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Abstract

In this paper inference for a log-linear Birnbaum-Saunders model un-
der Type I censoring is presented. Methods of inference based on max-
imum likelihood, including normal approximation, profile likelihood,
signed deviance statistics, as well as parametric bootstrap are presented.
Inference for both shape and regression parameters are studied, as well
as quantiles and survival probabilities. Results of a simulation study to
compare small sample accuracy of the various approaches are discussed

and two examples with real data are shown.
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1 Introduction

The Birnbaum-Saunders density is an attractive probability model derived
by [6] for modeling the number of cycles necessary to force a fatigue crack
to grow to a critical size that would produce fracture. An advantage of this
model, compared to alternative ones such as the log-normal or Weibull models,
is that it can be derived from basic characteristics of the fatigue process instead
of just being used on ad-hoc basis.

The same model has been studied by [13], who derived the density from
assumptions related to a different model and has been studied, among other
authors, by [21], [1], [15], [39], [29]. Recent work, which relates the Bisa
distribution to the physical crack propagation model, includes [41] and [2], the
latter including a new parameterization with direct physical interpretations.
[3] also apply a truncated version of the Bisa model to a problem in financial
risk modelling.

In this paper we consider a Birnbaum-Saunders log-linear regression model
under Type I censoring, and study the coverage of different confidence intervals
for combinations of sample size, percent of censoring and values of a shape
parameter.

The organization of the paper is as follows. In section 2 a summary of
related work is presented; then in section 3 the sinh normal distribution and
the log-linear model, under Type I censoring with the presence of covariates,
are introduced as well as some details regarding likelihood based inference.
Details about methods of constructing confidence intervals are given in sections
5 and 6 and results of a simulation study to investigate the coverage of the
different confidence intervals are reported in section 7. In section 8 two real

life data sets are analyzed using the methods discussed.

2 Related Work

[18] consider the problem of prediction under the BS(«, 3) distribution, as
do [15] from both frequentist and Bayesian perspectives. [1] discusses Bayesian
inference under the model BISA(«,y) and, by assuming complete samples and

non-informative priors, he applies the Laplace approximation to the integrals
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appearing in the Fisher Information Matrix and obtains analytical expressions
of the approximations to the entries of such a matrix. A repeated application
of the Laplace Approximation enables the same author to obtain analytical
approximations to the marginal posterior of each component in the joint pos-
terior, as well as of the predictive distribution of a future observation. [7]
discuss confidence interval estimation of quantiles of the Birnbaum Saunders
distribution, as well as the construction of tolerance limits. [39] presented a
Bayesian analysis of model (1) using a non-informative prior for o and +y, which
can be derived from the expected Fisher Information matrix, and analyze the
marginal posteriors of some functions of interest, assuming an informative
prior. To simulate from a conditional density, [39] implements Monte Carlo
Gibbs sampling and, to simulate from the conditional involved, the Metropolis
algorithm is applied to one component; the author addresses only the case
of complete observations. More recently, [27] proposed reduced bias modified
moment estimators of the two parameters of the Birnbaum-Saunders distribu-
tion and reported results from a Monte Carlo simulation study, comparing the
probability coverage of the discussed methods.

Much of the earlier work on inference for Bisa distributed data dealt with
complete samples. In relatively early work, [12] developed maximum likelihood
equations for censored BISA data for both Type 1 and 2 censored samples,
and pointed out the intimate connection between the Bisa distribution and
the inverse Gaussian. More recently, [8] has studied inferential techniques
for censored Bisa data via both frequentist and Bayesian approaches; he also
outlined residual quantities for graphical assessment of fit of Bisa regression
model and studied for the first time a mixed effects log-linear Bisa regression
model allowing for censored data; see, e.g., [17] which is based on [8]. There
has been much related work on censored Bisa data recently. Representative
papers include [34], [42], [28], [24], [16] and [31].

3 The Log-linear Model

Let 7" > 0 be an absolutely continuous random variable representing life
time. If @« > 0 and # > 0 are two constants, then the random variable

T follows the Birnbaum-Saunders density with parameters a and (3, written
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T ~ BISA(a,8),if Z =a ' (\/T/B—+/B/T) ~ N(0,1), where N(0, 1) stands
for the standard normal density.
If T'~ BISA(a, () then the density of T is given by

Ft) = 20t~ (Va+ JE)J% exp (é(\f— JB))

where a = t/f and b = (/t, and it can be seen that o and f are shape and
scale parameters respectively.

