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Conditional Dependence Modelling

with Regular Vine Copulas

Cyprian Omari1, Peter Mwita2 and Anthony Waititu3

Abstract

Modelling sophisticated high-dimensional dependence structures for
financial assets in a portfolio framework require flexible dependence
models. In this paper, a regular vine-copula based model is employed to
analyze financial dependencies and co-movements of a six-dimensional
portfolio of currency exchange rates starting from January 2001 to April
2018. The regular-vine copula based model employs partial correlations
to construct the regular vine structure and offer superior flexibility in
the selection of the distributions to model financial dependence struc-
ture. The model also captures the asymmetry between multivariate
variables using bivariate copulas with flexible tail dependence. Empiri-
cal evidence suggests that co-movements in currency markets are most
likely to experience a crash and boom together thus, concluding that
currency markets are integrated due to the nature of the global finan-
cial systems. The C-Vine copula specification is favoured over the other
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copula specifications in modeling the dependence dynamics between cur-
rency exchange rates.

Keywords: Copula; regular vines; C-Vine, D-Vine; currency exchange rates;

tail dependence; pair-copula constructions.

1 Introduction

Many statistical problems and in particular econometrics applications re-

quire modelling sophisticated dependence structures between multivariate vari-

ables. Conventionally, modelling dependence between multivariate variables

has mainly focused on using linear correlation as the standard measure of de-

pendence. For this purpose multivariate elliptical distributions such as Gaus-

sian, and Student-t distributions are widely used in modelling the distribu-

tions of multivariate variables. However, empirical evidence suggest that most

univariate financial variables are non-normal and usually exhibit stylized char-

acteristics such as volatility clustering, asymmetry, excess kurtosis and heavy

tailed distributions. Therefore, using elliptical distributions especially multi-

variate Gaussian distribution is limited since it does not account for asymme-

try and tail dependencies usually present between different pairs of financial

variables.

Following the 2008 global financial crisis (GFC), regulators, practitioners,

academic researchers and media acknowledged that the use of unreliable mod-

els for dependence as one of the main causes of the crisis [1]. In the aftermath

of the financial crisis, modelling the dependence structure between financial

securities has been a hot topic of research in econometrics, finance and statis-

tics. This has motivated the application copula-based approaches in modelling

financial assets, such as portfolio asset returns and currency returns. Copulas

are functions that describe the dependence structure between random vari-

ables. The main result related to the copula function is the Sklar theorem [2],

which states that every multivariate distribution can be decomposed into its

marginal distribution and a copula which gives the dependence structure. Pat-

ton [3] extended and proved the validity of Sklar’s theorem in the conditional

case, thus extending the applications of copula in finance and econometrics.



Cyprian Omari, Peter Mwita and Anthony Waititu 99

For bivariate copulas, there exists a large class of copula families with salient

statistical properties that are comprehensively explored in [4],[5]. However, the

number of satisfactory higher-dimensional parametric copulas are still scarce

and some cannot account for features like heavy tails and asymmetry [6]. The

ever-increasing demand for modelling high-dimensional dependence using hi-

erarchical copula-based structures has motivated the innovation of more so-

phisticated structures.

Vine copulas, or pair-copula constructions, have emerged as one of the

most promising tools for building the dependence structure between high-

dimensional financial assets [7]. Vine copulas decompose complex high-dimensional

dependence into unconditional and conditional bivariate copulas often called

pair-copulas. Since the parameters of each pair-copula can be estimated in a

different way, vine copulas permit each pair to have a different structure and

strength of dependence. Hence, vine copula models results in flexible multi-

variate copula models which are often superior to other multivariate copula

models [8], [9]. In particular, the vine copulas have become popular for mod-

elling dependence between financial assets due to their simplicity, flexibility

in modeling combinations of tail dependencies and the possibility of sequen-

tially estimating parameters. The class of vine copula is generally broad and

comprises of a large number of probable pair-copula constructions. However,

two particular classes of regular vines namely canonical-Vine (C-Vine) and a

drawable vine (D-Vine) are the most commonly utilized in many applications

[33]. Graphically, C-Vine follows a star-like structure with a root node in each

tree while D-Vine follows a path structure with the first tree having nodes

with degree two or less. This implies that C-Vines are very practical for mul-

tivariate data where the significance of the variables can be ordered. For more

information on the D-Vine and C-Vine see [11].

In the last decade, vine copulas and in particular regular vines have gained

acceptance in many fields of research and are used in modelling the dependence

structure of multivariate random variables. The list of references is increasingly

growing in statistical modelling problems and financial applications ever since

[7] inaugurated their inferential insights that motivated applications of the

vine copula in diverse fields. These vine copula models have been applied

to problems in hydrology ([12], [13], [14], [15]), biology ([16]; [17]), sociology

([18]), econometrics ([19], [20], [36]) and finance ([23], [24]), [25], [26] and [27]
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only to list a few recent articles. For an extensive survey that review vine

copulas and their applications in finance see [21].

In this paper, we apply the regular vine-copula based approach to model

the multivariate dependence dynamics among the six currency exchange rates

namely; the British Pound (GBP), European Euro (EUR), Japanese Yen

(JPY), Swiss Franc (CHF), Canadian Dollar (CAD) and Australian Dollar

(AUD) all against the US Dollar (USD) for the period starting from January

2, 2001, to April 20, 2018. The pair copula construction approach with a reg-

ular vine structure specification is computed following the sequential selection

algorithm [36].

