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Abstract 

This paper considers the state of the system which is represented by a controlled 

stochastic process. We shall formulate a stochastic optimal control in which the 

stochastic differential equations of a type known as Ito equations are considered 

which are perturbed by Markov diffusion process. Our goal is to use the stochastic 

optimal control principle to completely solve production planning model for the 

demand rate. 
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1  Introduction 

In production planning, one of the most unstable variables is the inventory 

level. This is influenced by certain unavoidable environmental uncertainties such 

as: sudden random demand fluctuation, sales return, inventory spoilage, etc. They 

make ideal production policy for “wide” class of cost functional impossible [4].  

To take care of these various sources of environmental randomness, we represent 

uncertainty by a filtered probability by n-dimensional Brownian motion 𝑤, 

defined on (Ω,ℱ,𝑃) and satisfying the usual condition [3]. We move from 

deterministic problem to a stochastic one by considering the “noisy” environment 

in order to model their behavior fairly accurately by adding an additive noise term 

in the state dynamics [5]. 

The general form of production planning is then formulated by representing the 

inventory level by a stochastic process {𝑋𝑡, 𝑡 ≥ 0}, defined on the probability 

space and generated by ℱ𝑡 with an overall noise rate that is distributed like white 

noise, 𝜎𝑑𝑊𝑡 and whose dynamics is governed by the Ito stochastic differential 

equation  

                𝑑𝑋𝑡 =  (𝑈𝑡 − 𝑆)𝑑𝑡 +  𝜎𝑑𝑊𝑡                                               (1) 

where 𝜎 is the intensity of the noise, 𝑆 denotes the constant demand rate and 𝑈𝑡, 

the production function, is a non stochastic parameter controlled by the investor. 

The objective is to find an optimal policy which minimizes the associated 

expected cost functional 

 𝐽(𝑢) = 𝐸 �∫ [𝑐(𝑈𝑡 − 𝑢�)2 +  ℎ(𝑋𝑡 − �̅�)2]𝑑𝑡 + 𝐵𝑋𝑇
𝑇
0 �                               (2) 

where 𝑐(. ) the cost is function and 𝑋𝑡 is the solution of the stochastic differential 

equation (1).  Let  𝑉(𝑥, 𝑡) denote the minimum expected value of the objective 

function from time 𝑡 to the horizon 𝑇 with  𝑋𝑡 = 𝑥 and using the optimal policy 

from 𝑡  to 𝑇.  The function is given by 

 𝑉(𝑥, 𝑡) =  min𝑈𝑡 𝐸 �∫ [𝑐(𝑈𝑡 − 𝑢�)2 +  ℎ(𝑋𝑡 − �̅�)2]𝑑𝑡 + 𝐵𝑋𝑇
𝑇
𝑡 �.           (3) 
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In this paper, we assume the state variables to be observable and we use the 

Hamilton Jacobi Bellman (𝐻𝐽𝐵) framework rather than stochastic maximize 

principles. 

 

 

 2  The Stochastic Production Planning Model 

We consider a factory producing homogeneous goods and having an 

inventory warehouse. We define the following system variables and parameters 

that describe the state of the model as follows: 

𝑋𝑡= the inventory level at time 𝑡 (state variable) 

 𝑈𝑡 = the production rate at time 𝑇 (control variable) 

 𝑆(𝑡) = the constant demand rate at time 𝑡;  𝑠 > 0 

 𝑇 = the length of planning period 

 𝑥 �= the factory – optimal inventory level 

 𝑢 �= the factory- optimal production level 

 𝑥0 = the initial inventory level 

 ℎ = the inventory holding cost coefficient 

 𝑐 = the production cost coefficient 

 𝐵 = the salvage value per unit of inventory at time T. 

 𝑍𝑡 = the standard wiener process 

 𝜎 = the constant diffusion coefficient 

The dynamics of the stock flow is governed by the equation  

 �̇�(𝑡) =  𝑢(𝑡) − 𝑆(𝑡), 𝑥(0) = 𝑥0                                                           (4)  

and the dynamics of the inventory level 𝑥𝑡 is governed by the Ito stochastic 

differential equation 

 𝑑𝑋𝑡 =  (𝑈𝑡 − 𝑆)𝑑𝑡 +  𝜎𝑑𝑍𝑡 , 𝑋(0) = 𝑥0              (5) 