Let T~ BISA(«a, ) and consider the transformation Y = log T, then Y
follows the density

_ 92 _
cosh y— exp [ —— sinh? (u) , a>0, —oco < v < oo,
2 a? 2

(1)
which is known as the Sinh Normal distribution with parameters o and v, and
we write Y ~ SN(a, 7).

fly) =

2o

The density in (1) has been studied by [33], who derived some properties of
it. In particular, if Y ~ SN(a, ) then E(Y') = v, Var(Y") can not be obtained
as a closed form, « is a shape parameter, v is a location parameter and, for a
being a known constant, Z = a+Y ~ SN(«a,a+ 7). If v is known, then the
density belongs to the exponential family but if both parameters are unknown
this property does not hold. The transformation Y = log(7T’) is useful because
v is a location parameter and has practical interpretation in applications.

If one wishes to study the effect of covariates, say Xi,---,X,, on the
response Y, where Y is assumed to be such that Y ~ SN(«, ), then the ith
observation Y; can be modeled as

Yi=B+ 6 Xa++8pXipp+ei, 1=1,---,n (2)

where the disturbances ¢; are such that e; ~ SN(a,0),7=1,---,n. The model
in (2) is referred to as the log-linear Birnbaum-Saunders regression model and
was discussed by [33]. This model is particulary useful since it enables the
applied researcher to relate the stress level to the the observed fatigue and, by
using standard asymptotic likelihood results, approximate tests and confidence

intervals on parameters of it can readily be obtained.
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4 Maximum Likelihood Estimation

Assuming Type 1 censoring, denote by y; the log observed failure times and
L; the log observed censoring times. Then, assuming independent censoring,

the likelihood function corresponding to (1) can be written as
L(0) = H ! cosh [ £ exp 2 sinh? [ =7
. 2 2 a? 2

I [i-e (2o (257))]

where O and C denote the sets of observed and censored observations respec-

tively, L; represents the logarithm of the jth censoring time, ® represents the
cumulative distribution function of the standard normal density and 6 = (« )’
is a vector of parameters.

If one writes O; = (Y; —v)/2, C; = (Lj —v)/2 and D; = \/2sinh(C})/a,
the log-likelihood corresponding to (3) is

1(0) = %O: {log L\}% cosh <?J ; 7)} _ %smhz (yi 2— 7) } +

Sialo (o (7).

jec

and instead of solving the score equations

a’ «

B 4(2 4+ sinh(0;)) 1 exp ( — (2/a?)sinh*(C;)) /2/7 sinh(C
0= | “]*Z[ @2[1+ (1/2) (@f(D,) ~ 1]

i€O jec

and

B exp (— (2/a?) sinh*(C})) cosh(C}) cosh(O;) 1 .
57(9) - Z |: a2 [1 + (1/2) (erf(Dj) B 1)] :| - ZEZO |: 042— - itanh(OZ)]

jec
=0,

which are clearly non-linear in €, the maximum likelihood (ML) estimates of

can be obtained by optimizing /() using a Newton or Quasi-Newton method.




134 Inference in the Log-Linear Birnbaum-Saunders Model ...

On defining =; = (1 @;; -+ x;)", the likelihood and log-likelihood corre-

sponding to the log-linear model given in (2), are

_ 1 Yi — Vi 2 o (vi—
L(G)—gamcosh< 5 >exp[—§s1nh< 5 >]

Lo ()

e (2] -2 (559}

o[-0 (2 (252))]

respectively, where O, C, Y; and L; are defined as before, 3 = (8y 51 --- )
and v; = x;p.

and

Again, the ML estimates must be obtained by using numerical methods,
but since (2) is a linear model in the j;, least squares point estimates of 3;
could be easily obtained and used as starting values in the iterative procedure.

Since the ML estimators of & and 7 can not be obtained in a closed form and
their sampling distributions are impossible to obtain, approximate methods of
inference must be considered, see [9], [37] or [30] for example.

The Fisher information matrix, required to perform likelihood based ap-
proximate inference, can be estimated by the expected, I(#), or the observed,
J(0), information matrices. The observed and expected Fisher information

matrices are

and

where p is the dimension of the vector 6.
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It can be seen that, under the model in (2),the expectation yielding the
entry (k,r) of I(#) can not be obtained as a closed form. For example, given a

single observation, no covariates and setting v = f, the first entry of J(0) is

2 . 2 . .3
, 2 \/; sinh(C}) 4 \/;smh (C5) 12 (2 4 sinh(0y))

o n B
Ju=a 2sinh*(C;) 2sinh*(C}) ot
ad exp | —————= ad exp |—————

Q Q

where O;, C; and D; are defined as above; clearly, the expected value E(jy, ) can
only be estimated numerically using, for example, a quadrature rule, Monte
Carlo simulation or the Laplace approximation. On the contrary, J(f) can be
readily obtained and it is usually favored as compared to I(), see [19]. In this
paper all the inference based on asymptotic likelihood results is performed via
the observed information.

