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Abstract 

The environmental literature lacks the use of volatility based models for environmental 
stochastic processes. To overcome this deficiency, we use EGARCH, IGARCH, 
TGARCH, GJR-GARCH, NGARCH, AVGARCH and APARCH models for functional 
relationships of the pathogen indicators time series for recreational activates at beaches. 
We use generalized error, Student’s t, exponential, normal and normal inverse Gaussian 
distributions along with their skewed versions to model pathogen indicator time series. 
Generally speaking, turbidity, rainfall, dew point, river flow and cloud cover are 
significant variables. EGARCH, TGARCH, NAGARCH and AVGARCH are not 
radically different from each other in their output. However, TGARCH could be 
marginally better than the rest of models in capturing response of the pathogen indicator 
variable. Evidence supports some sign bias effect of the shocks. Dry weather and wet 
weather conditions of the same magnitude seem to have disproportionate effect on 
pathogens. Nyblom test shows that the estimated parameters are stable. 
 

Mathematics Subject Classification:  62H12, 62M10, 62P10, 62P12. 
Keywords:  TGARCH, GJR GARCH, EGARCH, APARCH, Generalized Error 
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1   Introduction 

Response variables are not only affected by exogenous variables but also by themselves 
from their past behavior.  On the basis of this theoretical underpinning, autoregressive 
models have been invented.  Box and Jenkins time series modeling is indispensable in 
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analyzing stochastic processes.  Autoregressive and moving average models are used 
frequently by many disciplines.  In environmental science, they have been rarely, if ever, 
used in reference to the autoregressive variance and the mean of the distribution. What are 
even rarer in use are the various forms of the specification of the error terms in the 
estimation of the autoregressive models.  Typically, normal distribution is used for the 
error terms of the stochastic equation; it is a mainstay of the environmental econometrics.  
The autoregressive framework is used in macroeconomics, such as for money supply, 
interest rate, price, inflation, exchange rates and gross domestic product. The 
autoregressive heteroscedastic modeling framework is used in financial economics, such 
as asset pricing, portfolio selection, option pricing, and hedging and risk management.  
There are a number of studies in the financial literature about modeling the return on 
stocks. Usually, in the financial market, upward movements in stock prices are followed 
by lower volatilities, while negative movements of the same magnitude are followed by 
much higher volatilities. Engle [1] developed the time varying variance model. Bollerslev 
[2] extended the model to include the ARMA structure.  Since then, a number of studies 
have adopted the autoregressive conditional heteroscedastic (ARCH) or a generalized 
autoregressive conditional heteroscedastic (GARCH) framework to explain volatility of 
the stock market.  Bad and good news both seem to increase the volatility of the stock 
market.  Large changes follow the large changes and smaller changes follow the small 
changes in the stock market.  Negative shocks have a much larger effect on stock pricing 
than positive shocks of the same magnitude. The negative shock has a long lasting impact, 
causing the stock market to take a long time to recover to the pre-shock level, after only a 
few days crash. This shows that symmetric distribution or normal distribution is not 
always a realistic assumption.   
Exponential distribution was used by Nelson [3] for the U.S. stock market returns.  Hsieh 
[4], Theodossiou [5] and Koutmos and Theodossiou [6] used it for foreign exchange rates.  
Akgirary et al [7] applied it for the distribution of prices of precious metal.  This shows 
that the assumption of normal distribution has been relaxed in modeling the effect of 
volatility.  Gallant, Hsieh and Tauchen [8] adopted the non-normal distribution for the 
financial analysis.  Jun Yu [9] and Siourounis [10] also preferred the non-normal 
distribution. McMillan, Speight and Ap Gwilyn [11] had symmetric and asymmetric 
densities for the United Kingdom stock market.  Fernandez and Steel [12] used the 
skewed Student’s t distribution.  Lambert and Laureen [13] used it in the GARCH 
framework.  Bollerslev [14] and Baillie and Bollerslev [15] used the Student’s t 
distribution to model the foreign exchange rate.  Harris, Kucukozmen and Yilmaz [16] 
used the skewed generalized Student’s t distribution to capture stylized facts (skewness 
and leverage effects) of daily returns.  Ding, Granger and Engle [17] use the asymmetric 
power autoregressive conditional heteroscedastic (APARCH) model using Standard and 
Poor’s data.   
Negative correlation between the shocks and the return is a salient feature of the stock 
market.  The sign and the magnitude of the shocks have asymmetric effects on returns.  
Therefore, Glosten, Jagannathan and Runkle (GJR) [18] introduced GARCH with 
differing effects of negative and positive shocks taking into account the leverage 
phenomenon.  Due to asymmetric effects, skewed distributions are used in modeling stock 
returns.  The above mentioned very brief review shows that financial market analysis has 
been extended to incorporate various distributions.  Fat-tail distributions are used to 
represent the stylized facts of the stock market.  Alberg, Shalit and Yosef [19] showed 
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that the GARCH models with fat-tail distributions are relatively better suited for 
analyzing returns on stocks.  
Fecal indicator bacteria (FIB) density can fluctuate rapidly.  Dry weather and wet 
weather of the same magnitudes may have disproportionate or unequal effects on 
pathogen indicators.  External shocks can dramatically influence the indicator bacteria.  
Therefore, models that focus on volatility might be useful for these time series.  Ali [20] 
pioneered the use of ARCH and GARCH models for issuing beach advisories for 
pathogen indicators, in the environmental literature.  However, he used the symmetric 
ARCH and GARCH models.  In this article, we relax the symmetry assumption.  We use 
the asymmetric and fat tail distributions because they have an advantage in representing 
the volatile time series (Alberg, Shalit and Yosef [19]).  In addition, the models such as 
EGARCH, GJR GARCH, AVGARCH, TGARCH and APARCH (asymmetric power 
autoregressive conditional heteroscedastic models), despite their application for time 
series, have not been used in the environmental literature.  As a result, this study includes 
them, bridging the gap in the literature.  Generalized Error Distribution for GARCH 
modeling has not been used at all by any study in the environmental literature.  Neither 
have Student-t, exponential or negative inverse Gaussian been used for modeling pathogen 
indicators with ARCH and GARCH models.  This study fills this vacuum in the 
environmental literature.  It incorporates the skewed versions of the distributions, such as
the skewed normal and skewed Student’s in modeling the pathogen indicator time series. 
In sum, we will use the most commonly used models in the financial literature. As was 
pointed out earlier, we consider EGARCH of Nelson [3], TGARCH of Zakoian [21], 
APARCH of Ding, Engle and Granger [17], GJR-GARCH of Glosten, Jagannathan 
and Runkle [18], AVGARCH of Taylor [22] and NGARCH of Higgins and Bera [23] for 
modeling the pathogen indicators.  We will use the various distributions to estimate these 
models, which might make this study rather unique in the environmental literature.  
The rest of the article is structured as follows.   The models are presented in section 2, 
while the data and site description are given in section 3.  Section 4 discusses output of the 
models and section 5 presents the conclusions.    
 
