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Abstract

In this paper, by using contraction mapping principle and Kras-
noselskii’s fixed theorem, we study the existence results of solution to
the integral boundary value problem(BVP),

Dαu(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u(1) = λ

∫ 1

0
u(s)ds,

where 2 < α ≤ 3 is a real number, Dα
0+ is the standard Riemann-

Liouville differentiation, and f : [0, 1] × X → X is continuous, and
λ ∈ R is such that λ 6= α. Here, (X, ‖ · ‖) is a Banach space.
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1 Introduction

Fractional differential equations have gained considerable importance due

to their application in various sciences, such as physics, mechanics, chem-

istry, engineering, etc. On this kind of equations the derivatives of fractional

order [1–3] are involved. The interest of the study of fractional-order differen-

tial equations lies in the fact that fractional-order models are more accurate

than integer-order models,that is, there are more degrees of freedom in the

fractional-order models. Furthermore, fractional derivatives provide an excel-

lent instrument for the description of memory and hereditary properties of

various materials and processes due to the existence of a ”memory” term in a

model. This memory term insures the history and its impact to the present

and future, see[4]. In consequence, the subject of fractional differential equa-

tions is gaining much importance and attention. For details, see [5-12] and the

references therein.

Integral boundary conditions have various applications in applied fields

such as blood flow problems,chemical engineering, thermo-elasticity, under-

ground water flow, population dynamics, and so forth. For a detailed descrip-

tion of the integral boundary conditions, we refer the reader to some recent

papers [13-17] and the references therein.

A. Cabada, Wang [18] considered the positive solutions of nonlinear frac-

tional differential equations with integral boundary value conditions

CDαu(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′′(0) = 0, u(1) = λ

∫ 1

0

u(s)ds,

where 2 < α < 3, 0 < λ < 2, CDα is the Caputo fractional derivative and

f : [0, 1] × [0,∞) → [0,∞) is a continuous function. The author obtained at

least one positive solution by Guo-Krasnoselskii’s fixed point theorem.

Ahmad et al. [19] considered the existence and uniqueness of solutions for a

boundary value problem of nonlinear fractional differential equations of order

q ∈ (1, 2] with three-point integral boundary conditions:

CDqx(t) = f(t, x(t), 0 < t < 1,

x(0) = 0, x(1) = α

∫ η

0

x(s)ds, 0 < η < 1,
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where CDq denotes the Caputo fractional derivative of order q, f : [0, 1]×X →
X is continuous and α 6= 2

η2 . The author obtained at least one solution by

Krasnoselskii’s fixed point theorem.

Motivated by papers [18] and [19], in this paper, we deal with the fol-

lowing nonlinear fractional differential equations with integral boundary value

problem

Dαu(t) + f(t, u(t)) = 0, 0 < t < 1, (1)

u(0) = u′(0) = 0, u(1) = λ

∫ 1

0

u(s)ds, (2)

where Dαdenotes Riemann-Liouville fractional derivative of order α, 2 < α ≤
3, f : [0, 1] × X → X is continuous, and λ ∈ R is such that λ 6= α. Here,

(X, ‖ · ‖) is a Banach space and C = C([0, 1], X) denotes the Banach space of

all continuous functions from [0, 1] → X endowed with a topology of uniform

convergence with the norm denoted by ‖ · ‖. In paper, by using contraction

mapping principle and Krasnoselskii’s fixed theorem, we study the existence

results of solution to the integral boundary value problem (1) and (2).

To the authors’ knowledge, no one has studied the existence of solutions

for fractional boundary value problems (1) and (2). The goal of present paper

is by using some fixed-point theorems, we obtain sufficient conditions for the

existence of integral boundary value problem.

2 Preliminary Notes

In this section, we present some definitions and establish some lemmas.

Definition 2.1. ([2]) The Riemann-Liouville fractional derivative of order

α > 0 of a continuous function f : (0, +∞) → R is given by

Dα
0+f(t) =

1

Γ(n− α)

(
d

dt

)(n) ∫ t

0

f(s)

(t− s)α−n+1
ds,

where n = [α]+ 1 denotes the integer part of number α, provided that the right

side is pointwise defined on (0, +∞).
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Definition 2.2. ([2]) The Riemann-Liouville fractional integral of order

α > 0 of a function f : (0, +∞) → R is given by

Iα0+ =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

provided that the right side is point wise defined on (0, +∞).