5 Confidence Intervals for Parameters

In this paper we consider approximate confidence intervals for o and f
based on the normal approximation, the profile likelihood, the parametric
bootstrap and the signed profiled likelihood.

Confidence intervals based on the normal approximation rely on the asymp-

totic normality of the ML estimates 53 and are defined as

CI(0;) = 0, £ z1_(35/2)5;, (7)

where 8]2- represents the asymptotic estimated variance of @\] and it can be
obtained from the observed or expected Fisher’s information matrix, J(#) and
1(0).

Let 6 = (601,6,)', where 6 is univariate, and define the scaled profile likeli-

hood function

LRy(0,) = arg-max M
” L(0)

?

and
G(0,) = —2log LR,(6,), (8)
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where 0 is the unrestricted ML estimate of 6. Since the limiting distribution
of G(6y) is x?, an approximate confidence region for #; can be obtained by

solving the nonlinear equation
G(01) = xi1 o =0, (9)

where X%,lfa is the (1 — a) quantile of the chi square distribution with one
degree of freedom.

Generally, the left hand side of (9) is concave and so it has two different
roots bracketing 0. Let #~ and Y be two such roots, where % < 6V, then an
approximate confidence interval for 6, with confidence coefficient 100(1—«)%,
1s

(07,67).

Again, since the equation in (8) is nonlinear in #;, a numerical method must
be used to solve (9). Facilities to implement this task are available in popular
software such as R [32], SAS’ IML [35], and MATHEMATICA [43], among
others.

Under the parametric bootstrap approach, see [20] for example, given the
ML estimates @ and 7 obtained from a random sample of size n, B boot-
strap random samples of size n are simulated from the density SN(@,7) and
from each the corresponding bootstrap estimates & and 7 are obtained,
k=1,---,B. By using the empirical distribution of @; and 7}, approximate
confidence intervals for o and 7, or functions of them, can be constructed.
Specifically, if an approximate 100(1 —¢§)% confidence interval for 6; is desired,
0 < § < 1, such an interval is formed by obtaining the ¢/2 and 1 — (§/2)
sample quantiles corresponding to the bootstrap estimates g;fk, k=1,---,B.
For large B, the empirical distribution should resemble the theoretical one.

As suggested by [4], if a more accurate inference is desired, the signed log
likelihood ratio statistic can be used. Let the be vector of parameters , of size
d, be partitioned as § = (0, 0,)’, where 6, is scalar and 6, of size d — 1. Then
the signed log-likelihood ratio statistic, [4], () say, is defined as

r(61) = sgu(y — 0:){2[1(01,05) — (61, 05(6,))]}'2
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where 51 and 52 are the unrestricted ML estimates of 6; and 6 respectively,
[ stands for the log-likelihood and 52(01) is the ML estimate of 65 conditional
on 6. The statistic 7(6;) is such that

r(6) 2 N(0,1). (10)

From (10), approximate confidence intervals and tests on components of 6 are

easily obtained.

6 Confidence Intervals for Quantiles

It is frequently of interest to study quantiles of the distribution and several
approaches are available to do inference about these quantities. As to the

density (1), the p-quantile, 0 < p < 1, is given by
Y, = 2sinh~! (%qu(p)) +. (11)

Let @ and 5 be the ML estimators of a and ~, then, by the invariance property
of the ML estimators, the ML estimate of Y}, is simply

£, = 2sinh™" (5071(p)) +7. (12)
and by the delta method, an estimate of the approximate variance of 1//; is
Gy, = 9'(0)J7'(0)g(0), (13)

where g(f) = 2sinh " ((/2) @ !(p)) + 7 and ¢'(8) = 0g(6)/0 is the gradient
vector of g.
Therefore an approximate 100(1 — 0)% confidence interval for Y, is

CIL(Y,) =Y, + 21 (525, (14)

An approximate confidence interval for Y, can also be obtained by using
the profile likelihood of Y,,. Under this approach, the scaled profile likelihood
of the p-quantile, Y, is

Pamzsyﬁzgl (15)
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where ¢, = Y, — 2 sinh™" ((a/2)®(p)). By the same arguments discussed
above, an approximate 100(1 — 0)% confidence interval for Y}, based on the

likelihood ratio, is obtained by solving the nonlinear equation
h(Yp) = Xis =0 (16)

where h(Y)) = —2log PL(Y,) and X3, _; is defined as above.