 
2   Models 

The autoregressive model with exogenous variable is expressed as: 
  
𝑦𝑡 = 𝜙 𝐿 𝑦𝑡 + 𝑥𝑡𝛽 + 𝜀𝑡 .                                                                                                   (1) 
 
with y and x dependent and exogenous variables respectively, and 𝜀 for the error term.     

 
2.1 IGARCH 

GARCH models apply both an autoregressive and moving average structure to the 
variance, 𝜎2.  The integrated GARCH (IGARCH) is specified as 
 
𝜀𝑡 = 𝜎𝑡𝑧𝑡 ;   𝜎2 = ω +  𝛼𝑖εt−i

2𝑝
𝑖=1 +  𝛽𝑗

𝑞
𝑗=1  𝜎2

𝑡−𝑗 .                                                       (2) 
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The sum of coefficients is restricted to 1.  The exogenous variable can be easily reflected 
in the various specifications of GARCH models just by addition of 𝑥𝑡𝛽 .   

 

2.2 EGARCH 

The exponential GARCH (EGARCH) may generally be specified as  
 
𝜀𝑡 = 𝜎𝑡𝑧𝑡 ;   𝑙𝑛𝜎2 = ω +  𝛼𝑖𝜀𝑡−𝑖

2𝑝
𝑖=1 +  𝛽𝑗

𝑞
𝑗=1  𝑙𝑛𝜎2

𝑡−𝑗 .                                               (3) 
 
This model differs from the GARCH variance structure because of the log of the variance.  
The following specification also has been used in the financial literature (Dhamija and 
Bhalla [24]). 
 

𝜀𝑡 = 𝜎𝑡𝑧𝑡 ;   𝑙𝑛𝜎2 = ω + 𝛼𝑖εt−i
2 +  𝜆𝑗

𝑞
𝑗=1 ln  𝜎2

𝑡−𝑗  +  𝛾𝑖
𝑝
𝑖=1  

|𝜀𝑡−i |

𝜎𝑡−𝑖
−  

2

𝜋
 .              (4) 

 

2.3 AVGARCH 

An asymmetric GARCH (AGARCH) is simply 
 
𝜀𝑡 = 𝜎𝑡𝑧𝑡 ;   𝜎2 = ω +  𝛼𝑖 |εt−i

− b|2𝑝
𝑖=1 +  𝛽𝑗

𝑞
𝑗=1  𝜎2

𝑡−𝑗 .                                             (5) 
 
The absolute value generalized autoregressive conditional heteroscedastic (AVGARCH) 
model is specified as  
 
𝜀𝑡 = 𝜎𝑡𝑧𝑡 ;   𝜎2 = ω +  𝛼𝑖(|ε

t−i
+ b| − c εt−i + b )2𝑝

𝑖=1 +  𝛽𝑗
𝑞
𝑗=1  𝜎2

𝑡−𝑗 .                   (6) 

 
2.4 GJR GARCH 

The GJR GARCH model is represented by the expression  
 
ζ t

2 = ω +  𝛼𝑖𝜀𝑡
2𝑝

𝑖=1 +  𝛽𝑗
𝑞
𝑗=1  𝜎2

𝑡−𝑗 +  𝛾𝑖𝐼𝑡−𝑖𝜀
2
𝑡−𝑖

𝑝
𝑖=1 .                                            (7) 

where:  

𝐼𝑡−𝑖 =  
1 𝑖𝑓 𝜀𝑡−𝑖 < 0
0 𝑖𝑓𝜀𝑡−𝑖 ≥ 0.