Subject to  

 𝑉(𝑥, 𝑡) =  min𝑈𝑡 𝐸 �∫ [𝑐(𝑈𝑡 − 𝑢�)2 +  ℎ(𝑋𝑡 − �̅�)2]𝑑𝑡 + 𝐵𝑋𝑇
𝑇
𝑡 �                (6) 
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Assume that �̅� = 𝑢� = 0 and ℎ = 𝑐 = 1, then, we restate (6) as 

 𝑉(𝑥, 𝑡) = max𝐸 �∫ −(𝑈𝑡2 + 𝑋𝑡2)𝑑𝑡 + 𝐵𝑋𝑇
𝑇
0 �                                   (7) 

The value function 𝑉(𝑥, 𝑡) satisfying the Hamilton-Jacobi-Bellman (HJB) 

equation 

 0 = max �−(𝑢2 + 𝑥2) + 𝑉𝑡 + 𝑉𝑥(𝑢 − 𝑆) + 1
2
𝜎2𝑉𝑥𝑥�            (8) 

with the boundary condition 

 𝑉(𝑥, 𝑡) = 𝐵𝑥                                                                                   (9)  

It is now possible to maximize the expression by taking its derivative with respect 

to 𝑢 and setting it to zero which yields  

 𝑉𝑥 − 2𝑢 = 0                                                            (10) 

The optimal production rate that minimizes the cost can be expressed as a function 

of the current value function in the form 

 𝑢(𝑥, 𝑡) =  𝑉𝑥(𝑥,𝑡)
2

                                                                    (11) 

Substituting equation (11) into (8) yields the equation 

 0 =  𝑉𝑥
2

4
− 𝑥2 + 𝑉𝑡 − 𝑆𝑉𝑥 + 1

2
𝜎2𝑉𝑥𝑥                                               (12) 

which is known as the Hamilton Jacobi-Bellman equation. This is a nonlinear 

partial differential equation which must be satisfied by the current value function 

𝑉(𝑥, 𝑡) with boundary condition 𝑉(𝑥, 𝑡) = 𝐵𝑥. Hence the optimal production rate 

that minimizes the total cost can be expressed as a function of the current value 

function in the form 

  𝑢(𝑥, 𝑡) =  𝑉𝑥(𝑥,𝑡)
2

.           

It is important to remark that if production rate were restricted to be non-negative, 

then equation (11) would be changed to  

 𝑢(𝑥, 𝑡) = max �0, 𝑉𝑥(𝑥,𝑡)
2

� .                                                                        (13)
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3  Solution for the Production Planning Problem 

In this section, we shall obtain the solution of the stochastic production 

planning problem. To solve the partial differential equation (12), we assume a 

solution of the form 

 𝑉(𝑥, 𝑡) =  𝑄(𝑡)𝑥2 + 𝑅(𝑡)𝑥 + 𝑀(𝑡)                                                         (14) 

Then 

 𝑉𝑥 = 2𝑄𝑥 + 𝑅,                                                                                (15) 

 𝑉𝑥𝑥 = 2𝑄,                                                                                            (16) 

 𝑉𝑡 =  �̇�𝑥2 + �̇�𝑥 + �̇�                                                         (17) 

where the dot denotes the differential with respect to time. Substituting (17) into 

(12), we get 

 (2𝑄𝑥+𝑅)2

4
− 𝑥2 + �̇�𝑥2 + �̇�𝑥 + �̇� − 𝑆(2𝑄𝑥 + 𝑅) + 1

2
𝜎2(2𝑄) = 0 

 𝑄2𝑥2 + 𝑄𝑅𝑥 + 𝑅2

4
− 𝑥2 + �̇�𝑥2 + �̇�𝑥 + �̇� − 2𝑆𝑄𝑥 − 𝑅𝑆 + 𝜎2𝑄 = 0 

 �̇�𝑥2 + 𝑄2𝑥2 − 𝑥2 + �̇�𝑥 + 𝑄𝑅𝑥 − 2𝑆𝑄𝑥 + �̇� + 𝑅2

4
− 𝑅𝑆 + 𝜎2𝑄 = 0 

Collecting like terms, we have 

 𝑥2��̇� + 𝑄2 − 1� + 𝑥��̇� + 𝑄𝑅 − 2𝑆𝑄� + �̇� + 𝑅2

4
− 𝑅𝑆 + 𝜎2𝑄 = 0       (18) 

Since (18) must hold for any value of 𝑥, we have the following system of 

nonlinear ordinary differential equations 

 �̇� = 1 − 𝑄2                                                                                  (19)

 �̇� = 2𝑆𝑄 − 𝑅𝑄                                                                                        (20) 