The remainder of the paper is structured as follows: Section 2 introduces

bivariate dependence measures of association and measures of tail-dependence

that are commonly used in copula applications. Section 3 describes the basic

principles of copula modeling and commonly used bivariate copulas as well as

selected two parameter copulas. The regular vine copulas as well as the regular

vine copula specification and the sequential selection procedure are discussed

in Section 4. Section 5 reports empirical results and comparative performance

between different R-Vine copula specifications. Finally, Section 6 gives the

conclusion.

2 Bivariate measures of dependence

This section introduces measures of bivariate dependence that are com-

monly used in copula applications. The focus is on measures association and

tail-dependence that have intuitive interpretations and are extremely appro-

priate in many statistical applications.

2.1 Measures of Correlation

Pearson’s ρ. Pearson’s correlation coefficient ρ ∈ [−1, 1] is the most com-

monly used measure of dependence. Let (X,Y )T be vector of random variables

with nonzero finite variances. The linear correlation coefficient between X and
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Y is defined as

ρ(X,Y ) =
Cov(X, Y )√

Var(X)
√

Var(Y )
(1)

Kendall’s τ . Let (X1, Y1) and (X2, Y2) be two independent pairs of random

variables with a joint distribution F and marginal distributions FX and FY .

Then Kendall’s τ is defined by

ρτ (X, Y ) = P {(X1 −X2)(Y1 − Y2) > 0} − P {(X1 −X2)(Y1 − Y2) < 0}
= P (X1 < X2, Y1 > Y2)− P (X1 > X2, Y1 < Y2), (2)

Spearman’s ρ. Let (X1, Y1), (X2, Y2) and (X3, Y3) be three independent

pairs of random variables with a common joint distribution F and marginal

distributions FX and FY . Then Spearman’s ρ is defined by

ρS(X, Y ) = 3 (P {(X1 −X2) (Y1 − Y3) > 0} − P {(X1 −X2)(Y1 − Y3) < 0}) ,
(3)

2.2 Measures of Tail-dependence

The bivariate tail-dependence measures describe the dependence levels be-

tween extremal events in the upper, lower or both quadrant tails of a bivariate

distribution. The bivariate tail dependence has been studied extensively in

literature, see [4]. The extremal tail dependence of a bivariate distribution can

be illustrated by the coefficients of tail dependence parameters of its copula.

Tail dependence measures the joint probability of extreme movements that

occur in the left (lower) quadrant tail or right (upper) quadrant tail or both

tails of a 2-dimensional distribution. The coefficients of tail dependence are

limits (if they exist) that are defined as follow:

λU = lim
u→1

P
(
Y ≥ F−1

Y (u)|X ≥ F−1
X (u)

)
= lim

u→1

1− 2u+ C(u, u)

1− u
(4)

λL = lim
u→0

P
(
Y ≤ F−1

Y (u)|X ≤ F−1
X (u)

)
= lim

u→0

C(u, u)

u
. (5)
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Table 1: The coefficients of tail dependence for different copula families

Copula Lower tail-dependence Upper tail-dependence

Gaussian – –

Student’s t 2tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
2tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
Clayton 2−1/θ –

Gumbel – 2− 21/θ

Frank – –

Joe – 2− 21/δ

BB1 2−1/(δθ) 2− 21/δ

BB6 – 2− 2
1
θδ

BB7 2−1/δ 2− 21/θ

BB8 – 2− 21/θ, if δ = 1, 0 otherwise

It is important to note that, when λU exists and λU ∈ (0, 1], then copula

C exhibit upper tail dependence coefficient, and no upper tail dependence

coefficient if λU = 0. Also, if λL exists and λL ∈ (0, 1], then copula C exhibit

lower tail dependence coefficient, and no lower tail dependence coefficient if

λL = 0. The tail dependence depends only upon the underlying copula, not the

marginal distributions. Table 1 illustrates the lower (upper) tail dependence

coefficients for bivariate copula families and selected two parameter copulas.

3 Copulas

Copulas describe the intrinsic dependence formation between random vari-

ables. By Sklar’s theorem, every multivariate joint distribution function can be

decomposed into its marginal distribution functions and a copula function that

captures the complete dependence structure between underlying variables. Let

X = (x1, . . . , xn)T be a vector of random variables with joint distribution func-

tions F (x1, . . . , xn) and continuous marginal distributions F1(x1), . . . , Fn(xn),

there exists a unique copula C such that:

F (x1, . . . , xn) = C (F1(x1), . . . , Fn(xn)) , x1, . . . , xn ∈ R. (6)

Conversely, if all the marginal distribution functions, Fi(xi) for i = 1, . . . , n
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are continuous, then the copula C is unique and is expressed as:

C(u1, . . . , un) = F
(
F−1

1 (u1), . . . , F
−1
n (un)

)
, u1, . . . , un ∈ [0, 1], (7)

where ui = Fi(xi) and F−1
i (ui) are inverse distribution functions of the mar-

gins.

In addition, the copula density, c(u1, . . . , un) is given by

c(u1, . . . , un) =
∂nC(u1, . . . , un)

∂u1, . . . , ∂un

, (8)

Therefore, as a result of Eqn.(6), the density of X = (x1, . . . , xn)T , satisfies

the following result:

f(x1, · · · , xn) = c(u1, . . . , un)
n∏

i=1

fi(xi) (9)

where fi(xi) is the marginal density of xi, i = 1, . . . , n.