If the parametric bootstrap is to be used, then the approximate 100(1—4§)%
confidence interval for Y}, is constructed by obtaining the §/2 and 1 — (§/2)
sample quantiles of the empirical distribution of Y7, k =1,---, B, where Y*
is defined as .,

Y7 = 2sinh ! (%qu(p)) s (17)
& and 7, are the bootstrap ML estimates based on the k-th bootstrap replicate
drawn from SN(@,7).

7 Simulation Results

To study the coverage of the confidence intervals, for «v and ~y, based on the
normal approximation (NA), the parametric bootstrap (PB), the signed root
of the log-likelihood ratio statistic (SS) and the profile likelihood ratio (PLR),
a small simulation experiment was implemented.

The factors included in the experiment were: Method of construction, value
of the parameter «, sample size n, and percent of censoring P. The factors
and levels are shown in Table 1. The above values of o cover a range of
interest in practical applications and, since it is a location parameter, without
loss of generality v was set at 0. Since v is of most interest, and usually «
can be considered as a nuisance parameter, the SS and PLR methods were
implemented only for ~.

The number of simulations was 10,000 and to implement the parametric
bootstrap, 2000 samples were obtained for each estimate (@,7). The code for
the simulations was written in FORTRAN 90 and the IMSL libraries, [40],
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Table 1: Factors and levels in the Monte Carlo simulation study.

Factor Levels

o 1.0 0.5 0.25

P 20 40 60

n 20 30 50 70 100

Method NA PB SS PLR

were used. The results from the simulation experiment are shown in Tables 2,
3 and 4.

The results showed that, for all the methods, the greater the percent of
censored data the greater the departures of the observed coverages from the
nominal value. Overall, the coverage of the profile likelihood intervals is close
to the nominal value, as long as the percent of censoring did not exceed 60.
As to the confidence intervals for «, based on the normal approximation, they
performed satisfactorily for sample sizes no less than 100 and percent of cen-
soring of 40 or less; this kind of interval seems to perform better when the
parameter is v and the percent of censoring is about 40 or less.

When the parametric bootstrap was used, overall, the observed coverages
were closest to the nominal value if the percent of censoring was about 40 or
less and the sample size was at least 50. As to the signed root of the log-
likelihood ratio statistic, overall, its coverage is close to the nominal value only
if the percent of censoring is about 40 or less; however, overall, its coverage

was less than the observed for the remaining methods.
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Table 2: Estimated coverage for a and 7y for different methods.
Method

NA PB PLR SS

« n P « 0% « ¥ % %

0.25 20 60 0.8846 0.9334 0.9168 0.9182 0.9194 0.9288
40 0.8997 0.9570 0.9104 0.9384 0.9308 0.9312

20 0.9018 0.9300 0.9048 0.9204 0.9376 0.9414

30 60 0.8988 0.9438 0.9369 0.9328 0.9264 0.9128
40 0.9166 0.9500 0.9108 0.9380 0.9357 0.9432

20 0.9204 0.9352 0.9428 0.9240 0.9368 0.9412

50 60 0.9212 0.9408 0.9388 0.9228 0.9046 0.9098
40 0.9334 0.9512 0.9484 0.9527 0.9302 0.9410

20 0.9414 0.9500 0.9501 0.9482 0.9376 0.9412

70 60 0.9367 0.9484 0.9268 0.9262 0.8868 0.8910
40 0.9372 0.9536 0.9468 0.9382 0.9421 0.9390

20 09244 0.9484 0.9440 0.9500 0.9424 0.9526
100 60 0.9251 0.9393 0.9268 0.9404 0.8588 0.8722
40 0.9443 0.9258 0.9242 0.9424 0.9505 0.9418

20 0.9660 0.9700 0.9503 0.9463 0.9426 0.9484

8 Examples of Application

8.1 Example 1

The data in Table 5 above, taken from [23], were discussed by [26] and show
the number of thousand of miles at which different locomotive controls failed
in a life test involving 96 items. The test was terminated at 135000 miles and
there were 59 units not failing before this time, yielding Type I censored data.
The observed data, t;, are shown in Table 5 and the common censoring time
was 135 thousand of miles.