 �̇� = 𝑅𝑆 − 𝑅2

4
− 𝜎2𝑄                                                                                 (21) 

Next, we solve this nonlinear system for the demand rate with the following 

boundary conditions: 

 𝑄(𝑇) = 0, 𝑅(𝑇) = 0, 𝑀(𝑇) =  0                                                         (22) 

To solve (19), we expand  �̇�
1−𝑄2

  by partial fraction to obtain 
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 �̇�
2
� 1
1−𝑄

+ 1
1+𝑄

� = 1 

which can be integrated to obtain  

 𝑄 =  𝑦−1
𝑦+1

                                                                                              (23) 

where  

 𝑦 = 𝑒2(𝑡−𝑇)                                                                                (24) 

and the time horizon will be 𝑦 ∈ [𝑒−2𝑇 , 1]. 

Since the demand rate 𝑆 is assumed to be a constant, the optimal production rate is 

given by 

 𝑢(𝑥, 𝑡) =  𝑆 + �(𝑦−1)𝑥+(𝐵−2𝑆)√𝑦
𝑦+1

�                                                 (25) 

Next, we can reduce (20) to  

 �̇�0 + 𝑅0𝑄 = 0,    𝑅0(𝑇) =  𝐵 − 2𝑆 

By change of variable defined by 𝑅0(𝑇) = 𝐵 − 2𝑆, then the solution is given by 

 log  𝑅0(𝑇) − log  𝑅0(𝑡) = −∫ 𝑄(𝜏)𝑑𝜏𝑇
𝑡  

which can be simplified further to obtain  

 𝑅 = 2𝑆 + 2 (𝐵−2𝑆)√𝑦
𝑦+1

                                                                                (26) 

Having obtained solution for 𝑅 𝑎𝑛𝑑 𝑄, we can now express (21) as  

 𝑀 = −∫ �𝑅(𝜏)𝑆 − (𝑅(𝜏))2

4
− 𝜎2𝑄(𝜏)� 𝑑𝜏𝑇

𝑡  

Which we can further simplify to 

 𝑀 = ∫ 1
2𝑦
�𝑆𝑅 − 𝑅2

4
− 𝜎2𝑄�𝑑𝜏                                                          (27) 

        The optimal production rate in equation (25) equals the demand rate plus a 

correction term which depends on the level of inventory and the distance from the 

horizon time 𝑇. Since (𝑦 − 1) < 0  ∀𝑡 < 𝑇, then for a lower value of 𝑥, it is clear 

that the optimal production rate is likely to be positive. However, if 𝑥 is very high, 

the correction term will become smaller than – 𝑆, and the optimal control will be 

negative. Hence, if inventory is too high, the factory can save money by disposing 

a part of the inventory resulting in lower holding 𝑐𝑜𝑠𝑡. 
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4  A Stochastic Advertising Problem 

          We consider a modification of the Vidale-Wolfe advertising model whose 

market share 𝑋𝑡 is governed by the dynamics  

 𝑑𝑋𝑡 =  �𝑟𝑈𝑡(𝑥)�1 − 𝑋𝑡 − 𝜕𝑋𝑡�𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝑧𝑡,   𝑋0 = 𝑥0                      (28) 

Subject to 

 max𝐸�∫ 𝑒−𝜌𝑡(𝜋𝑋𝑡 − 𝑈𝑡2)∞
0 �𝑑𝑡                                                         (29)  

where 𝑈𝑡 is the rate of advertising at time 𝑡, 𝑑𝑧𝑡  represents a standard white noise 

and 𝜎(𝑋𝑡) are functions to be suitably specified next. 

An important consideration in choosing the function 𝜎(𝑥) should be that the 

solution 𝑋𝑡 to the Ito equation (28) remains inside the interval [0, 1]. Merely 

requiring that the initial condition 𝑥0𝜖[0, 1] is no longer sufficient in the stochastic 

case. 

The interval under consideration is therefore (0,1) with boundaries 𝑥 = 0 

and 𝑥 = 1. We require that 𝑢(𝑥) and 𝜎(𝑥) be continuous functions that satisfy 

Lipschitz condition on every closed subinterval of (0,1). We require that  

 𝜎(𝑥) > 0, 𝑥𝜖(0,1)  and  𝜎(0) = 𝜎(1) = 0                                                

(30) 

and 

 𝑢(𝑥) ≥ 0, 𝑥𝜖( �0,1]� and   𝑢(0) > 0.                                               (31) 

Using these conditions, we have 

 𝑟𝑢(0)√1 − 0 − 𝜕0 = 𝑟𝑢(0) > 0, and  𝑟𝑢(1)√1 − 1 − 𝜕 < 0, 
So the Ito equation (28) will have a solution 𝑋𝑡 such that 0 < 𝑋𝑡 < 1 a.s. Since 

our solution for the optimal advertising 𝑈∗(𝑥) would turn out to satisfy (31), we 

will have the optimal market share 𝑋𝑡∗ lie in the interval (0,1). 