The result in (9) is important in copula modelling since it allows defining a

multivariate density as the product of marginal densities and a copula function

which captures the dependence between the random variables.

3.1 Bivariate Copulas

In this section, the parametric form of well-known bivariate copula fami-

lies are introduced. The bivariate copulas, i.e., two-dimensional copulas are

the most commonly used in modelling the dependence between random vari-

ables. For a comprehensive list of copula families (see [4], [28], [5]). A few

bivariate copulas are selected from among the elliptical, Archimedean and two

parameter copula families that support the most important dependence char-

acteristics: independence, positive and negative dependence, lower and upper

tail-dependence, tail independence, symmetry and asymmetry.

Independence copula. The independence copula describes two indepen-

dent random variables U1 and U2. Its copula density function c(u1, u2) = 1 is

constant for u1 ∈ [0, 1], u2 ∈ [0, 1]. The independence copula has no upper or

lower tail-dependence.
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Gaussian copula. The Gaussian (or normal) copula is symmetric, has no

tail-dependence, and is defined as:

CN(u1, u2) = Φρ

(
Φ−1(u1),Φ

−1(u2)
)
,

The density function is given by

c(u1, u2; ρ) =
1√

1− ρ2
exp

(
−ρ

2(x2
1 + x2

2)− 2ρx1x2

2(1− ρ2)

)
,

where x1 = Φ−1(u1) and x2 = Φ−1(u2) are the inverse cumulative distribution

function of a standard normal distribution.

Student-t copula. The Student-t copula is symmetric, has both upper and

lower tail-dependence, and is given by

Ct(u1, u2; ρ, ν) = tν,ρ

(
t−1
ν (u1), t

−1
ν (u2)

)
Its density function is

c(u1, u2; ρ, ν) =
1

2π
√

1− ρ2

1

dt(x1, ν)dt(x2, ν)

{
1 +

x2
1 + x2

2 − 2ρx1x2

ν(1− ρ2)

}− ν+2
2

,

where

dt (xi, ν) =
Γ
(

ν+1
2

)
Γ
(

ν
2

)√
πν

(
1 +

x2
i

ν

)− ν+1
2

, i = 1, 2

is the density of the univariate t-distribution with ν degrees of freedom and

Γ(·) is the gamma function, x1 = t−1
ν (u1), x2 = t−1

ν (u2) and t−1
ν (·) is the

quantile function of the univariate standard t-distribution with ν degrees of

freedom. The Student-t copula has two parameters ν the degrees of freedom

and ρ ∈ (−1, 1) the coefficient of correlation.

Clayton copula. The Clayton copula is asymmetric, exhibits lower tail-

dependence, but no upper tail-dependence, and its given by

CC(u1, u2) = max
{(
u−θ

1 + u−θ
2 − 1

)− 1
θ , 0
}

(10)

Its density function is

c(u1, u2; θ) = (1 + θ) (u1u2)
−1−θ (u−θ

1 + u−θ
2 − 1

)− 1
θ
−2
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The Clayton copula has a single parameter θ ≥ 0, and can only characterize

negative monotone dependence. For θ = 1 the Clayton copula reduces to the

independence copula; for θ > 0, the Clayton copula exhibit negative depen-

dence; and as θ →∞, the Clayton displays perfect monotone dependence.

Gumbel copula. The Gumbel copula is asymmetric, contains no lower tail-

dependence, but exhibit upper tail-dependence and is defined as:

CG(u1, u2) = exp

[
−
(
(− lnu1)

θ + (− lnu2)
θ
) 1

θ

]
. (11)

Its density function is

c(u1, u2) = C(u1, u2)(u1u2)
−1
(
(− lnu1)

θ + (− lnu2)
θ
)−2+ 2

θ (lnu1 lnu2)
θ−1

×
(
1 + (θ − 1)

(
(− lnu1)

θ + (− lnu2)
θ
)− 1

θ

)
,

The Gumbel copula has a single parameter θ ≥ 1, and can only characterize

positive monotone dependence. When θ = 1 the Gumbel copula simplifies to

the independence copula; for θ > 0, the Gumbel copula exhibit positive de-

pendence; and as θ →∞, the Gumbel displays perfect monotone dependence.

Frank copula. The Frank copula is symmetric, has no tail-dependence, and

is defined as:

CF (u1, u2) = −1

θ
ln

(
1 +

(exp(−θu1)− 1)(exp(−θu2)− 1)

exp(−θ)− 1

)
(12)

Its density function is

c(u1, u2) = θ(1− e−θ)e−θ(u1+u2)
[(

1− e−θ
)
− 1

(
1− e−θu1

) (
1− e−θu2

)]−2
,

The Frank copula has a single parameter θ ∈ (0,∞). For θ = 0, the Frank

copula simplifies to the independence copula; and for θ →∞, the Frank copula

achieve maximal dependence.