Lemma 2.3. ([2]) Let α > 0. If we assume u ∈ C(0, 1)
⋂

L(0, 1), then the

fractional differential equation

Dα
0+u(t) = 0

has u(t) = c1t
α−1 + c2t

α−2 + . . . + cN tα−N , ci ∈ R, i = 1, 2, . . . , N, as unique

solutions, where N is the smallest integer greater than or equal to α.

Lemma 2.4. ([2]) Assume that u ∈ C(0, 1)
⋂

L(0, 1) with a fractional

derivative of order α > 0 that belongs to C(0, 1)
⋂

L(0, 1). Then

Iα
0+Dα

0+u(t) = u(t) + c1t
α−1 + c2t

α−2 + . . . + cN tα−N

for some ci ∈ R, i = 1, 2, . . . , N, where N is the smallest integer greater than

or equal to α.

Lemma 2.5. Given y ∈ C[0, 1] and 2 < α < 3, the unique solution of

Dαu(t) + y(t) = 0, 0 < t < 1, (3)

u(0) = u′(0) = 0, u(1) = λ

∫ 1

0

u(s)ds, (4)

is

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds +

∫ 1

0

(α− λ + s)tα−1(1− s)α−1

(α− λ)Γ(α)
y(s)ds.

Proof. We may apply Lemma 2.1 to reduce Eq. (3) to an equivalent integral

equation

u(t) = Iα
0+y(t) + C1t

α−1 + C2t
α−2 + C3t

α−3,

for some C1, C2, C3 ∈ R. Consequently, the general solution of Eq. (3) is

u(t) = −
∫ t

0

(t− s)α−1y(s)

Γ(α)
ds + C1t

α−1 + C2t
α−2 + C3t

α−3,
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The boundary condition u(0) = 0, u′(0) = 0 implies that C3 = 0, C2 = 0, We

get

u(t) = −
∫ t

0

(t− s)α−1y(s)

Γ(α)
ds + C1t

α−1.

Finally, condition u(1) = λ
∫ 1

0
u(s)ds implies that

u(1) = −
∫ 1

0

(1− s)α−1y(s)

Γ(α)
ds + C1 = λ

∫ 1

0

u(s)ds,

C1 =

∫ 1

0

(1− s)α−1y(s)

Γ(α)
ds + λ

∫ 1

0

u(s)ds.

Hence, we have the following form

u(t) = −
∫ t

0

(t− s)α−1y(s)

Γ(α)
ds + tα−1

∫ 1

0

(1− s)α−1y(s)

Γ(α)
ds

+λtα−1

∫ 1

0

u(s)ds, (5)

Let
∫ 1

0
u(s)ds = A, then, from the previous equality, we deduce that

A =

∫ 1

0

u(t)dt

= −
∫ 1

0

∫ t

0

(t− s)α−1

Γ(α)
y(s)dsdt +

∫ 1

0

tα−1

∫ 1

0

(1− s)α−1

Γ(α)
y(s)dsdt

+λ

∫ 1

0

tα−1

∫ 1

0

u(s)dsdt

= −
∫ 1

0

(1− s)α

αΓ(α)
y(s)ds +

1

α

∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds +

λA

α
. (6)

So, expression (6) implies that

A = − 1

α− λ

∫ 1

0

(1− s)αy(s)

Γ(α)
ds +

1

α− λ

∫ 1

0

(1− s)α−1y(s)

Γ(α)
.

Replacing this value in (5), we arrive at the following expression for the func-

tion u:

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds + tα−1

∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds

− 1

α− λ

∫ 1

0

tα−1(1− s)α

Γ(α)
y(s)ds +

1

α− λ

∫ 1

0

tα−1(1− s)α−1

Γ(α)
y(s)ds

= −
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds +

∫ 1

0

(α− λ + s)tα−1(1− s)α−1

(α− λ)Γ(α)
y(s)ds.

