$, $p_{1,j} = b$, $s_{2,j} = 0$, $p_{2,j} = b$, $s_{3,j} = 0$, $p_{3,j} = b$ $(j = 1, 2, ..., r)$

The threshold y = 4br + 10b and the corresponding decision problem is: Is there a schedule *S* with makespan *C*(*S*) not greater than y = 4br + 10b? Observe that all processing times are equal to *b*. To prove the theorem we show that in this constructed if the $F3, S1|p_{ij} = p|C_{max}$ problem a schedule S_0 satisfying

$$C_{\max}(S_0) \le y = 4br + 10b$$

exists if and only if the 3 - Partition problem has a solution.

Suppose that the 3-*Partition* problem has a solution, and X_j (j = 1, 2, ..., r) are the required subsets of set X. Notice that each set X_j contains precisely elements, since

$$b/4 < x_i < b/2$$
,

and

$$\sum_{j=1}^{3m} x_j = rb, \text{ for all } j = 1, 2, ..., r.$$

Let σ denote a sequence of the elements of set X for which

$$X_{j} = \{\sigma(3j-2), \sigma(3j-1), \sigma(3j)\},\$$

for j = 1, 2, ..., r.

The desired schedule S_0 exists and can be described as follows. No machine has intermediate idle time. Machine M_1 process the *P*-jobs, *U*-jobs, *V*-jobs, and *W*-jobs in order of the sequence σ , i.e., in the sequence

$$\sigma = (P_{1,1}, P_{1,2}, P_{1,3}, U_{1,1}, V_{1,1}, W_{1,1}, \dots, P_{1,3r-2}, P_{1,3r-1}, P_{1,3r}, U_{1,r}, V_{1,r}, W_{1,r})$$

While machine M_2 process the *P*-jobs, *U*-jobs, *V*-jobs, and *W*-jobs in the order of sequence τ , i.e., in the sequence

$$\tau = (U_{2,1}, P_{2,1}, P_{2,2}, P_{2,3}, V_{2,1}, W_{2,1}, \dots, U_{2,r}, P_{2,3r-2}, P_{2,3r-1}, P_{2,3r}, V_{2,r}, W_{2,r})$$

machine M_3 process the *P*-jobs, *U*-jobs, *V*-jobs, and *W*-jobs in the order of sequence π , i.e., in the sequence

Shi Ling and Cheng Xue-guang

$$\pi = (U_{3,1}, P_{3,1}, P_{3,2}, P_{3,3}, V_{3,1}, W_{3,1}, \dots, U_{3,r}, P_{3,3r-2}, P_{3,3r-1}, P_{3,3r}, V_{3,r}, W_{3,r})$$

as indicated in Figure 1.

<i>p</i> ₁₁ <i>p</i> ₁₂	p 13 U 11		V ₁₁	W ₁₁	p 14	p p	915	p 16	U12		<i>V</i> ₁₂	<i>W</i> ₁₂	
		U ₂₁	p ₂₁	<i>p</i> ₂₂	p ₂₃	<i>V</i> ₂₁	W ₂₁			U ₂₂	p ₂₄	p ₂₅	p ₂₆
					U13	p 31	<i>p</i> ₃₂	<i>p</i> ₃₃	<i>V</i> ₃₁	W ₃₁			U ₃₂
-				U			W]					

							U _{Ir}		V _{Ir}	W _{Ir}						
ſ	V ₂₂	W ₂₂						U _{2r}	p _{23r-2}	p _{23r-1}	p _{23r}	V _{2r}	W _{3r}			
	p ₃₄	p 35	p 36	V ₃₂	W ₃₂						U _{3r}	p _{33r-2}	p _{33r-1}	p _{33r}	V _{3r}	W _{3r}

Figure 1: Gantt chart for the $F3, S1 | p_{ij} = p | C_{max}$ problem

Then we define the sequence σ , τ and π shown in Figure 1. Obviously, these sequence σ , τ and π fulfills $C(\sigma, \tau, \pi) \leq y$.

Conversely, assume that the flow-shop scheduling problem has a solution σ , τ and π with $C(\sigma, \tau, \pi) \le y$.