Joe copula. The Joe copula is asymmetric, contains no lower tail-dependence,

but exhibit upper tail-dependence and is defined as:

C(u1, u2) = 1−
(
(1− u1)

θ + (1− u2)
θ − (1− u1)

θ(1− u2)
θ
) 1

θ . (13)
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The copula density is

c(u1, u2) =
(
(1− u1)

θ + (1− u2)
θ − (1− u1)

θ(1− u2)
θ
) 1

θ
−2 · (1− u1)

θ−1(1− u2)
θ−1

·
[
θ − 1 + (1− u1)

θ + (1− u2)
θ − (1− u1)

θ(1− u2)
θ
]
.

The Joe copula has a single parameter θ ≥ 1, and can only characterize positive

monotone dependence. For θ = 1 the Joe copula simplifies to the independence

copula; for θ > 0, the Joe copula exhibit positive dependence; and as θ →∞,

the Joe displays perfect monotone dependence.

BB1 (Clayton-Gumbel) copula. The BB1 (Clayton-Gumbel) copula is

defined by

C(u, v; θ, δ) =
{

1 + [(u−θ − 1)δ + (v−θ − 1)δ]
1
δ

}− 1
θ

= η(η−1(u) + η−1(v)), θ > 0, δ ≥ 1, (14)

where η(s) = ηθ,δ(s) =
(
1 + s

1
δ

)− 1
θ
.

BB6 (Joe-Gumbel) copula. The BB6 (Joe-Gumbel) copula is given by

C(u1, u2; θ, δ) = 1−
(

1− exp

{
−
[(
− log

(
1− uθ

1

))δ
+
(
− log

(
1− uθ

2

))δ] 1
δ

}) 1
θ

,

(15)

with θ ∈ [1,∞) and δ ∈ [1,∞)

BB7 (Joe-Clayton) copula. The BB7 (Joe-Clayton) copula has the gener-

ator φ(s; θ, δ) = [1− (1− s)θ]−δ − 1 and it is given by

CJC(u, v; θ, δ) = 1−
(

1−
[(

1− (1− u)θ
)−δ

+
[
1− (1− v)θ

]−δ − 1
]− 1

δ

) 1
θ

,

= η
(
η−1(u) + η−1(v)

)
, θ ≥ 1, δ > 0. (16)

where η(s) = ηθ,δ(s) = 1−
[
1− (1 + s)−

1
δ

] 1
θ
,

BB8 (Frank-Joe) copula. The BB8 (Frank-Joe) copula is given by

C(u1, u2; θ, δ) =
1

δ

(
1−

[
1− 1

1− (1− δ)θ

(
1− (1− δu1)

θ
)(

1− (1− δu2)
θ
)] 1

θ

)
,

(17)
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with θ ∈ [1,∞) and δ ∈ (0, 1].

3.2 Pair-copula constructions

A pair copula construction (PCC) is a multivariate copula based on an

idea initially proposed by Joe [4] and further developed by Bedford and Cooke

([31], [32]), Kurowicka and Cooke [33]. The fundamental idea of PCC is the

construction of higher-dimensional copulas through bivariate copulas which

constitute a flexible class of dependence models. To illustrate the concept of

PCC it is necessary to introduce the pair-copula decomposition of a multivari-

ate density function. Let X1, . . . , Xn be a vector of random variables with joint

multivariate density function f(x1, . . . , xn). The multivariate density function

can be factorized into a series of univariate (conditional) densities as follows:

f(x1, . . . , xn) = f(x1) · f(x2|x1) · f(x3|x1, x2) . . . f(xn|x1, . . . , xn−1) (18)

where f (·|·) denotes the conditional density function.

Next, we demonstrate pair-copula constructions based on a three dimen-

sional vector of random variables. For three random variables, X1, X2 and X3,

the joint three-dimensional density can be decomposed as follows

f(x1, x2, x3) = f(x1) · f2|1(x2|x1) · f3|1,2(x3|x1, x2) (19)

The conditional density f(x2|x1) in (19) can be expressed as:

f(x2|x1) =
f(x1, x2)

f1(x1)
= c1,2 (F1(x1), F2(x2)) f2(x2) (20)

Note that f(x1, x2) = c12 (F1(x1), F2(x2)) f1(x1)f2(x2) following Sklar’s theo-

rem, where c1,2(·, ·) denote the appropriate pair-copula density for the pair of

transformed variables F1(x1) and F2(x2).

The second conditional density f(x3|x1, x2) in (19) can also be expressed

as:

f(x3|x1, x2) =
f(x1, x2, x3)

f(x1, x2)
=
f23|1(x2, x3|x1)

f2|1(x2|x1)
(21)

Following Sklar’s theorem, the conditional density f23|1(x2, x3|x1) in (21), is

expressed as:

f23|1(x2, x3|x1) = c23|1 (F (x2|x1), F (x3|x1)) · f2|1(x2|x1) · f3|1(x3|x1), (22)
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where c23|1 is a conditional copula.

Thus,

f(x3|x1, x2) = c2,3|1
(
F2|1(x2|x1), F3|1(x3|x1)

)
· f3(x3|x1)

= c23|1
(
F2|1(x2|x1), F3|1(x3|x1)

)
· c13 (F1(x1), F3(x3)) · fx(x3)

(23)

Therefore, substituting the terms (20) and (23) in (19) yields the full decom-

position for a three dimensional density which can be expressed as:

f(x1, x2, x3) =
3∏

i=1

fi(xi) · c12 (F1(x1), F2(x2)) · c13 (F1(x1), F3(x3))

· c23|1
(
F2|1(x2|x1), F3|1(x3|x1)

)
(24)

Thus, a pair-copula construction for three dimensional density, f(x1, x2, x3), is

expressed as the product of the marginal densities and three pair-copulas: two

unconditional (c12 and c13) and one conditional (c23|1), hence the expression

pair-copula decomposition. However, this PCC decomposition is not unique

anymore since one could use x2 instead of x1 for the conditional variable in

(20). The choices of different conditional variables lead to three different pair-

copula constructions.