[23] analyzed these data under a Log-Normal model, so a reasonable model



A.F. Desmond, Carlos L. Cintora G. and Radhey S. Singh 141

Table 3: Estimated coverage for a and 7y for different methods.
Method

NA PB PLR SS

« n P « 0% « ¥ % %

0.50 20 60 0.8895 0.9253 0.8968 0.9228 0.9246 0.9264
40 0.8905 0.9523 0.9226 0.9288 0.9414 0.9348

20 0.9225 0.9360 0.9188 0.9327 0.9402 0.9488

30 60 0.9055 0.9335 0.9084 0.9486 0.9414 0.9227
40 0.9125 0.9568 0.9288 0.9466 0.9462 0.9473

20 0.9220 0.9515 0.9283 0.9166 0.9424 0.9462

50 60 0.9195 0.9445 0.9304 0.9182 0.9424 0.9083
40 0.9371 0.9625 0.9406 0.9457 0.9410 0.9426

20 0.9490 0.9402 0.9468 0.9425 0.9424 0.9444

70 60 0.9282 0.9484 0.9382 0.9308 0.9408 0.9012
40 0.9180 0.9485 0.9407 0.9344 0.9488 0.9401

20 09385 0.9455 0.9326 0.9448 0.9486 0.9505
100 60 0.9445 0.9412 0.9425 0.9343 0.9490 0.8839
40 0.9455 0.9415 0.9432 0.9642 0.9504 0.9433

20 0.9437 0.9531 0.9548 0.9324 0.9498 0.9494

could be the SN («, ) density.

On defining y; = log(t;), the optimization of the log-likelihood (4) yields the
ML estimates & = 0.771 and 7 = 5.137. The approximate estimated variances,
based on the observed information matrix J (@\), are 62 = 0.012443 and 72 =
0.01390 and the approximate 95% confidence interval for « is (0.571,1.015),

whereas for v such an interval is (4.905,5.368).

A plot of the normalized likelihood is shown in Figure 1 and it reveals that
the normal approximation could not be useful, since the likelihood is skewed.
A plot of the function G(v) — x7 95, Where G is defined in (8), is shown in
Figure 2 and from an inspection of it is clear that I(v, a(y)) = log LR,(7) is
quite asymmetric. The approximate confidence interval for 7, based on the
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Table 4: Estimated coverage for a and 7y for different methods.
Method

NA PB PLR SS

« n P « 0% « ¥ % %

1.00 20 60 0.8784 0.9222 0.9146 0.9288 0.9372 0.9260
40 0.8997 0.9495 0.9235 0.9301 0.9448 0.9370

20 0.9048 0.9384 0.9030 0.9340 0.9482 0.9386

30 60 0.8878 0.9310 0.8912 0.9413 0.9455 0.9313
40 0.9178 0.9568 0.9203 0.9398 0.9430 0.9400

20 0.9226 0.9477 0.9227 0.9441 0.9474 0.9380

50 60 0.9128 0.9398 0.9207 0.9373 0.9340 0.9324
40 0.9203 0.9492 0.9412 0.9428 0.9434 0.9330

20 0.9382 0.9449 0.9483 0.9418 0.9408 0.9460

70 60 0.9344 0.9502 0.9302 0.9302 0.9288 0.9218
40 0.9420 0.9554 0.9421 0.9364 0.9324 0.9438

20 09214 0.9505 0.9402 0.9406 0.9434 0.9446
100 60 0.9260 0.9476 0.9412 0.9426 0.9159 0.9164
40 0.9354 0.9531 0.9467 0.9601 0.9414 0.9332

20 0.9485 0.9578 0.9508 0.9412 0.9472 0.9460

likelihood ratio, is (4.940,5.427).

If the parametric bootstrap is used, the 95% approximate confidence in-
tervals for @ and v, based on 5000 simulations from the SN(a@,7) density, are
(0.573 , 1.036) and (4.936 , 5.415) respectively. Histograms of the empirical
distributions of & and 7 are shown in Figures 3 and 4. Both figures confirm
that the sample distributions of @ and 7 are slightly skewed, despite the rel-
atively large sample size, and suggest an alternative method to construct the

confidence intervals.
As to the survivor function, Lawless (1982) constructs an approximate

95% likelihood ratio based confidence interval for the survivor function at

t = 80, S(log(80)), under the a log-normal model. The confidence intervals
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Table 5: Number of thousand of miles at which different locomotive controls
failed in a life test.
225 375 46.0 486 51.5 53.0 545 575 66.5 68.0
69.5 765 770 785 8.0 815 820 83.0 84.0 915
93.5 102.5 107.0 108.5 112.5 113.5 116.0 117.0 1185 119.0
120.0 122.5 123.0 127.5 131.0 132.5 134.0

for S(log(80)), obtained via the normal approximation, profile likelihood ra-
tio and parametric bootstrap are (0.758768, 0.925195), ( 0.7623,0.9192) and
(0.780 , 0.901) respectively. The bootstrap distribution of the ML estimate of
S(log(80)) is shown in Figure 5.