Let 𝑉(𝑥) denote the expected value of the discounted profit from time 𝑡 to 

infinity. Since 𝑇 = ∞, the future looks the same from any time 𝑡 and therefore the 

value function does not depend on it. We can write the HJB equation as  

 𝜌𝑉(𝑥) = max𝑢 �𝜋𝑥 − 𝑢2 + 𝑉𝑥�𝑟𝑢√1 − 𝑥 − 𝛿𝑥� + 𝑉𝑥𝑥
1
2
𝜎2�        (32) 
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Taking the derivative of the right hand side of (4.5) with respect to 𝑢 and setting it 

to zero, we get  

 𝑈(𝑥) = 1
2
𝑟𝑉𝑥√1 − 𝑥                                                                       (33) 

Substituting equation (33) into (32), we have 

 𝜌𝑉(𝑥) = 𝜋𝑥 − �1
2
𝑟𝑉𝑥√1 − 𝑥�

2
+ 𝑉𝑥 �

1
2
𝑟2𝑉𝑥(1 − 𝑥) − 𝛿𝑥� + 1

2
𝑉𝑥𝑥𝜎2(𝑥) 

  = 𝜋𝑥 − 1
4
𝑟2𝑉𝑥2(1 − 𝑥) + 1

2
𝑟2𝑉𝑥2(1 − 𝑥) − 𝑉𝑥𝛿𝑥 + 1

2
𝑉𝑥𝑥𝜎2(𝑥) 

  = 𝜋𝑥 − 𝑟2𝑉𝑥2(1−𝑥)+2𝑟2𝑉𝑥2(1−𝑥)
4

− 𝑉𝑥𝛿𝑥 + 1
2
𝑉𝑥𝑥𝜎2(𝑥) 

Collecting like terms yield the HJB equation 

 𝜌𝑉(𝑥) = 𝜋𝑥 + 1
4
𝑟2𝑉𝑥2(1 − 𝑥) − 𝑉𝑥𝛿𝑥 + 1

2
𝑉𝑥𝑥𝜎2(𝑥)                              (34) 

A solution of equation (34) is obtained as 

 𝑉(𝑥) = �̅�𝑥 + 𝜆�2𝑟2

4𝜌
                                                                                 (35) 

where 

 �̅� = −(𝜌+𝛿)+�(𝜌+𝛿)2+𝜎2𝜋
𝑟2
2

  .                                                        (36) 

We obtain the explicit formula for the optimal feedback control as  

 𝑈∗(𝑥) = 1
2
𝑟�̅�√1 − 𝑥 .                                                                        (37) 

Also the advertising rate is given by  

 𝑈∗(𝑥) = 1
2
𝑟�̅�√1 − 𝑥. 

The minimum value of the advertising rate 𝑈∗ is zero at 𝑥 = 1 and the maximum 

value of  𝑈∗ is 1
2
𝑟�̅� > 0 at 𝑥 = 0. 

We can easily characterize 𝑈∗ as 

 𝑈𝑡∗ = 𝑈∗(𝑋𝑡) = �
> 𝑢 �𝑖𝑓 𝑋𝑡 < �̅�
= 𝑢 �𝑖𝑓 𝑋𝑡 = �̅�
< 𝑢 �𝑖𝑓 𝑋𝑡 > �̅�

�                            (38) 

where 
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 �̅� =
𝑟2𝜆

�
2

𝑟2𝜆
�
2+𝛿

                                                                       (39) 

and 

 𝑢� = 1
2
𝑟�̅�√1− 𝑥                                                             (40) 

Eventually the market share process hovers around the equilibrium level 𝑥. 

 

 

5     An Optimal Consumption investment Problem 

Consider investing a part of Rich’s wealth in a risky security or stock that 

earns an expected rate of return that equal 𝛼 > 𝛿. The problem of Rich, known 

now as Rich investor is to optimally allocate his wealth between the risky free 

savings account and the risky stock over time and also consume overtime so as to 

maximize his total utility of consumption. To formulate the stochastic optimal 

control model of Rich’s investor, this investment shall be modeled. 