In general, the conditional densities in (18) may be decomposed into the

appropriate pair-copula times a conditional marginal density, using the general

formula

f(xi|ν) = cxixj |υ−j
F (xi|υ−j), F (xj|υ−j) ·f(xi|υ−j), (25)

for i, j = 1, . . . , n and where υ denote an arbitrary set of x1, . . . , xn with xj in

it but not xi. Then υ−j denotes the n-dimensional vector υ excluding the jth

component.

Following [7] the pair-copula construction also involves different marginal

conditional distributions functions of the form F (x|υ). Using the notations

from Eqn.(25), for every j, Joe [4] showed that

F (xi|υ) =
∂Cxi,xj |υ−j

(F (xi|υ−j), F (xj|υ−j))

∂F (xj|υ−j)
, (26)

where Cxixj |υ−j
is the bivariate copula distribution function. An iterative ap-

plication of Eqn.(26) allows the representation of all conditional distribution

functions as nested partial differentiated copulas and marginal distributions.
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In conclusion, a multivariate density can be decomposed into a product of

several different conditional probability distributions and pair copulas under

appropriate regulatory conditions. The decomposition is also iterative in na-

ture and is not unique, therefore in a given specific factorization, there still

exists a large number of possible pair copula constrictions. For example, its

possible to construct 240 different pair-copula constructions for a five dimen-

sional distribution function [7].

3.3 Regular Vines

Bedford and Cooke [31] introduced a graphical structure, called regular

vines that classifies all possible pair-copula decompositions. Regular vines are

flexible graphical structures for modelling the multi-dimensional dependence

using a cascade of conditional bivariate pair-copulas as building blocks. This

concept was developed further and extended by Kurowicka and Cooke [31],

Kurowicka [33]. Aas [7] developed their statistical inference. The following

definitions are obtained from Kurowicka [33].

Definition 3.1. Tree Let N = 1, 2, . . . , n be nodes and E be edges, T =

(N,E) is a tree that is connected where E is a subset of unordered pairs of

N with no cycle; that is, there does not exist a sequence a1, . . . , ak (k > 2) of

elements of N such that

a1, a2 ∈ E, . . . , ak−1, ak ∈ E, ak, a1 ∈ E.

The degree of node ai ∈ N is the number (aj ∈ N |ai, aj ∈ E); that is, the

number of edges attached to ai.

The trees that are used to describe the dependence structures in high-

dimensional distributions are called dependence trees.

Definition 3.2. (Regular vine)

V is a regular vine on n elements if the following conditions hold

1. V = (T1, . . . , Tn−1)

2. T1 = (N1, E1) is a connected tree with nodes N1 = {1, . . . , n}, and edges

E1; for i = 2, . . . , n− 1, Ti is a connected tree with nodes Ni = Ei−1.
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3. For i = 2, . . . , n−1, if {a, b} are nodes of Ti connected by an edge, where

a = {a1, a2} and b = {b1, b2}, then exactly one of the ai equals one of the

bi (proximity condition).

Proximity condition means that if there is an edge in tree Ti (where i ≥ 2)

connecting two nodes then those two nodes are edges in tree T and they share a

common node (note that nodes in one tree are edges in the next tree). A regular

vine on n variable is a vine in which two edges in tree j are connected by an

edge in tree j+1 only if these edges share a common node, for j = 1, . . . , n−2.

There are n(n− 1)/2 edges on a regular vine on n variables.

The class of regular vine is generally broad and comprises of a large num-

ber of probable pair-copula constructions. However, two particular classes of

regular vines namely canonical-Vine (C-Vine) and a drawable vine (D-Vine)

are the most commonly utilized in many applications (Kurowicka and Cooke

[33]).

Definition 3.3. (D-Vine, C-Vine). An R-Vine is called a

(i) D-Vine if each node in T1 has a degree of at most 2.

(ii) C-Vine if each tree Ti has a unique node of degree n− i. The node with

maximal degree in T1 is the root node.

Graphically, C-Vine follows a star-like structure with a root node in each

tree while D-Vine follows a path structure with the first tree having nodes with

degree two or less. This implies that C-Vines are very practical for multivariate

data where the significance of the variables can be ordered. The C-Vine and

D-Vine structures are somehow the two extreme contrary cases of an R-Vine.

A node in an R-Vine can be of degree 1 to n− 1 and therefore ranges between

the C-Vine and D-Vine limitations. For more detailed information about these

special cases see Aas et al.[7].

3.4 Regular vine copula specification

The graphical structure of regular vines is used to specify necessary copulas

for the pair-copula constructions. To build an R-Vine copula one must specify

the n − 1 unconditional bivariate copulas between variables indexed by the
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conditioned sets of the edges in the first tree of the R-Vine. For the second

and subsequent trees of the R-Vine one needs to specify the bivariate copulas

between variables indexed by the conditioned sets conditional on variables

indexed by the conditioning sets of edges of R-Vine. Therefore the R-Vine

copula specification is formally defined corresponding to an R-Vine in Bedford

and Cooke [33].

