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Abstract 

Financial risk is the risk that value of the investment will change due to the moves 

in the market risk factors. Typical market risk factors are the stock price returns 

which are commonly assumed to be log normally distributed. In this paper we 

investigate using the Cauchy distribution under a simple transformation of 

dividing with a constant in financial risk assessment. We characterize this 

distribution by the first four moments: mean, variance, skewness and kurtosis, 

since these moments are use in many risk management applications. We use the 

simulated data to show the performance of model. 
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1  Introduction  

In probability theory, the "standard" Cauchy distribution is the probability 

distribution whose probability density function is              

)x1(

1
)x(f

2
  

for x real. This has median 0, and first and third quartiles respectively −1 and +1. 

Generally, a Cauchy distribution is any probability distribution belonging to the 

same location-scale family as this one. Thus, if X has a standard Cauchy 

distribution and μ is any real number and σ > 0, then  

Y μ σ  X  

has a Cauchy distribution whose median is μ and whose first and third quartiles 

are respectively μ σ  and μ σ . 

McCullagh's parameterization, introduced by [1], used the two parameters of the 

non-standardized distribution to form a single complex-valued parameter, 

specifically, the complex number   

θ μ σ  i , 

where i  is the imaginary unit. It also extends the usual range of scale parameter 

to include σ 0 . 

Although the parameter is notionally expressed using a complex number, the 

density is still a density over the real line. In particular the density can be written 

using the real-valued parameters μ and σ, which can each take positive or negative 

values, as 
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where the distribution is regarded as degenerate if σ = 0. An alternative form for 

the density can be written using the complex parameter θ μ σ  i  as 

2

θ
f(x)

π x θ





      

where θ σ  . 

To the question "Why introduce complex numbers when only real-valued random 

variables are involved?", McCullagh wrote: To this question I can give no better 

answer than to present the curious result that 

αY b
Y

cY d
 



~

αθ b

cθ d

 
  

C  

for all real numbers α , b, c and d. … the induced transformation on the parameter 

space has the same fractional linear form as the transformation on the sample 

space only if the parameter space is taken to be the complex plane. 

In other words, if the random variable Y has a Cauchy distribution with complex 

parameter θ, then the random variable Y * defined above has a Cauchy distribution 

with parameter  

(αθ b) /(cθ d)  . 

The distribution of the first exit point from the upper half-plane of a Brownian 

particle starting at θ is the Cauchy density on the real line with parameter θ." In 

addition, the complex-valued parameterization allows a simple relationship to be 

made between the Cauchy and the "circular Cauchy distribution". 

   Conventionally, Cauchy distribution is regarded as undefined. [2] made an 

attempt to solve the problem of non-definition of the Cauchy distribution through 

truncation. A renormalized pdf of the form 




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xtan2
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)x(f  

where the first and the third moments are zero was obtained. Since interest  is 

limited to the first four moments because of the basic statistical measures namely; 

mean, variance, skewness and kurtosis, [3] obtained a Cauchy distribution whose 
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first four moments are non-zero. 

The purpose of this article is to investigate this model as a tool to evaluate the 

uncertainty (risk) in future stock price returns. 

 

 

2  Mathematical Model 

Let tL  be a time–continuous stochastic process with independent and 

stationary increments; for every 0 t s , t sL L  is independent of sL  and its 

distribution depends only on the time increment t s  and not on t  or s . 

Examples are the Brownian motion which has continuous paths and the Poisson 

which process is a non–decreasing process and thus has paths of bounded 

variation over finite time horizons. A Brownian motion does not have monotone 

paths and in fact its paths are unbounded variation over finite time horizons are 

unbounded variation over finite time horizons. 

Except for Brownian motion, the paths of a levy process have jumps at 

random time points, and that is precisely what happens in a market of securities if 

it is of the view that the value is the price agreed last [4]. By the levy model 

imposition, the sizes of the jumps (whether positive or negative), have no relation 

to the price level reached, and the continuous time viewpoint forces the 

distribution of the increments t sL L  , to belongs to the infinitely divisible ones, 

example is the Cauchy distribution. 

If 1 2( )   nX X X  are independent and identically distributed random 

variable, each with a standard Cauchy distribution, then the sample mean 

1 2( ) /   nX X X n   has the same standard Cauchy distribution. This can be 

seen if one computes the characteristics function of the sample mean, 

                           
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Where x  is the sample mean. This example serves as a more generalized 

version of the central limit theorem that is the characteristic of all levy skew 

alpha –stable distribution, of which the Cauchy distribution is a special case. The 

location –scale family to which the Cauchy distribution belongs is closed under 

simple transformation of dividing with a constant [3]. The classical model 

proposed by [5] relates the stock price tS  to the levy process tL  through an 

exponential linear Brownian motion with drift 

               σ μ

0 0
t t tL B

tS S e S e   , 0t                      (2) 

Where 0 0S   is the initial price of stock, { : 0}tB B t   is a standard 

Brownian motion, σ 0  and μ . This choice of model offers the feature the 

stock prices have multiplicative stationarity and independence in the sense that 

any 0 u t    , 

                     t u t uS S S                       (3) 

Where t uS 
  is of uS  and has same distribution as t uS   [6]. 