  

 

2.5 TGARCH 

The threshold GARCH (TGARCH) is similar to the GJR model, different only because of 
the standard deviation, instead of the variance, in the specification 
 

ζ t
2 = ω +  αi(|ε

t−i
| − γ

i
𝑝
𝑖=1 εt−i) +  𝛽𝑗

𝑞
𝑗=1  ζ 𝑡−𝑗 .                                                         (8) 
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2.6 GARCH-M                   

The GARCH in mean (GARCH-M) incorporates the effect of the volatility of the series 
on the mean.  The model is usually represented by the expression   
 
𝑥𝑡 = 𝜇 + 𝑘𝜎𝑡 + 𝜀𝑡 ;    𝜀𝑡 = 𝜎𝑡𝑧𝑡 ,  and  𝜎2 = ω +  𝛼𝑖𝜀

2𝑝
𝑖=1 +  𝛽𝑗

𝑞
𝑗=1  𝜎2

𝑡−𝑗 .                  (9) 
 

2.7 APARCH  

APARCH represents a general class of models that include both ARCH and GARCH 
models.  The Omnibus structure of this model is   
 
 𝜀𝑡 = 𝑧𝑡𝜎𝑡 ;   𝜎2 = ω +  𝛼𝑖(|𝜀𝑡−𝑖 | − 𝛾𝑖𝜀𝑡−𝑖)

𝛿𝑝
𝑖=1 +  𝛽𝑗

𝑞
𝑗=1  𝜎δ

𝑡−𝑗 .                               (10) 
 
Some of the models can be derived or estimated from this model.  For example,  
 
 TS-GARCH of Taylor and Stuart when 𝛿 = 1 and 𝛾𝑖 = 0, 
 GJR-GARCH when 𝛿 = 2, 
 T-ARCH of Zakoian when 𝛿 = 1, 
 Log ARCH when 𝛿 = 0, 
 N-ARCH of Higgins and Bera when 𝛿 = 0 and 𝛽𝑖 = 0. 

 
 
3  Site Description 

Huntington Beach is located in Ohio, United States.  It is a relatively scenic beach on 
Lake Erie.  It is located at latitude 41, 49111 and longitude -81.93472 near the city of Bay 
Village.  It is a public beach situated in an urban setting.  Wastewater is discharged east of 
the beach, into Lake Erie from the Rocky River treatment plant.  Stormwater runoff from 
the beach parking lot is directly discharged by two outfalls in the vicinity of the beach.  
Sources of FIB are not very well differentiated for the Huntington Beach.  

     
3.1 Data 

A number of meteorological and environmental variable time series are available for this 
beach.  These variables include bacterial densities of fecal indicators, wind speed, air 
temperature, atmospheric pressure, dew point, turbidity, Cuyahoga River flow, Rocky 
River flow, cloud cover, time of travel of flow and relevant area draining in the vicinity of 
the beach.  However, this study will not consider all of the variables because some of 
them such as time of travel and acreage along with the Rocky River flow were not found 
to have any explanatory power by an earlier study (Ali [20]).  Atmospheric pressure may 
not be all that relevant for the FIB densities, hence is not considered in this study.  For 
modeling FIB densities, scientific explanation or scientific rationale of some of the 
variables is presented by Boehm et al [25]. FIB time series spans from 2006 to 2008, with 
225 daily observations of swimming seasons to estimate the models.    
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4  Discussion of the Model Output  
Various distributions such as Generalized Error, Student’s t, normal, exponential and 
normal inverse Gaussian distribution are used for estimation of GARCH/ARCH models 
in this paper. We use skew normal, skew Student and skew Generalized Error 
distributions.  Generalized Error and Student and their skewed versions have additional 
shape parameters, which are changed in the estimation of models. Thus, it allows 
estimation of the various versions of the same model.  Although we are using various 
distributions, we will present results of the best fit only, ignoring the rest.  For estimation, 
we use the R software (see Klien [26], Ghalanos [27] and Wurtz, Chalabi and Luksan 
[28].      

 
4.1 TGARCH  
For the TGARCH specification, a Generalized Error Distribution with skew parameter is 
assumed.  The variables turbidity, rainfall, wind speed, temperature, dew point, and 
Cuyahoga River flow are included in the model estimation.  The coefficients of turbidity, 
rainfall, temperature, dew point and Cuyahoga river flow are significant, because p-value 
falls below the critical value.  The probability of the null hypothesis of the wind speed 
exceeds the threshold p-value (0.05). This shows that the coefficient of wind speed is 
statistically no different from zero. Similarly, alpha, the parameter in the variance 
equation, is no different from zero.  However, the coefficient representing the skewness 
turns out to be significant.   
We dropped wind speed from the equation. The coefficients of turbidity, rainfall, 
temperature, dew point and the river flow all remain significant. In addition, constant
reversed from insignificant to significant in value.  We do not find the wind speed 
to be relevant to the pathogen series. Therefore, we retain these variables in other models.  
Very interestingly, the variance equation is significant. Not only alpha but also beta is 
significant. Similarly, the coefficient for mean is significant. Moreover, the skew 
parameter of the distribution is significant. A skewed distribution seems to fit the data 
nicely.  The output of the model is presented in Table 1. 