Definition 3.4. (Regular vine copula specification)

A regular vine copula specification on n variables is a multivariate distribution

function defined as C = (V , B(V), θ(B(V)))

(i) V is a vine tree structure on n variables;

(ii) B(V) = {Be|i = 1, . . . , n− 1, e ∈ Ei} is a set of n(n − 1)/2 bivariate

copulas; and

(iii) θ(B(V)) =
{
θe(a),e(b)|De|e ∈ Ei, i = 1, . . . , n− 1

}
is the set of parameters

corresponding to the copula family in B(V).

Following the definition of regular vine specification, the full specification

of a regular vine copula has three components: the vine tree structure V , the

pair-copula family set B(V), and the corresponding copula parameters (B(V))

and marginal distribution functions. The statistical inference on regular vines

to a given data set involves the implementation of three tasks: (a) selecting

the corresponding vine structure with all its trees, (b) choosing a copula family

for each of the n(n− 1)/2 pair-copulas, and (c) estimating the corresponding

parameters of each copula.

3.4.1 Tree structure construction

The regular vine tree structure is the dependence structure which connects

all bivariate copula together. To determine the appropriate tree structure

of the regular vine, the idea is to prioritize strongest dependencies in the

first trees, because pair-copulas specified in first tree often have the greatest

influence and dependence tends to be strongest in Tree 1 [36]. For precision of

the model, the strongest dependencies are typically the most important and

vice versa (copula distribution functions for parameters close to independence

are similar). This type of modelling has its drawbacks, for example the solution
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is not necessarily global optimum, because each tree is analysed separately.

This stepwise tree-by tree inference is a sequential method. However, it is a

computationally fast and effective method comparing to alternatives. More

about alternative ways to model with regular vine copulas can be found in

[34], where different regular vine copula applications are reviewed and the

advantages and disadvantages of each discussed. The Kendall’s τ is used to

measure the dependence and solving the optimization problem for each tree

in order to find the so called maximum spanning tree (a tree that maximizes

cumulative pairwise dependencies. After determining the regular vine tree

structure, the next task is to fit pair-copulas to all edges of the regular vines

(edges represent conditional and unconditional variable pairs).

3.4.2 Copula selection

In order to select an adequate copula for each pair-copula, a variety of bi-

variate copulas are considered for selection including; Gaussian (G), Student’s

t (t), Clayton (C), Gumbel (G), Frank (F), Joe (J), BB1 (Clayton-Gumbel),

BB6 (Joe-Gumbel), BB7 (Joe-Clayton), BB8 (Frank-Joe), Survival Clayton,

Survival Gumbel, Survival Joe, Survival BB1, Survival BB6, Survival BB7 and

Survival BB8 copulas for every pair of currency exchange rates. The most ap-

propriate copula model are selected independently for each pair-copula using

the AIC selection criteria. This model selection method rewards goodness-of-fit

of a model and penalizes increasing the number of parameters. Another possi-

bility is to use Bayesian Information Criterion (BIC) instead of AIC. Both AIC

and BIC use maximum likelihood, however, AIC depends on sample size and

BIC does not. There is also the question of whether likelihood based model se-

lection methods appropriately take into account tail dependence. The problem

with maximum likelihood is that it mostly fits the distribution in the “middle”

and its tail has little impact. After choosing the best fitting copula families for

the conditional and unconditional variable pairs determined by the edges in

regular vine, we can proceed to estimating the parameters of the pair-copulas.
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3.4.3 Parameter estimation

The estimation of copula parameters and margin specifications is imple-

mented using a two-step estimation procedure proposed by [29], the inference

functions for margins (IFM) method that rely on maximum likelihood estima-

tion (MLE). In the first step, the marginal parameters are estimated and in

the second step the copula parameters are estimated. This procedure is com-

monly used in applications of regular vine copula specification and involves

the selection of pair-copula types and estimation of the copula parameters to

be done simultaneously [30].

4 Data and empirical results

4.1 Data description

The data set consists of a portfolio of six currency exchange rates cov-

ering the period from January 2, 2001 to April 20, 2018, yielding a total of

4511 daily observations (exclusive of public holidays and weekends). The cur-

rency exchange rates considered include: British pound (GBP), European Euro

(EUR), Japanese Yen (JPY), Swiss Franc (CHF), Canadian Dollar (CAD)

and Australian Dollar (AUD) all against the US Dollar (USD). The data

were downloaded from (https://www.investing.com) website. All daily cur-

rency exchange rates are transformed into logarithm returns using the formula

rt,i = log(Pt,i/Pt−1,i), where Pt,i denote price at time t of i-th currency exchange

rate. Figure 1 illustrate daily return plots of different currency exchange rates.

Each plot illustrate some instances of high volatility clustering alternating with

periods of relative tranquility. The volatile behaviour exhibited by returns sug-

gests the presence of volatility clustering and conditional heteroscedasticity in

the data.