This completes the proof.
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In view of Lemma (2.3), we define an operator F : C → C by

(Fu)(t) = −
∫ t

0

(t− s)α−1

Γ(α)
f(s, u(s))ds

q +

∫ 1

0

(α− λ + s)tα−1(1− s)α−1

(α− λ)Γ(α)
f(s, u(s))ds. (7)

To prove the main results, we need the following assumptions:

(A1) ‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖, for all t ∈ [0, 1], L > 0, x, y ∈ X;

(A2) ‖f(t, u)‖ ≤ µ(t), for all (t, u) ∈ [0, 1]×X, and µ ∈ L1([0, 1], R+).

For convenience, let us set

Λ =
1

Γ(α + 1)

(
1 +

|α− λ|(α + 1) + 1

|α− λ|(α + 1)

)
. (8)

3 Main Results

Theorem 3.1. Assume that f : [0, 1] × X → X is a jointly continuous

function and satisfies the assumption (A1) with L < 1
Λ
, where Λ is given by

(8). Then the boundary value problem (1) and (2) has a unique solution.

Proof. Setting supt∈[0,1] |f(t, 0)| = M and choosing r ≥ ΛM
(1−LΛ)

, we show that

FBr ⊂ Br, where Br = {u ∈ C : ‖u‖ ≤ r}. For u ∈ Br, we have

‖Fu(t)‖ ≤ 1

Γ(α)

∫ 1

0

(t− s)α−1‖f(s, u(s))‖ds

+

∣∣∣∣
1

(α− λ)Γ(α)

∣∣∣∣
∫ 1

0

(α− λ + s)tα−1(1− s)α−1‖f(s, u(s))‖ds

≤ 1

Γ(α)

∫ 1

0

(t− s)α−1(‖f(s, u(s))− f(s, 0)‖+ ‖f(s, 0)‖)ds

+

∣∣∣∣
tα−1

(α− λ)Γ(α)

∣∣∣∣
∫ 1

0

(1− s)α−1(α− λ + s) ·
·(‖f(s, u(s))− f(s, 0)‖+ ‖f(s, 0)‖)ds

≤ (Lr + M)

[
1

Γ(α)

∫ t

0

(t− s)α−1ds

+

∣∣∣∣
tα−1

(α− λ)Γ(α)

∣∣∣∣
∫ 1

0

(1− s)α−1(α− λ + s)ds

]
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≤ (Lr + M)

(
1

Γ(α + 1)
+

∣∣∣∣
tα−1

(α− λ)Γ(α)

∣∣∣∣
[
α− λ

α
+

1

α(α + 1)

])

≤ (Lr + M)

Γ(α + 1)

(
1 +

|α− λ|(α + 1) + 1

|α− λ|(α + 1)

)

≤ (Lr + M)Λ ≤ r. (9)

Now, for x, y ∈ C and for each t ∈ [0, 1], we obtain

‖F (u1(t))− F (u2(t))‖ ≤ 1

Γ(α)

∫ t

0

(t− s)α−1‖f(s, u1(s))− f(s, u2(s))‖ds

+

∣∣∣∣
tα−1

(α− λ)Γ(α)

∣∣∣∣
∫ 1

0

(α− λ + s)(1− s)α−1 ·
·‖f(s, u1(s))− f(s, u2(s))‖ds

≤ L‖u1 − u2‖
[

1

Γ(α)

∫ t

0

(t− s)α−1ds

+

∣∣∣∣
tα−1

(α− λ)Γ(α)

∣∣∣∣
∫ 1

0

(α− λ + s)(1− s)α−1ds

]

≤ L

Γ(α + 1)

(
1 +

|α− λ|(α + 1) + 1

|α− λ|(α + 1)

)
‖u1 − u2‖

= LΛ‖u1 − u2‖ (10)

where Λ is given by (8). Observe that Λ depends only on the parameters

involved in the problem. As L < 1
Λ
, therefore F is a contraction. Thus,

the conclusion of the theorem follows by the contraction mapping principle

(Banach fixed point theorem).

Theorem 3.2. ([20]) (Krasnoselskii’s fixed point theorem) Let M be a

closed convex and nonempty subset of a Banach space X. Let A,B be the

operators such that

(1) Ax + By ∈ M whenever x, y ∈ M ;

(2) A is compact and continuous;

(3) B is a contraction mapping.