Assume that 𝐵0 is the initial price of a unit of investment in the savings 

account earning an interest at the positive rate 𝑟, then we can write the rate of 

change of the accumulated amount 𝐵𝑡 at time 𝑡 as 

 𝑑𝐵𝑡
𝑑𝑡

= 𝑟𝐵𝑡, 𝐵0 = 𝐵(0)                                                                      (41) 

Equation (5.1) may be expressed in differential form as 

 𝑑𝐵𝑡 = 𝑟𝐵𝑡𝑑𝑡 ,   𝐵0 = 𝐵(0)                                                                     (42) 

Using the separation of variable technique for ordinary differential equation, we 

solve the equation (42) to obtain the accumulated amount as a function of time as 

 𝐵𝑡 = 𝐵0𝑒𝑟𝑡                                                                                              (43) 

The stock price, 𝑆𝑡, is a stochastic differential equation as follows 

 𝑑𝑆𝑡
𝑆𝑡

= 𝛼𝑑𝑡 + 𝜎𝑑𝑧𝑡,   𝑆0 = 𝑆(0)                                                       (44) 

Equation (44) may be expressed in differential form as 

 𝑑𝑆𝑡 = 𝛼𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑧𝑡, 𝑆0 = 𝑆(0)                                                                (45) 
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where 𝛼 is the average rate of return on stock, 𝜎 is the standard derivation 

associated with the return and 𝑧𝑡 is a standard Wiener process. 

In order to complete the formulation of Rich’s stochastic optimal control 

problem, we need the following additional notations 

 𝑊𝑡 = the wealth at time 𝑡, 

 𝐶𝑡 = the consumption rate at time 𝑡, 

 𝑄𝑡 = the fraction of the wealth kept in the saving account at time 𝑡, 

𝑈(𝑐) = the utility of consumption when consumption is at the rate 𝑐; the 

function 𝑈(𝑐) is assumed to be increasing and concave, 

 𝜌 = the rate of discount applied to consumption utility, 

 𝐵 = the bankruptcy parameter to explained later. 

We now develop the dynamics of the wealth process. Since the investment 

decision 𝑄𝑡 is unconstrained, this means that Rich can deposit in, as well as 

borrow money from, the saving account at the rate 𝑟. Hence it is possible to obtain 

rigorously the equation for the wealth process involving an intermediate variable, 

namely, the number 𝑁𝑡 of shares of stock owned at time 𝑡, we shall not do so. 

Therefore, we shall write the wealth equation in the form as 

 𝑑𝑊𝑡 = 𝑄𝑡𝑊𝑡𝛼𝑑𝑡 + 𝑄𝑡𝑊𝑡𝜎𝑑𝑧𝑡 + (1 − 𝑄𝑡)𝑟𝑊𝑡𝑑𝑡 − 𝐶𝑡𝑑𝑡                       (46) 

          = (𝛼 − 𝑟)𝑄𝑡𝑊𝑡𝑑𝑡 + (𝑟𝑊𝑡 − 𝐶𝑡)𝑑𝑡 + 𝑄𝑡𝑊𝑡𝜎𝑑𝑧𝑡 ,  𝑊0 = 𝑊(0)      (47) 

where the term 𝛼𝑄𝑡𝑊𝑡 represents the expected return from the risky investment 

𝑄𝑡𝑊𝑡 during the period from 𝑡 to 𝑡 + 𝑑𝑡, the term 𝜎𝑄𝑡𝑊𝑡𝑑𝑡 represents the risk 

involved in investing 𝑄𝑡𝑊𝑡 in stock, the term 𝑟(1 − 𝑄𝑡)𝑊𝑡𝑑𝑡 represents the 

amount of interest earned on the balance of (1 − 𝑄𝑡)𝑊𝑡 in saving account and 

finally 𝐶𝑡𝑑𝑡 represents the amount of consumption during the interval from 𝑡 

to 𝑡 + 𝑑𝑡. 