By setting

$$\sigma(j) = j(j = 1, 2, 3), \tau(j) = 1, \pi(j) = 1$$

in (2.1), we get for all sequence σ , τ and π :

$$C(\sigma, \tau, \pi) \ge (s_{1,1} + p_{1,1} + s_{1,2} + p_{1,2} + s_{1,3} + p_{1,3})$$
$$+ U_{1,1} + U_{2,1} + \sum_{\lambda=1}^{n} (s_{3,\pi_{\lambda}} + p_{3,\pi_{\lambda}}) = 4rb + 10b = y$$

Thus, for the sequence σ , τ and π with

$$C(\sigma, \tau, \pi) = y$$
.

We may conclude that:

- (1) machine M_1 process jobs in the interval [0,4rb+4b], without idle times,
- (2) machine M_2 process jobs in the interval [3b, 4rb + 7b], without idle times,
- (3) machine M_3 process jobs in the interval [6b,4rb+10b], without idle times,
- (4) server S process jobs in the interval [0,4rb+4b], without idle times.

Now, we will prove that the

$$\sum_{i\in X_1} (s_{1,i} + p_{1,i}) = 4b.$$

If $\sum_{i \in X_1} (s_{1,i} + p_{1,i}) \ge 4b$, then U_{21} -job cannot start processing at time 4b, which

contradicts (2). If $\sum_{i \in X_1} (s_{1,i} + p_{1,i}) \le 4b$, then there is idle time before machine M_1

process job $U_{1,1}$, which contradicts (1). Thus, we have

$$\sum_{i \in X_1} (s_{1,i} + p_{1,i}) = 4b$$

Since $p_{1,1} = p_{1,2} = p_{1,3} = b$, $s_{1,i} = x_i$, then

$$\sum_{i \in X_1} (s_{1,i} + p_{1,i}) = (s_{1,1} + p_{1,1} + s_{1,2} + p_{1,2} + s_{1,3} + p_{1,3}) = 3b + \sum_{i \in X_1} x_i = 4b$$

$$\sum_{i \in X_1} x_i = b$$

$$\sum_{i\in X_1} x_i =$$

The set X_1 give a solution to the 3 - Partition problem.

Analogously, we show that the remaining sets $X_2, X_3, ..., X_r$ separated by the jobs 1,2,..., *r* contain 3-element and fulfill

$$\sum_{j \in X_j} x_j = b$$
, for $j = 1, 2, ..., r$.

Thus, $X_1, X_2, ..., X_r$ define a solution of the 3 – *Partition* problem.

3 Algorithm for the $F3, S1|p_{ij} = p|C_{max}$ **problem**

For the $F3, S1|p_{ij} = p|C_{max}$ problem, we consider an improved Y - H simple algorithm.

Algorithm 1

Step1 If

$$\begin{split} \min\{s_{1,i} + p_{1,i}, s_{2,j} + p_{2,j}\} &\leq \min\{s_{1,j} + p_{1,j}, s_{2,i} + p_{2,i}\}\\ \min\{s_{1,i} + p_{1,i}, s_{3,j} + p_{3,j}\} &\leq \min\{s_{1,j} + p_{1,j}, s_{3,i} + p_{3,i}\}\\ \min\{s_{2,i} + p_{2,i}, s_{3,j} + p_{3,j}\} &\leq \min\{s_{2,j} + p_{2,j}, s_{3,i} + p_{3,i}\}\\ \end{split}$$
Arrange job J_i before job J_j .

Step2 Repeat step1 until all jobs are scheduled.

Theorem 3.2 The $F3, S1|p_{ij} = p|C_{max}$ problem, let S_0 be a schedule created by Algorithm 1, S^* be the optimal solution for the $F3, S1|p_{ij} = p|C_{max}$ problem, then

$$C_{\max}(S^0)/C_{\max}(S^*) \le 4/3$$
.

The bound is tight.

Proof. For a schedule S, let $I_i(S)(i=1,2,3)$ denote the total idle times on machine M_i .