 
4.2 Sign Bias Tests 

Engle and Ng [29] proposed negative sign test, positive sign bias test, and joint bias test 
for volatility of the process.  The negative shock is supposed to increase the volatility, 
while the positive shock is supposed to reduce the volatility.  The test involves the 
autoregressive specification estimation of the time series as 
 
𝑦𝑡 = 𝜔 + ϕ l yt + ut.                                                                                                      (11) 
 
The residuals from the estimation are used for the least square equation:   
 
𝑢𝑡

2 = 𝑐0 + 𝑐1𝑠
−
𝑡 + 𝑐2𝑠

−
𝑡−1𝑢𝑡−1 + 𝑐3𝑠

+
𝑡−1𝑢𝑡−1 + 𝜐𝑡 .                                                 (12) 

 

 
𝑠−1

𝑡 = 1 𝑖𝑓 𝑠𝑖𝑔𝑛 𝑢𝑡 = −1

𝑠−1
𝑡 = 0 𝑖𝑓 𝑠𝑖𝑔𝑛 𝑢𝑡 = +1

   and  𝑠+
𝑡 = 1 − 𝑠−𝑡 . 
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The coefficent 𝑐𝑖  (𝑖 = 1, 2, 3) is distributed asymmetrically with Student-t.  If the 
coefficient 𝑐𝑖  is significant, this means that the positive or negative error terms (external 
shocks), affect the variance differently to predict the response variable.  On the other 
hand, if the coefficient turns out to be insignificant, it means no bias due to the sign of the 
disturbances.   
The sign bias hypothesis is rejected at the 5 percent significance level, but it is accepted at 
the 10 percent significance level, because the p-value is 0.09.  The test statistic fails to 
reject the nullity of the negative sign and the joint effect hypothesis.  Likewise, positive 
sign bias is rejected at the 5 percent significance value, but it too is accepted at the 10 
percent significance level.  This shows that the sign bias test and the positive sign test 
yield similar results, providing some evidence of the bias.  This may suggest that the 
models that do not take into account bias, may not be able to represent the FIB time series 
adequately.  This could be deemed an important discovery of this analytical framework.            
The no-sign bias test failed to reject the no-sign bias effect.  The null is not rejected 
because p-value is 0.10.  Similarly, the positive sign bias tests indicate that the coefficient 
is no different from zero.  P-value fails to reject the null of no bias.  No negative sign-bias 
null is rejected at the 10 percent, but supported at the 5 percent significance level.  The 
critical value, 0.056, is almost at the border of the rejection limit.  This may show that 
there is a negative sign bias.  On the other hand, the test fails to reject the no-joint-effect 
null hypothesis, implying no combined effect of the sign and magnitude; p-value (0.17) 
supports nullity of the hypothesis.     

 
4.3 Nyblom Test 

To test the stability or constancy of the parameters we use the Nyblom test.  This test 
assesses the variance of the errors in the parameter.  If the parameter is a constant (i.e., no 
errors), then variance of the error term is zero.  If it is not a constant (related to the past 
values of the parameter) then the error term has variance.  The test statistic is based on 
this logic.  In the testing of stability, the test statistic generally does not fall in the 
rejection region.  In our hypothesis testing, the stability of the parameters is generally not 
rejected.  So our estimated parameters are stable (do not shift over time).   

 
4.4 TGARCH 

To compare with the above model, an alternative specification is used for FIB data.  This 
model consists of turbidity, rainfall, dew point, river flow, and cloud cover as the 
exogenous variables.  The distribution is the same as above.  The model output shows that 
the coefficients of all the variables are significant.  P-values are very low, rejecting the 
null hypotheses.  All the exogenous variables are positively related to the FIB density.    
In the variance equation, not only alpha but also beta is significant.  Similarly, parameter 
of shape is significant.  The joint biased test indicates significance at the 8 percent, not at 
the 5 percent critical p-value.  The test statistic for negative sign bias test fails to reject the 
no bias effect of the negative shocks because p-value is 0.35.  Similarly, no joint effect 
hypothesis is not rejected in the joint testing (p-value (0.28)).  Moreover, the test fails to 
reject the no positive sign hypothesis at 5 percent threshold level.  However, at the 10 
percent level the hypothesis is rejected.  P-value is 0.099, which is insignificantly lower 
than the 10 percent limit.  No bias is found at the 5 percent significance level.  If the 
bound is extended to 10 percent, then the bias parameter reverses in significance.   
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Table 1: TGARCH with GED with Shape Parameter 
Variables Coefficient Std. Error t-ratio p-value Nyblom 

test 
statistics 

mu -5.035 0.081 -62.509 0.000 0.082 
inmean 1.093 0.204 5.354 0.000 0.081 
mxreg1 0.954 0.0569 16.768 0.000 0.085 
mxreg2 0.065 0.011 5.874 0.000 0.075 
mxreg3 2.779 0.046 60.445 0.000 0.079 
mxreg4 0.179 0.044 4.056 0.000 0.094 
mxreg5 0.202 0.053 3.847 0.000 0.186 
omega 0.003 NA NA NA NA 
alpha 0.062 0.0256 2.421 0.015 0.244 
beta 0.928 0.019 48.132 0.000 0.158 
shape 1.608 0.259 6.213 0.000 0.088 