The ratio of prices at t  and t   becomes 

               ( ) ln( ) ln( )t t t t tR S S L L       ,               (4)  

and we pass in a discrete time an ordinary random walk base on independent 

increments t t tX L L   , the distribution of which being our modeling tool. 

 In [7] the risk neutral moments of   - period of the ratio ( )tR   in (4) of the 

price of stocks at time t on variance ( , )VAR t  , skewness ( , )SKEW t    and 

kurtosis ( , )KURT t   was obtained as: 
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2( , ) ( , ) μ( , )r tVAR t e V t t     (5)
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(7)

where ( , )V t  , ( , )W t  , ( , )X t   and μ( , )t    are given by  
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3  The Cauchy Distribution Under a Simple Transformation 

A random variable Y follows a Cauchy distribution under a simple 

transformation of dividing through by a constant with parameter vector ( , )a b , in 

symbolic notation ~ ( , )X Cauchy a b , if its probability density function is; 

                      2 2

θ 1
; , , 1 1

π ( )t t

b
f S a b S

b s a

 
     

            (11) 

where θ is the stabilization term given as [3]; 
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1

π
θ

1
2 tan ( )

a
b

b





 
(12)

The pdf (11) can therefore be written as  

  2 2
1

1 1
; , , 1 1 , 1 , 0

1 ( )
2 tan

t tf S a b S a b
a b s a

b


 
            

 

 
(13) 

Note that a  and b  are ordinary parameters of location and scales. 

Under this transformation, the variance s  is obtained by 

1 0 1( ,..., , , ,... )r q
t

m m

x x x x xx
S

x x
    

(14)

by letting 

               0max ,..., ,..., , , : ,m r qx x x x x R r x q r q R      . 

R is the real space without the points,   and   [8, Ch. 3 and Ch.5.], X  is a 

Cauchy random variable. 

The characteristic function of the pdf is given by 

     
2 2

1

θ 1 θ 1
( )

1π ( ) π
2 tan

ibs ias bs ias bsy e e e
ab s a
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 
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(15)

 

1(a)      1(b)              
Figure 1:  ( , )a b  shows Cauchy densities under transformation for different 
parameter  sets.  
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   Suppose 1y  and 2y  are independent and identically distributed as transformed 

Cauchy variables as 

 1 12
1

1
;0,1 , 1 1

1
f S k S
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 
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and 

 2 22
2

1
;0,1 , 1 1

1
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     

                             

where 
1

1

tan 1
k  . Let 1 2 2 1z s s s z s      then by the convolution theorem 

in [9], we have 
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Hence the probability density function of Z  is
2

2
( ;0,1)

4

k
f z

z



. This suggests 

the general form for sum of n  Cauchy variables under transformation 
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A nB Z A
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

 
           

 

 
(16)

with 1 2 nA a a a     , 1 2 nB b b b     , 1 2 nZ s s s    and 

1,2,n   The sample path of the independent sum of the normalized stock price 

returns is shown in Figure 2 using (16). 

The first four moments of this pdf are obtained [3] as 
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and  
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(20)

From which we obtain the expression for the skewness and kurtosis as: 
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2 23
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with 
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Theorem 1. Suppose that random variable y  is Cauchy ( , )a b  distributed with 

mean and variance a  and b  respectively. Then the parameters a  and b  are 

given by; 

1

(1 )( )
n

i
i

b a s a


    
(23)

from which we have 

2 2

1

( 1) ( 1) 4( )
n

i i i
i

a s s s b


       
(24)

Proof: We apply the maximum likelihood (MLE) estimation on the pdf (13) to 

maximize log-likelihood function 

1 2 2

1

1 1
log tan log ( ) 

2

n

i
i

a
b n b s a

b



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  

(25)

and we get the MLE for b  and then a  as in (23) and (24). 
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Figure 2: A sample path of the independent sum of the normalized stock price      

  returns; 2 2
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n
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
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The Cauchy distribution appears as the opposite limit as 0a   for the 

inverse Gaussian distribution; 

1.5
( , , , , ) ~ exp( )

a
NIG x a k x x x

  
 

    

when 0x  . In practice therefore, given sample data, we have the central 

moments of a transformed Cauchy distributed random variable ~ ( , )X Cauchy a b  

as [10];  

1 2 2

3 15
, , , 3

a a
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It is easy to see that 
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,
m

b a b m
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where  

                   1
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1 4
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mm
     

One can also attempt to estimate a  by solving for 1 1
tan

a

b
  
 
 

 in (17) and (19) 

and equating the results using 2 (1 )( )b a s a   . 