Table 2 presents the summary statistics of the daily currency returns over

the full sample period from January 2, 2001, to April 20, 2018, for the GBP,

EUR, JPY, CHF, CAD and AUD. The mean values of all daily currency re-

turns are relatively close to zero and high volatility is evident with significantly

high standard deviations for all currency returns. The excess kurtosis values re-

ported suggest that all currency return series distributions are heavy tailed and
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exhibit leptokurtic behaviour beyond that of the normal distribution. More-

over, the values for skewness imply that currency return series for the Euro,

Japanese Yen and Swiss Frank are negatively skewed while other currency

return series are positively skewed. Jarque-Bera (JB) test the normality of

the unconditional distribution of currency returns and the results reject the

normality hypothesis for each currency return series confirming that all the

series are non-normal distributed. The Augmented Dickey-Fuller (ADF (k))

test for a unit root against a trend stationary alternative augmented with k

lagged difference terms. The (ADF) results reject unit root hypothesis for all

return series, which implies that the currency return series are assumed to be

stationary, as using logarithm returns amounts to a variance stabilizing trans-

formation. Ljung-Box (LB) portmanteau Q-test assess the null hypothesis of

no serial autocorrelations in the squared returns at k lags. LB(Q) statistic

values reported for squared return series are significantly high, thus we reject

the null hypothesis of no serial autocorrelation up to 20th lag at every level

of significance for all the currency return series. Finally, Engle’s Lagrange

multiplier (LM (k)) test is used for testing the presence of ARCH effects on k

lags. The ARCH-LM test rejects the no ARCH effect hypothesis, thus confirm-

ing the presence of volatility clustering and conditional heteroscedasticity in

currency exchange returns series. The asymmetric conditional heteroscedastic

specification may be considered to be more practical in the presence of leverage

effect.

4.2 The results for marginal specifications

In order to account for the stylized facts about financial returns, we em-

ploy a GARCH-type specifications to model volatility dynamics assuming

the innovations term follows a skewed-student-t distribution. Formally, let

rt = ln(Pt/Pt−1) the logarithmic return at time t, the E-GARCH specification

originally proposed by Nelson [35] is utilized to account for asymmetries in the

currency return series. The conditional mean component is given as follows:

rt = φ0 +
m∑

i=1

φirt−i −
n∑

j=1

ϕjεt−j + εt, (27)

where φ0 is a constant, φi and ϕj are the autoregressive (AR) and moving
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Figure 1: Currency exchange returns between January 2, 2001 and April 20,

2018

average (MA) parameters with m and n lags, respectively. εt = σtzt, is a

stochastic process with zt as iid sequence assumed to follow a skewed-t dis-

tribution with ν degrees of freedom and σt is the conditional volatility. The

conditional variance σ2
t is given by:

σ2
t = ω +

p∑
i=1

αiε
2
t−i +

p∑
i=1

γiψ (εt−i) ε
2
t−i +

q∑
j=1

βjσ
2
t−j, (28)

where ω is a constant, αi and βj are the ARCH and GARCH effect parameters,
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Table 2: Summary statistics of the daily currency exchange returns

GBP EUR JPY CHF CAD AUD

Nobs 4511 4511 4511 4511 4511 4511

Minimum −2.996 −3, 672 −3.772 −17.145 −3.766 −8.187

Maximum 8.400 2.933 5.216 9.239 3.290 7.674

Mean 0.001 −0.006 −0.001 −0.011 −0.004 −0.007

Stdev 0.585 0.619 0.647 0.719 0.573 0.826

Skewness 0.901 −0.023 −0.083 −2.574 0.121 0.439

Kurtosis 11.703 1.664 3.713 78.421 2.829 11.751

Normality and Stationarity Tests

JB 26382.44 522.06 2600.24 1161960.36 1518.55 26129.47

ADF (15) −15.835 −15.719 −16.612 −17.216 −16.685 −15.938

Heteroscedasticity Tests

LBQ (1) 133.79 71.05 73.08 0.017 236.50 344.54

LBQ (5) 234.98 363.41 387.27 4.781 1421.20 2891.90

LBQ (10) 323.31 646.45 592.25 7.869 2640.70 4880.90

LBQ (20) 464.43 1212.1 1171.40 11.456 4884.5 7137.70

LM (10) 282.76 343.18 465.67 281.76 547.27 421.99

LM (20) 646.04 701.62 809.42 547.63 1093.03 847.87
The critical values of Ljung-Box test and LM test are 18.307 (lag 10), and 31.410

(lag 20) at 5%.

respectively. γi captures the leverage effect: ψ(εt) = ψ(zt) = 1 in case zt < 0

and 0 if zt ≥ 0. The specification for the marginal distribution plays a piv-

otal role for dependence modelling since they filter any serial autocorrelation,

heteroscedasticity and leverage effects from the return series hence yielding

appropriate input data for the copula estimation.

The parameter estimates of the fitted marginal specifications given by

Equations (27) and (28) for currency exchange returns are estimated by max-

imum likelihood estimation method. The parameters m, n, p and q can take

different combinations of values starting from zero to two lags for brevity pur-

poses. To select the most appropriate univariate model for each of the currency

exchange rates series, the Akaike and the Bayesian information criteria were
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employed. Table 3 reports full sample estimation results of the most appro-

priate ARMA-EGARCH(1,1) specification model assuming skewed Student’s-t

distribution for the innovations (with standard errors enclosed in parenthesis)

over the entire sample period from January 2, 2001, to April 20, 2018. Based

on the results in Table 3, most of the parameter estimates for both the condi-

tional mean and variance equations are confirmed to be statistically significant

at 1% significance level. In fact, all the α1 parameters are significant except

for CHF while the β parameters are found to be close to one though most of

them are not statistically significant except for JPY at 1%. In addition, most

leverage effect parameter γ reported are significant except for the EUR series.