Information Criteria 
Akaike 1.150 Bayes 1.317 Shibata 1.146 
Hannan-Quinn 1.218  Log Likelihood   -118.388 
Sign Bias Test  t-value  Prob sig  
Sign Bias 
Negative Sign Bias 
Positive Sign Bias 
Joint Effect 

1.7062  0.089   
0.9443  0.346  
1.6581  0.099   
3.8079  0.283  

 
Dependent variable is log10 E. coli; mxreg1... mxreg5 indicate exogenous variables, 
turbidity, 24- hour rainfall, dew point, Cuyahoga River flow and cloud cover, respectively, 
in the log10 form.  Also note, Nyblom critical value is 2.96 at 5 percent. 
 

4.5 GJR-GARCH  
This GJR-GARCH differs from the above TGARCH version because it includes the 
skewed Generalized Error Distribution. TGARCH did not include the shape parameter.  
However, the results of the model are no different from the above TGARCH model in 
terms of number of significant exogenous variables.  Moreover, not only alpha and beta, 
but also skew and shape parameters are significant at the 5 percent critical value.   
Sign bias, negative sign bias, and joint effect of the sign and scale are no different from 
zero.  Moreover, the test statistic fails to reject the positive sign bias null of no effect at 
the 5 percent significance level.  If we relax the threshold bound from the 5 percent to 10 
percent probability, then the parameter reflecting the positive sign bias is significant 
because the p-value is 0.065.   
The skewed version of the model seems to fit the data very well.  The model output is 
presented in the Table 2.  
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Table 2:  GJR-GARCH with Skewed GED with Shape Parameter 
Variables Estimate Std. Error t value Pr(>|t|) Nyblom  

Statistic 
mu       -5.211     0.062  -84.655  0.000 0.038 
inmean    1.559     0.218    7.157  0.000  0.040 
mxreg1    0.974     0.051   18.951  0.000  0.036 
mxreg2    0.070     0.010    6.983  0.000 0.038 
mxreg4    0.139     0.025    5.563  0.000 0.037 
mxreg5    0.159     0.046    3.479  0.001 0.033 
omega     0.0004           NA   NA       NA   NA 
alpha    0.016     0.006    2.857  0.004 0.034 
gamma11 1.000     0.354    2.827  0.000  0.034 
beta     0.967     0.006  152.500  0.000 0.034 
skew      1.042     0.114    9.110  0.000 0.147 
shape     1.691     0.201    8.420  0.000 0.111 

Information Criteria 
Akaike        1.118 Bayes 1.315 Shibata 1.112 
Hannan-Quinn 1.198  Log Likelihood     -112.768 
Sign Bias Test  t-value                               Prob sig 
Sign Bias            
Negative Sign Bias   
Positive Sign Bias   
Joint Effect         

1.571   0.118      
0.739   0.461      
1.854   0.065     
4.0143   0.260      

 
Dependent variable is log10 E. coli; mxreg1... mxreg5 indicate exogenous variables, 
turbidity, 24- hour rainfall, dew point, Cuyahoga River flow and cloud cover, respectively, 
in the log10 form. Also note, Nyblom critical value is 2.96 at 5 percent. 
 

4.6 EGARCH (Skewed normal distribution) 

For comparison to the TGARCH and GJR-GARCH above models, a radically different 
specification is used for the FIB density data.  Instead of the Generalized Error 
Distribution, asymmetric normal distribution is used.  The same variables which are used 
in other models are used for this specification also. Had we used the different set then the 
comparison would have been difficult.  Turbidity, rainfall, dew point, and cloud cover are 
significant variables.  Surprisingly, however, river flow (mxreg4) is an insignificant 
variable.  Similarly, in the variance equation alpha is no different from zero.  The model 
output is presented in Table 3. 
The test does not support the negative sign hypothesis at the 5 percent significant level.  
Similarly, joint effect is not supported at this level of significance.  It is interesting that 
not only the sign-bias null of no effect but also the negative sign null of no negative sign 
effect are both rejected at 10 percent significant level.  However the testing fails to reject 
the nullity at 5 percent significance level.  P-value is 0.06 for sign bias and 0.088 for 
negative sign bias.  This seems to underscore the bias effect.   
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Table 3: EGARCH with Skewed Normal Distribution 
Variables Coefficient Std. Error t-ratio p-value Nyblom  