Considering the path composed of machine M_1 operations of jobs 1, 2, ..., r, machine M_2 operation of job r, and machine M_3 operation of job r, we obtain that

$$C_{\max}(S^{0}) = \sum_{i=1}^{r} (s_{1,i} + p_{1,i}) + I_{1}(S^{0}) + s_{2,r} + p_{2,r} + s_{3,r} + p_{3,r}$$

Considering the path composed of machine M_1 operation of job1, machine M_2

operations of jobs 1, 2, ..., r, and machine M_3 operation of job r, we obtain that

$$C_{\max}(S^0) = s_{1,1} + p_{1,1} + \sum_{i=1}^r (s_{2,i} + p_{2,i}) + I_2(S^0) + s_{3,r} + p_{3,r}$$

Considering the path composed of machine M_1 operation of job1, machine M_2 operation of job1 and machine M_3 operations of jobs 1,2,...,r, we obtain that

$$C_{\max}(S^{0}) = s_{1,1} + p_{1,1} + s_{2,1} + p_{2,1} + \sum_{i=1}^{r} (s_{3,i} + p_{3,i}) + I_{3}(S^{0})$$

$$3C_{\max}(S^{0}) = \sum_{i=1}^{r} (s_{1,i} + p_{1,i}) + I_{1}(S^{0}) + s_{2,r} + p_{2,r} + s_{3,r} + p_{3,r} + s_{1,1} + p_{1,1} + \sum_{i=1}^{r} (s_{2,i} + p_{2,i})$$

$$+ I_{2}(S^{0}) + s_{3,r} + p_{3,r} + s_{1,1} + p_{1,1} + s_{2,1} + p_{2,1} + \sum_{i=1}^{r} (s_{3,i} + p_{3,i}) + I_{3}(S^{0})$$

$$= (\sum_{i=1}^{r} (s_{1,i} + p_{1,i}) + I_{1}(S^{0})) + (\sum_{i=1}^{r} (s_{2,i} + p_{2,i}) + I_{2}(S^{0}) + (\sum_{i=1}^{r} (s_{3,i} + p_{3,i}) + I_{3}(S^{0}))$$

$$+ (s_{1,1} + p_{1,1} + s_{1,1} + p_{1,1} + s_{2,1} + p_{2,1} + s_{2,r} + p_{2,r} + s_{3,r} + p_{3,r})$$

$$\leq 4C_{\max}(S^{*})$$

$$C_{\max}(S^{0})/C_{\max}(S^{*}) \le 4/3.$$

To prove the bound is tight, introduce the following example as show in Figure 2 and Figure 3.

(1) $s_{1,1} = 0$, $p_{1,1} = 1$, $s_{2,1} = 1$, $p_{1,2} = 1$, $s_{3,1} = 1$, $p_{1,3} = 1$, (2) $s_{1,2} = 0$, $p_{2,1} = 1$, $s_{2,2} = 0$, $p_{2,2} = 1$, $s_{3,2} = 0$, $p_{3,2} = 1$, (3) $s_{1,3} = 1$, $p_{1,3} = 1$, $s_{2,3} = 1$, $p_{2,3} = 1$, $s_{3,3} = 1$, $p_{3,3} = 1$. $J_{1} \quad J_{2} \qquad J_{3} \qquad J_{3} \qquad J_{4} \qquad$

So we have

$$C_{\max}(S^{0})/C_{\max}(S^{*}) = 8/6 = 4/3$$
,

the bound is tight.

References

- P. Brucker, S. Knust, G.Q. Wang, et al., Complexity of results for flow-shop problems with a single server [J], *European J. Oper. Res.*, 165(2), (2005), 398-407.
- [2] M.R. Garey, D.S. Johnson and R. Sethi, The complexity of flowshop and jobshop scheduling, *Math. Oper. Res.*, 1(2), (1976), 117-129.
- P.C. Gilmore and R.E. Gomory, Sequencing a one-state variable machine: A solvable case of the traveling salesman problem [J], *Operations Research*, 12, (1996), 655-679.
- [4] S.M. Johnson, Optimal two-and-three-stage production schedules with set-up times included [J], *Naval Res. Quart.*, 1, (1995), 461-468.
- [5] Yue Minyi and Han Jiye, On the sequencing problem with n jobs on m machines (I), *Chinese Scinece*, 5, (1975), 462-470.
- [6] W.C.Yu, *The two-machine flow shop problem with delays and the one machine total tardiness problem*, Technische Universiteit Eindhoven, 1996.