Theoretical Mathematics & Applications, vol.1, no.1, 2011, 115-123
ISSN: 1792- 9687 (print), 1792-9709 (online)

International Scientific Press, 2011

Finite Integrals Involving Jacobi Polynomials
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Abstract
The aim of the present paper is to evaluate new finite integral formu-
las involving Jacobi polynomials and I-function. These integral formulas
are unified in nature and act as key formula from which we can obtain
as their special cases. For the sake of illustration we record here some
special cases of our main formulas which are also new. The formulas es-
tablish here are basic in nature and are likely to find useful applications

in the field of science and engineering.
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1 Introduction

The I-function will be defined and represented as follows [1, p. 26, Eqn.(2.1.41)]:
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and m,n,p;, q; are integers satisfy 0 < n < p;;1 < m < ¢;(i = 1...r) r is fi-
nite oy, B, aj;, Bj; are positive integer and aj, b;, a;;, bj; are complex numbers.
I-function which is a generalized form of the well known H-function [2, p.10,
Eqn.(2.1.1)] In the sequel the I-function will be studied under the following con-

ditions of existence:
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The general class of polynomials S}t [x] introduced by Srivastava will
be defined and represented as follows [3, p.185, Eqn.(7)]:

[n1/mi1] [nr/me]
Spimrla] = Y Y H Zm“Am,zx (5)
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where ny,...,n, =0,1,2,...;mq, ..., m, is an arbitrary positive integers, the
coeflicients A, ;, (n;,l; > 0) are arbitray constants, real or complex. On suit-
ably specializing the coefficients A, ;,, Sy " [z] yeilds a number of known
polynomials as its special cases. These includes, among other, the Bessel
Polynomials, the Lagurre Polynomials, the Hermite Polynomials, the Jacobi
Polynomials, the Gould-Hopper Polynomials, the Brafman Polynomials and

several others [4,p.158-161]
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The following known results [5, p.945, Eqn.(16)] and [6, p.172, Eqn.(29)]
for the Jacobi Polynomials pleh) [z] [7, p.254, Eqn.(1)], will be required in our

investigation.
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where y denotes (1 — 2zt + t2)/2 in both (6) and (7).

2 Main Integrals

We establish the following integrals:
First Integral
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The equation (8) will be converge under the conditions given in equation

(3) and

LLp>102>1u>0,v>0h>0k>O0(h and k are not both zero

simultaneously)
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Proof: To establish the integral (8), we express the I-function occurring in

II. Re(p) + hmin

III. Re(o) + kmin

its left-hand side in terms of Mellin-Barnes contour integral given by equation
(1), the integral class of polynomial occurring therein the series form given by
equation (5) and the interchange the order of summations and integration and
the order of x-and &-integrals (which is permissible under the conditions stated
with equation (8) and evaluating the integral with the help of a modified form
of the formula [8, p. 314, en.(3)],we easily arrive at the first integral after a
little simplification.

Second Integral:
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where y = (1 — 2zt + t?)'/2, the conditions of the above result can be easily

obtained from those of first integral.
Third Integral
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where y = (1 — 2t +12)Y/2, the conditions of the above result can be easily

obtained from the first integral.

To establish equation (9) and (10) the following result is required, which
the is special case of first integral:
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The conditions of the above result can be easily obtained from those of first

integral.

Ifweputm;=..=my=1n=..=n,=n;w= %;u =1,v =0 and
n+a ) (a+pB+n+1)
n' ) (a+ 1),
polynomial S}, [%]occuring therein breaks up into the Jacobi Polynomials
PP1z] (9, p.68, eq.(4.3.2)] and the equation (8) reduces to the equation (11)

n

A(ng, by, ooy nps b)) = in equation (8) then the

after a little simplification.

Proof of second integral: Put the value of P\*” (¢t +y)P{*? (t —y) from
equation(6) to the left hand side of equation (9) and interchanging the order
of integration and summation, then using the equation (11), we easily arrive
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at the required second integral after little simplification.

1
Proof of third integral: Put the value of —(1 — ¢+ ¢) (1 +t+y)™?
Y
from equation (7) to the left hand side of equation (10) and interchanging the

order of integration and summation, then using the equation (11), we easily

arrive at the required third integral after little simplification.

3 Special Cases of Main Integrals

(a) If we put r = 1, a; = B; = aj; = B;; = 1 then I-function reduces to the gen-
(aj»aj)l,n;(ajuaji)nﬂ,pz— (a5,1)1,n5(a5,)n+1,p

= Gmn|z
s 3)1.mitbs B0 DL 0,11 mi (b Dm 1.4

, the equation (9) and (10) takes place in the following form:

eral type of G-function I .
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(13)

p+2,q+1

G2 [22(h+k) (1—P—lah);(1—aak‘);(ajvl)l,n;(aj71)n+1,p]

(b, 1) 1,m3(b5,1)m+1,q5(1—p—0—1,h+k)

The conditions of convergence of the above equation (12) and (13) can be ob-

tained from those of the first integral.

(b) f weput r =1,m = 1,n=p =pg =q+ 1,00 =0,8 = 1,a; =

1—aj,bj; = 1-0b;, B = B; then I-function reduces to Wright’s generalized Hy-
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The conditions of convergence of the above equation (14) and (15) can be ob-

tained from those of the first.

(c)fweputr=1m=1n=p =p,¢=¢b =05 =1a;=1-a;bj =

bj,a; = B; = aj; = Bj; = 1, I-function reduces to the generalized hypergeo-
P
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metric function,i.e [;7’31’“ [Z‘(o, D121, q} = F; [le '''''''''' . q” - z}, then the

equation (9) and (10) takes the following form:
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The conditions of convergence of the above equation (16) and (17) can be ob-

tained from those of the first integral.
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