Statistic 
mu -4.848 0.864 -5.608 0.000 0.054 
inmean 1.593 0.356 4.479 0.000 0.059 
mxreg1 0.914 0.073 12.538 0.000 0.058 
mxreg2 0.069 0.012 5.708 0.000 0.051 
mxreg3 2.639 0.471 5.601 0.000 0.052 
mxreg4 0.151 0.086 1.766 0.077 0.052 
mxreg5 0.193 0.057 3.352 0.001 0.096 
omega 0.002 NA NA NA NA 
alpha 0.039 0.021 1.843 0.065 0.229 
beta 0.955 0.017 55.821 0.000 0.152 
skew 1.060 0.108 9.814 0.000 0.191 

Information Criteria 
Akaike 1.149 Bayes 1.316 Shibata 1.145 
Hannan-Quinn 1.217          Log Likelihood -118.281 

Sign Bias Test  t-value      Prob sig  
Sign Bias 
Negative Sign Bias 
Positive Sign Bias 
Joint Effect 

1.889  0.060   
1.233  0.219  
1.720  0.087   
4.625  0.201  

 
Dependent variable is log10 E. coli; mxreg1... mxreg5 indicate exogenous variables, 
turbidity, 24- hour rainfall, dew point, Cuyahoga River flow and cloud cover, respectively, 
in the log10 form.  Also note, Nyblom critical value is 2.96 at 5 percent. 
 
4.7 EGARCH (normal distribution) 

In the model specification, the skewed normal is replaced with a normal distribution 
making it a regular symmetric GARCH model.  The result of the model estimation differs 
from the EGARCH with the skewed normal distribution.  In contrast, all the exogenous 
variables are significant.   
The results of the variance equation are also different.  Like the skewed EGARCH alpha, 
EGARCH alpha is also insignificant.  Surprisingly, the sign bias test fails to reject the null 
hypotheses.   So this model does not show any sign bias.  The model output is presented 
in Table 4.   
 

 

 

 

 

 
 
 
 
 



67                                                                                                                          Ghulam Ali 

Table 4: EGARCH With Normal Distribution 
Variables Coefficient Std. Error t-ratio p-value Nyblom  

Statistic 
mu -4.749 0.863 -5.506 0.000 0.069 
inmean 1.103 0.259 4.264 0.000 0.065 
mxreg1 0.916 0.072 12.662 0.000 0.078 
mxreg2 0.068 0.012 5.726 0.000 0.069 
mxreg3 2.668 0.475 5.622 0.000 0.066 
mxreg4 0.168 0.086 1.964 0.050 0.079 
mxreg5 0.193 0.058 3.339 0.001 0.152 
omega 0.002 NA NA NA NA 
alpha 0.054 0.033 1.648 0.099 0.286 

Information Criteria 
Akaike 1.1495 Bayes 1.301 Shibata 1.146 
Hannan-Quinn 1.211          Log Likelihood -119.322 
Sign Bias Test  t-value  Prob sig  
Sign Bias 
Negative Sign Bias 
Positive Sign Bias 
Joint Effect 

1.529  0.128   
0.943  0.347  
1.555  0.121   
3.351  0.341  

 
Dependent variable is log10 E. coli; mxreg1... mxreg5 indicate exogenous variables, 
turbidity, 24- hour rainfall, dew point, Cuyahoga River flow and cloud cover, respectively, 
in the log10 form.  Also note, Nyblom critical value is 2.96 at 5 percent. 
 

4.8 IGARCH (normal) 

For comparison with other models, normal distribution, which is usually used in the 
literature, is used in the IGARCH model. The symmetry assumption is substituted for the 
asymmetry assumption for modeling the time series.  The symmetric GARCH model 
consists of the same variables which are used in the above model.  All the exogenous 
variables are found to be significant at the 5 percent significant level.  P-values are very 
very small as was the case in other models.  Beta of the variance specification is 
significant.  However, alpha of variance turns out to be no different from zero at 5 percent 
significance.   
Surprisingly, the test statistics for sign bias, negative sign, positive sign and joint effect 
fail to reject the null hypotheses.  The p-value reaches 0.13 for the sign bias coefficient, 
0.35 for negative sign, 0.12 for the positive sign bias and 0.34 for the joint effect 
coefficient.  This is in contrast to some of the asymmetric models.  We do not present this 
output to save space. 

 
4.9 TGARCH (normal) 

An alternative to the TGARCH with the Generalized Error Distribution, TGARCH with 
normal distribution is used. Shape and skew parameters are not estimated for this 
specification.  The output of the model shows that the coefficients of the exogenous 
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variables are significant.  P- values are extremely small for the coefficients.  All the 
variables are positively related to FIB densities.   
However, the sign bias tests show rather interesting results.  The test statistics for the sign 
bias shows that the coefficient is insignificant at the 5 percent significance level.  
However it is significant if we consider the 10 percent significance level because the p-
value is 0.07.  In contrast, negative sign p-value (0.48) supports the null of no negative 
sign bias.  Similarly, the no joint effect parameter turns out to be no different from zero, 
the p-value (0.11) shows insignificance.   However, in contrast, the test statistic confirms 
positive sign bias, since the p-value is just 0.02.  The t-ratio appears suspect, therefore we 
do not report the results of this model.                   