Then there exists z ∈ M such that z = Az + Bz.
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Theorem 3.3. Let f : [0, 1] × X → X be a jointly continuous function

mapping bounded subsets of [0, 1] × X into relatively compact subsets of X,

and the assumptions (A1) and (A2) hold with

L

Γ(α + 1)

( |α− λ|(α + 1) + 1

|α− λ|(α + 1)

)
< 1. (11)

Then the boundary value problem (1) and (2) has at least one solution on [0, 1].

Proof. Letting supt∈[0,1] |µ(t)| = ‖µ‖, we fix

r ≥ ‖µ‖
Γ(α + 1)

(
1 +

|α− λ|(α + 1) + 1

|α− λ|(α + 1)

)
, (12)

and consider Br = {u ∈ C; ‖u‖ ≤ r}. We define the operators D and Q on Br

as

Du(t) = −
∫ t

0

(t− s)α−1

Γ(α)
f(s, u(s))ds, (13)

Qu(t) =

∫ 1

0

(α− λ + s)tα−1(1− s)α−1

(α− λ)Γ(α)
f(s, u(s))ds (14)

For u1, u2 ∈ Br, we find that

‖Du1 + Qu2‖ ≤ ‖µ‖
Γ(α + 1)

(
1 +

|α− λ|(α + 1) + 1

|α− λ|(α + 1)

)
≤ r. (15)

Thus, Du1+Qu2 ∈ Br. It follows from the assumption (A1) together with (3.3)

that Q is a continuous mapping. Continuity of f implies that the operator D

is continuous. Also, D is uniformly bounded on Br as

‖Du‖ ≤ ‖µ‖
Γ(α + 1)

. (16)

Now we prove the compactness of the operator D.

In view of (A1), we define sup(t,u)∈[0,1]×Br
|f(t, u)| = f , and consequently

we have

‖Du(t1 −Du(t2))‖
=

∥∥∥∥
1

Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]f(s, u(s))ds

+

∫ t2

t1

(t2 − s)α−1f(s, u(s))ds

∥∥∥∥

≤ f

Γ(α + 1)

∣∣∣∣2(t2 − t1)
α + tα1 − tα2

∣∣∣∣ (17)
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which is independent of u. Thus, D is equicontinuous. Using the fact that

f maps bounded subsets into relatively compact subsets, we have that D(A)

is relatively compact in X for every t, where A is a bounded subset of C. So

D is relatively compact on Br. Hence, by the Arzela-Ascoli Theorem, D is

compact on Br. Thus all the assumptions of Theorem (3.2) are satisfied. So

the conclusion of Theorem (3.2) implies that the boundary value problem (1)

and (2) has at least one solution on [0, 1].

4 Examples

Examples 4.1 Consider the following equation

Dα
0+u(t) + f(t, u(t)) = 0, 2 < α ≤ 3, 0 < t < 1, (18)

u(0) = u′(0) = 0, u(1) =

∫ 1

0

u(s)ds. (19)

where f(t, u(t)) = − 1
(t+7)2

‖u‖
1+‖u‖ , and λ = 1.

By simple calculation, we know all conditions of Theorem 3.1 are satisfied.

By Theorem 3.1, BVP (18) and (19) has a unique solution on [0, 1].
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[4] M.P. Lazarević, A.M. Srivastava and J.J. Trujillo, Theory and Applica-

tions of Fractional Differential Equations, North-Holland Math. Stud.,

vol. 204, Elsevier Science., Amsterdam, 2006.

[5] V. Lakshmikantham and A.S. Vatsala, Basic theory of fractional differen-

tial equations, Nonlinear Anal. 69, (2008), 2677-2682.

[6] C.F. Li, X.N. Luo and Y. Zhou, Existence of positive solutions of the

boundary value problem for nonlinear fractional differential equation,

Comput. Math. Appl., 59, (2010), 1363-1375.

[7] X.K. Zhao, C.W. Chai and W.G. Ge, Positive solutions for fractional four-

point boundary value problems, Commun Nonlinear Sci Numer Simulat,

16, (2011), 3665-3672.
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