Figure 2 shows the Cauchy densities under transformation of dividing with a 

constant for different parameter sets, obtained by using simulated data. Figure 3 

below is the log stock price returns with the Cauchy Density Function under 

Transformation, with simulated data. 

 

 

                   

         

 

 

 

 

 

 

 
   Figure 3 : Log Stock Price Returns with the Cauchy Density Function  
           under Transformation 
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4    Risk Measure with Cauchy Distribution Under a Simple 

Transformation 

We consider herein a kind of distortion risk measure for a random variable 

( )S y  with distortion function given by 

                                     
0

( ) ( ( ))y g S y dy


                           (26)             

where ( ( ))g S y  is the Cauchy distribution under transformation. That is  

           
( )

2 2
1 0

1 1
[ ( )] ( , , ( )) ( ( ))

1 ( )
2 tan

S y

cg S y Cauchy a b S y dy F S y
a b y a

b

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   

 
 

   (27)  

Given 0 1a  , the ( )aS y , determined by ( ) 1 ( )a aF S F S a    and denote by 

(1 )a SV R a  is called the value at risk aV R  with a degree of confidence 1 a . 

The conditional expectation of ( )S y  given by aS S , denoted by 

( ) (( | ))S a aTCE S E S S S   is called the tail conditional expectation TCE  of  S  

at a aV RS . 

   Using distorted probabilities, it is possible to define a distortion ( )vg   that will 

produce the traditional aV R  measure, aV  as the risk measure 

                      

1, if 1 1
[ ( )]

0, if 0 1

a y
g v y

y a

  
    

 
          (28)

So that the risk measure is 

                   
0 0

[ ( )] [ ( )]
aV

av y g v y dy dy V


     
          (29)

where aV  is 1( )SF y . The tail conditional expectation ( )TCE  or tail- aV R is 

defined for smooth distortion functions, given the parameter a , 0 1a  , as: 

                

1(( | ( )))a STCE E S S F a 

 

           (30)
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Where 1
SF   is the inverse distortion function of the variable S . It is well known 

that the TCE  can also be expressed in terms of a distortion risk measure as 

follows: 

                 

1, if 1 1
( )

, if 0 1
1

c

a y
g y y

y a
a

  
 

   

 

          (31)

 

Definition 1.  

Let 0( , , ( ) , )t tF F P  be a filtered probability  space. An adapted cadlag 

R-valued process. 0{ ( )}tX X t   with (0) 0x   is a Cauchy –levy process under 

transformation if x(t) has independent and stationary increment distributed as 

Cauchy (; , )a b . 

 Now we choose to θ  such that the discounted price process   

{exp( ( ) ) , 0}tr q t s t    

is marginal ie 

                          θ
0 exp( ( ) ) [ ]ts r q t E s                             (32) 

where expectation is taken with respect to the law with density  (θ) ( )tf x , q  the 

rate of yield of compound dividends per annum and r  the interest rate.  

Let 1( ) [exp( )]u E u i X    denote the characteristics functions of 1X . Then 

from (32) it can be shown that in order to let the discounted price process be a 

Martingale, we need to have [11]; 

                               
( (θ 1))

exp( )
( θ)

i
r q

  
 

 
                          (33) 

First we note that in the Black-Scholes world the historical measure of the log 

returns over a period of length 1 follows a normal 2 21
μ , σ

2
r

  
 

 law and this in 

this case  
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2

2 21
( ) exp (μ σ ) σ

2 2

u
x iu

 
    

 
. 

So that (33) becomes 

2 21 1
μ σ (2θ 1)

2 2
r q r      

or  

2
θ

σ

r q u  
 . 

The solution of this equation θ  say, gives us the Esscher transform martingale 

measure through the density time 
*θ ( )tf x .  

    Now we choose θ such that the discounted price present 

{exp( ( ) ) , 0}tr q t s t     

is a martingale, i.e;  

                        θ
0 exp( ( ) ) [ ]ts r q t E s                            (34) 

where expectation is taken with respect to the law with density 
*θ ( )tf x .  

Let ( ) [exp( )]ir E u i X   denote the characteristic formation of iX . Then from 

(34) it can be shown that in order to let the discounted price process be a 

martingale, we need to (33). 

where expectation is taken with respect to the law with density 
*θ ( )tf x . 

Pricing through the characteristic function using (15) and applying (33), we have 

                                       (θ 1)   r q a b  

or 

                                      θ   


r q a b

b
. 

 

5  Conclusion 
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Let tS  be the exponential Cauchy-Levy (under transformation) price process 

defined in (2) with parameter [ , ]a b . One possible arbitrage-free price of a 

European –type contingent pay-off ( )tf S  at time t is 

       0 1 2( , ) exp( ) ( ) exp( ) ( )C k t qt S Cauchy d K rt Cauchy d     

Where 

0
1 log

S r q a b
d

K b
     

 
, 

0
2 log

S r q a b
d

K b
     

 
. 
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