 
4.10 NAGARCH (normal) 

With the presence of the same exogenous variables, the nonlinear asymmetric 
autoregressive conditional heteroscedastic (NAGARCH) model is applied to the indicator 
bacterium density data.  NAGARCH appears similar to the TGARCH because of the 
normal distribution.  The result do not seems to be radically different from other models 
discussed above.  The output of the NAGARCH is presented in Table 5.  Turbidity, 
rainfall, dew point and cloud cover are significant variables.  Nevertheless, river flow 
turns out to be an insignificant variable, although it was expected to be an important 
variable for the indicator bacteria.  
Negative sign bias and the joint effect null hypotheses are not rejected by the bias tests. 
Sign bias and negative sign bias tests also fail to reject the null hypotheses, at a 5 percent 
significant level.  Nevertheless, the coefficients are significant at the 10 percent 
significance level.  Thus, there is some evidence that sign of the shocks play an important 
role in predicting the variable.    

Table 5: NAGARCH With Normal Distribution 
Variables Estimate   Std. Error   t value  Pr(>|t|) Nyblom  

Statistic  
mu       -4.925 0.798 -6.172 0.000 0.048 
inmean    1.376 0.204 6.742 0.000 0.050 
mxreg1    0.934 0.071 13.161 0.000 0.048 
mxreg2    0.070 0.012 5.938 0.000 0.047 
mxreg3    2.876 0.444 6.479 0.000 0.048 
mxreg4    0.072 0.069 1.049 0.294 0.048 
mxreg5    0.151 0.052 2.910 0.004 0.044 
omega     0.001 NA NA NA NA 
alpha    0.029 0.008 3.249 0.001 0.045 
gamma   1.000 0.483 2.072 0.038 0.044 
beta     0.937 0.027 34.741 0.000 0.045 

Information Criteria 
Akaike 1.112 Bayes 1.279 Shibata 1.108 
Hannan-Quinn 1.179          Log Likelihood -114.097 
Sign Bias Test  t-value      prob sig  
Sign Bias 
Negative Sign Bias 
Positive Sign Bias 
Joint Effect 

1.715  0.088  
0.915  0.361  
1.984  0.048  
4.800  0.187  
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Dependent variable is log10 E. coli; mxreg1... mxreg5 indicate exogenous variables, 
turbidity, 24- hour rainfall, dew point, Cuyahoga River flow and cloud cover, respectively, 
in the log10 form.  Also note, Nyblom critical value is 2.96 at 5%. 
We used the skewed version of this distribution also.  It was not found to be practical in 
parametric determination.    

4.11  TGARCH (student’s t) 

The above mentioned forms of the model specifications are not based on the Student’s t 
distribution.  For comparison with other models, this distribution is included here in the 
GARCH specification.  As in most of the models discussed above, the exogenous 
variables are significant under this specification.  However, neither alpha nor the shape 
parameters are different from zero; the p-values do not fall below the threshold level.       
No evidence was found for the sign bias using this model specification.  As a result we do 
not find any comparative advantage of this model on other models.  The model output is 
shown in Table 6.   
 

Table 6: TGARCH With Student’s t Distribution 
Variables        Estimate Std. Error t value Pr(>|t|) Nyblom  

Statistic 
mu      -4.949 0.870 -5.690 0.000 0.098 
inmean   1.102 0.287 3.845 0.000 0.097 
mxreg1   0.938 0.071 13.131 0.000 0.101 
mxreg2   0.066 0.012 5.553 0.000 0.091 
mxreg3   2.760 0.470 5.870 0.000 0.094 
mxreg4   0.171 0.082 2.075 0.038 0.110 
mxreg5   0.189 0.056 3.373 0.001 0.215 
omega    0.004 NA NA NA NA 
alpha   0.063 0.040 1.601 0.109 0.141 
beta    0.925 0.027 33.860 0.000 0.092 
shape    8.470 7.595 1.115 0.265 0.051 

Information Criteria 
Akaike        1.146 Bayes 1.313 Shibata 1.142 
Hannan-Quinn  1.214          Log Likelihood -117.940 
Sign Bias Test                     t-value  Prob sig  
Sign Bias            
Negative Sign Bias   
Positive Sign Bias   
Joint Effect      

1.3864  0.167  
0.796  0.427  
1.489  0.138  
2.881  0.410  

      
 
Dependent variable is log10 E. coli; mxreg1... mxreg5 indicate exogenous variables, 
turbidity, 24- hour rainfall, dew point, Cuyahoga River flow and cloud cover, 
respectively, in the log10 form.  Also note, Nyblom critical value is 2.96 at 5 percent. 
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4.12 AVGARCH  

AVGARCH is not different from TGARCH, GJR-GARCH and EGARCH in its output 
(Table 7) of the significant of the exogenous variables.  However, the coefficient 
gamma11 of the variance equations is not significant.  The sign bias test shows 
insignificance of the bias at 5 percent level.  However, the sign bias is almost significant 
because the p-value is just 0.06.  We do not present the result of the use of other 
distributions because they will crowd the paper causing confusion.      
 