As regards quantiles, the .1 quantile is often of interest in reliability prob-
lems, see [25]; approximate 95% confidence intervals for the 0.1 quantile, Yj 1,
obtained using the expression in (14) and the profile likelihood are (3.99,4.38)
and (3.961,4.362) respectively.

8.2 Example 2

Here we consider the log-linear model including covariates and the motorette
data found in [36] and analyzed by [38]. Ten motorettes were tested at each

of four different temperatures and the time to failure was recorded.

[38] analyzed these data assuming a linear regression model and distur-
bances normally distributed. Here we re-analyze such data but under the

log-linear Birnbaum-Saunders regression model
Yi= 0o+ biwi+e, i=1,-,n, (18)
where Y; = log(T;), ; = 1000/(273.2 + C°), ¢, ~ SN(,0), and i = 1,- - -, 40.

Optimizing the log-likelihood function in (6) which corresponds to model
(18) gives the following ML estimates: Bo = —14.137, 31 = 10.050 and @ =
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Figure 1: Normalized likelihood; data of example 1.

0.642. Since the inverse of the observed information matrix is

0.01549701 —0.07909928  0.0406174
J7H0) = | —0.07909928  5.80148913 —2.6773590
0.04061740 —2.67735904  1.2395089

then the asymptotic standard errors of the estimates are o5 = 0.124487,
830 = 2.408628 and 831 = 1.113332; hence, the approximate 95% confidence
intervals for «, 5y and (3, are (0.398, 0.885), (-18.857, -9.416) and (7.867,
12.232) respectively. Using the ML point estimates and the observed informa-
tion matrix, the normal approximation provides a 95% confidence interval for
the expected value of Y given that » = 130, i.e. E(Y | X = 130) = fty|z=130,
given by ( 1008.61,1576.11).

As to 1, a plot of G(B1) — X7 g5 is shown in Figure 6. From this, it can
be concluded that the form of the profile log likelihood of f, log LR,(51),
is not markedly skewed. The confidence interval for [3;, obtained by solving

the equation in (9), is (7.99,12.593). Plots of the profile log-likelihood and
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G

48 49 50 5.1 52 53 54 55

Figure 2: Plot of the function G(7) — x7 .95, data of example 1.

bootstrap distributions of o and 3y can also be readily obtained, but they are

omitted because of space reasons.

9 Discussion and conclusion

The objective of this paper was to study the coverage of confidence inter-
vals constructed using the normal approximation, parametric bootstrap, signed
deviance statistic and profile likelihood methods for different combinations of
sample size, percent of censoring and values of the shape parameter of the
SN (a,vy) model. The underlying model considered was a log-linear Birnbaum-
Saunders model, corresponding to the SN («,y) density, under Type I censor-

ing, and the cases of a single location parameter and the location depending



146 Inference in the Log-Linear Birnbaum-Saunders Model ...

800
J

Frequency
400
1

[ T T T T 1
0.4 0.6 0.8 1.0 1.2 1.4

Bootstrap estimate of alpha
Figure 3: Bootstrap distribution of @, data of example 1.

on covariates were addressed. Methods to construct approximate confidence
intervals, both for parameters and quantiles, were presented.

Monte Carlo simulation results showed that, overall and in terms of cover-
age, the confidence intervals based on the profile likelihood function perform
satisfactorily for most of the cases. The performance of the normal approxi-
mation, as dictated by theory, is affected by small sample sizes and, in general,
a heavy percent of censored observations, 60 or more, decreased the observed
coverages of the methods presented.

A simple application of the methods was shown on two real data sets.
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Frequency
600 800 1000 1200
1 1 1

400
|

o J
s -

I3

o

[ T T T 1
0.75 0.80 0.85 0.90 0.95

S(log(80))

Figure 5: Bootstrap distribution of S(log(80)), data of example 1.



148 Inference in the Log-Linear Birnbaum-Saunders Model ...

G(B1) — X505

Figure 6: Plot of the function G(f1) — x3 g5 for the data of example 2.
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