We shall say that Rich goes bankrupt at time 𝑇, when his wealth falls to zero 

at that time 𝑇 is a random variable called a stopping time, since it is observed 

exactly at the instant of time when wealth fall to zero. Rich’s objective function is 
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 max𝐶𝑡>0 �𝐸 �∫ 𝑒−𝜌𝑡𝑈(𝐶𝑡)𝑑𝑡 + 𝐵𝑒−𝜌𝑇𝑇
0 ��                                             (48) 

Subject to 

𝑑𝑊𝑡 = (𝛼 − 𝑟)𝑄𝑡𝑊𝑡𝑑𝑡 + (𝑟𝑊𝑡 − 𝐶𝑡)𝑑𝑡 + 𝜎𝑄𝑡𝑊𝑡𝑑𝑧𝑡,  𝑊0 = 𝑊(0), 𝐶𝑡 > 0   (49) 

          Next we assumed that the value function 𝑉(𝑥) associated with the optimal 

policy starting with the wealth 𝑊𝑡 = 𝑥 at time 𝑡 and using the optimality principle, 

the Hamilton-Jacobi-Bellman (𝐻𝐽𝐵) equation satisfying the value function 𝑉(𝑥) 

which has the form 

    𝜌𝑉(𝑥) = max𝑄.𝐶>0 �(𝛼 − 𝑟)𝑞𝑥𝑉𝑥 + (𝑟𝑥 − 𝐶)𝑉𝑥 + 1
2
𝑞2𝜎2𝑥2𝑉𝑥𝑥 + 𝑈(𝑐)�,  

                   𝑉(0) = 𝐵                                                                                                      (50) 

We further simplify the problem by assuming the following condition 

 𝑈(𝑐) =  √𝐶                                                                                                    (51) 

 𝑑𝑈
𝑑𝐶
⎹𝑐=0 = 1

2√𝐶
⎹𝐶=0 = ∞                                                             (52) 

We also assume 𝐵 = ∞, together with condition (49) implied a strictly 

positive consumption level at all time and no bankruptcy. 

Now differentiating equation (50) with respect to 𝑄 𝑎𝑛𝑑 𝐶 and equating the 

resulting expression to zero, we get the following system of equations 

 (𝛼 − 𝑟)𝑥𝑉𝑥 + + 1
2
𝑄𝜎2𝑥2𝑉𝑥𝑥 = 0                      (53) 

 1 − 𝐶𝑉𝑥 = 0                                                                                            (54) 

Solving the above system of equation with respect to the formulation 𝑄(𝑥) and 

𝐶(𝑥), we get 

 𝑄(𝑥) =  (𝛼−𝑟)𝑉𝑥
𝑥𝜎2𝑉𝑥𝑥

                                                             (55) 

and 

 𝐶(𝑥) =  1
𝑉𝑥

                                                                                                       (56) 

Substituting (53) and (54) into (50) allows us to remove the max operator from 

(50) and provides us with the equation  

 𝜌𝑉(𝑥) =  −𝛾(𝑉𝑥)2

𝑉𝑥𝑥
+ �𝑟𝑥 − 1

𝑉𝑥
�𝑉𝑥 − ln𝑉𝑥                                             (57) 
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where  

 𝛾 = (𝛼−𝑟)2

2𝜎2
                                                                                   (58) 

To solve the nonlinear differential equation (57), we assume that the 

solution has the form 

 𝑉(𝑥) = 𝑎𝑙𝑛(𝑘𝑥) + 𝐻                                                                     (59) 

where 𝑎 𝑎𝑛𝑑 𝐻 are determinable constant. We have 

 𝑉𝑥 = 1
𝑎𝑥

, 𝑉𝑥𝑥 = − 1
𝑎𝑥2

                                                         (60) 

Substituting equation (59) and (60) into (57), we obtain the constant 𝑎,𝑘 𝑎𝑛𝑑 𝐻 as 

 𝑎 = 1
𝜌

,   𝑘 = 𝜌, 𝐻 = 𝑟−𝜌+𝛾
𝜌2

                                                                    (61)  

Hence, substituting (61) into (59), we get 

 𝑉(𝑥) = 1
𝜌
𝑙𝑛𝜌𝑥 + 𝑟−𝜌+𝛾

𝜌2
                                                                          (62) 

Using (62) into (57), the fraction of the wealth invested in the stock is given by 

 𝑄 =   (𝛼−𝑟)
𝜎2

 

and 

 𝐶 = 𝜌𝑥. 

 
 

6  Conclusion 

We have analyzed the optimal control of a single dimension stochastic 

production planning model and optimal production obtained as a function of the 

stochastic inventory level and of time demand rate. Also, the existence of a 

complete solution to the associated HJB equation is established and the optimal 

policy is characterized. The optimal advertising rate is obtained as function of the 

market share and the optimal consumption rate and the fraction of the wealth 

invested in stock at any time is obtain using Rich’s stochastic optimal control 

problem. 
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