Table 7: AVGARCH With Normal Distribution 
Variables          Estimate Std. Error t value Pr(>|t|) Nyblom  

Statistic 
mu       -3.280 1.005 -3.264 0.001 0.141 
inmean   -1.505 0.663 -2.269 0.023 0.124 
mxreg1    0.902 0.080 11.323 0.000 0.138 
mxreg2    0.066 0.012 5.438 0.000 0.098 
mxreg3    2.355 0.537 4.386 0.000 0.131 
mxreg4    0.236 0.094 2.505 0.012 0.143 
mxreg5    0.207 0.060 3.442 0.001 0.217 
omega     0.252 NA NA NA NA 
alpha    0.060 0.024 2.537 0.011 0.054 
gamma11   1.000 1.249 0.801 0.423 0.058 
gamma21   1.000 0.260 3.848 0.000 0.024 
beta     0.262 0.035 7.445 0.000 0.100 
                                               Information Criteria 
Akaike        1.142 Bayes 1.324 Shibata 1.136 
Hannan-Quinn 1.215         Log Likelihood -116.432 
Sign Bias Test  t-value  Prob sig  
Sign Bias            
Negative Sign Bias   
Positive Sign Bias   
Joint Effect         

1.911  0.057  
0.414  0.679  
1.302  0.194  
4.398  0.222  

Dependent variable is log10 E. coli; mxreg1... mxreg5 indicate exogenous variables, 
turbidity, 24- hour rainfall, dew point, Cuyahoga River flow and cloud cover, respectively, 
in the log10 form.  Also note, Nyblom critical value is 2.96 at 5 percent.
We also experimented with normal inverse Gaussian distribution version of the GARCH 
modeling. It was not found to be practical for the estimation of the parameters. 
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5  Conclusions 

Box and Jenkins’ framework is infrequently used in the environmental sciences.  It is 
almost essential for stochastic processes.  It is used for time series analysis because it 
incorporates the past behavior of the series to explain the generation of the time series 
given the exogenous or explanatory variables.  It is equally useful in modeling without the 
explanators.  Usually, symmetric distribution is used in the literature on environmental 
modeling.  What is not used is the asymmetric distributions in modeling.  It is extensively 
used in macroeconomics for money, interest rate, inflation, gross domestic product and 
foreign exchange rate.  It is frequently used in financial economics for explaining the 
behavior of the stock market.  However, it is rarely used in environmental economics.  
What is even rarer is the use of variance and mean structure in the explanation of the 
dependent variable.  This study fills this gap in the literature.  Ali [20] introduced the use 
of ARCH and GARCH models in the environmental literature.  However, he used the 
symmetric assumption in his approach.  This study relaxes this assumption.  Negative and 
positive shocks of the same magnitude may have disproportionate or unequal effect on 
FIB densities.  Dry condition shock and wet condition shock of the same magnitude may 
have differing magnitude of the impact on pathogen indicators.  Similarly the negative 
shocks could have longer-lasting effect than the positive shock.  Small fluctuations may 
follow the smaller fluctuations and larger fluctuation may follow the larger fluctuations.  
In other words, symmetric assumption may not be sensible.  In this paper, we relax the 
symmetric assumption.  In the literature on environmental economics, we did not find any 
study that had had the Generalized Error Distribution.  We bridge this gap in the 
literature.  Since Generalized Error Distribution has wider tails, it could very well be 
useful to modeling the behavior of the pathogen indicator series.  In addition, we use the 
Student’s t distribution.  We also investigated the use of other distributions.  In this 
article, we use the Generalized Error, normal and Student’s t and normal inverse Gaussian 
distributions.  We also use the skewed version of these distributions.  We used the 
TGARCH  GJR-GARCH, IGARCH EGARCH, APGARCH and AVGARCH models.  
We found in general that turbidity, rainfall, dew point, river flow and cloud cover are the 
significant variables.  The variance parameters are found to be significant in most of the 
model specifications.  Similarly, the mean structural parameter is significant.  We 
conclude that there is some evidence of sign bias, even though the model output differed 
in sign bias test results.  We applied Nyblom test for testing the stability of the estimated 
parameters.  We conclude that the value of the parameters did not shift during the 
sampling period, supporting the invariance assumption of the parameters.     
With wider tail distribution, the TGARCH model is reasonable for explaining the data.  
We did not find TGARCH with normal distribution to have comparative advantage over 
the TGARCH with Generalized Error Distribution in its explanatory power.  Similar to 
TGARCH, GJR-GARCH is found to provide a reasonable explanation of the pathogen 
indicator time series.  This is so because TGARCH and GJR-GARCH differ very little; 
they are competitive with each other.  We do not find comparative advantage of the 
AVGARCH over the TGARCH in establishing relationships, although it yielded nearly 
similar results.  EGARCH is not found to be better than the TGARCH in explaining the 
variations. We did not find relevance of the skewed normal inverse Gaussian distribution 
in GARCH modeling of the FIB density series.  Nor do we find the relevance of the 
skewed normal distribution in GARCH modeling.  Nevertheless, it is instructive to apply 
not only various distributions and but also various GARCH models for pathogen time 
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series to establish a relationship.  The variance and mean structures provide additional 
explanatory power to the volatility models in establishing functional relationships that 
would be useful for issuing beach advisories for recreational activities.     
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