Finally, the values of the degrees of freedom of the skewed Student-t distribu-

tions ranges from the smallest value of 5.8 to a maximum of 13.6 and all are

statistically significant. Thus, the use of heavy-tailed innovations distribution

seems to be justified to account for skewness and excess kurtosis in all currency

return series. Ljung-Box portmanteau Q-test assessing the null hypothesis of

no serial autocorrelations for standardized squared residuals fails to detect any

serial correlation. Engle’s Lagrange multiplier (LM (k)) test is used for testing

the presence of ARCH effects up to 20 lags also fails to detect the presence of

ARCH effects. Therefore, we confirm the ARMA-EGARCH(1, 1) specification

satisfactorily filters any serial autocorrelation, heteroscedasticity and leverage

effects in each currency return series. In order to analyze the dependence

structure between currency exchange rates in a better way the standardized

residuals are transformed into the unit square normal variates [0, 1] by utilizing

the probability integral transform (PIT), a necessary condition to implement

copula estimation.

4.3 The results for dependence models

Following the sequential selection procedure by Dissmann et al. [36] de-

scribed in section 3, we first determine the pairwise dependence dynamics be-

tween currency exchange return series using the Kendall’s τ rank correlation

coefficient to select the optimal R-Vine specification. Figure 2 illustrates the

pairwise scatter plots for the resulting copula data on the top-right side of the

figure and their corresponding estimated Kendall’s τ values on the bottom-left

side of the figure for the different exchange rates representing different mag-
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Table 3: Parameter estimates for the fitted ARMA-EGARCH(1, 1) specifi-

cation with skewed Student’s-t innovations distribution for the entire sample

period starting from January 2, 2001 to April 20, 2018

GBP EUR JPY CHF CAD AUD

Conditional mean parameter estimates

µ −0.005 −0.09 0.004 −0.004 −0.004 −0.017

(0.007) (0.009) (0.007) (0.008) (0.007) (0.000)

φ −0.047 −0.030 −0.828

(0.014) (0.015) (0.044)

θ −0.032 −0.032 0.798

(0.015) (0.015) (0.047)

Conditional volatility parameter estimates

ω −0.009 −0.005 −0.017 −0.006 −0.009 −0.007

(0.002) (0.001) (0.005) (0.001) (0.002) (0.002)

α1 0.013 0.011 −0.018 −0.008 0.009 0.027

(0.006) (0.005) (0.009) (0.001) (0.007) (0.008)

β1 0.993 0.996 0.982 0.994 0.993 0.991

(0.002) (0.000) (0.005) (0.000) (0.001) (0.001)

γ1 0.084 0.075 0.143 0.066 0.107 0.117

(0.015) (0.000) (0.016) (0.007) (0.011) (0.013)

λ 9.216 10.133 5.849 6.922 13.593 10.164

(1.160) (1.426) (0.493) (0.650) (2.596) (1.452)

Heteroscedasticity tests

LBQ(10) 0.005 0.916 0.916 1.000 0.584 0.054

LBQ(20) 0.156 0.890 0.981 1.000 0.195 0.052

LM(10) 0.006 0.043 0.195 0.539 0.349 0.174

LM(20) 0.016 0.180 0.053 0.656 0.419 0.181

nitude and direction of pair wise dependencies. Similar to the unconditional

correlation measures, the conditional correlation based on Kendall’s τ indi-

cates that some currency returns generally exhibit higher dependencies than

others, for example; EUR, CHF and AUD.

Table 4 also shows different pairwise dependencies based on Kendall’s τ val-

ues reported in the correlation matrix between pairs of uniform-transformed
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Figure 2: Pairs-plots and Kendall’s taus each currency exchange rates; the

pairplots (top-right) and the corresponding Kendall’s τ vslues (bottom-left).
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standardized residuals and the total over each row of the currency exchange

rates. The summation of the pairwise correlations over the EUR row gives the

highest value while the EUR-CHF pair records the strongest pairwise correla-

tion.

Table 4: The empirical Kendall’s τ values and the total over each row of the

currency exchange rates.

GBP EUR JPY CHF CAD AUD Sum

GBP 1 0.4568 0.1602 0.3911 0.2733 0.3468 2.6282

EUR 0.4568 1 0.2355 0.6682 0.3037 0.3974 3.0616

JPY 0.1602 0.2355 1 0.3069 0.0482 0.1320 1.8828

CHF 0.3911 0.6682 0.3069 1 0.2296 0.3042 2.9000

CAD 0.2733 0.3037 0.0482 0.2296 1 0.4225 2.2773

AUD 0.3468 0.3974 0.1320 0.3042 0.4225 1 2.6029

The regular vine (R-Vine) tree structure specification is selected by tree-

wise selection procedure described in Section 3. The selection algorithm follows

a step-wise approach that selects each tree Ti, i = 1, 2, . . . , n− 1 as the maxi-

mum spanning tree based on the (empirical) absolute Kendall’s τ value of the

variable pairs as edge weights see [36]. The first and second trees (levels) of

the estimated R-Vine specification are illustrated in Figure 3. The letters and

numbers reported on the edges in between the nodes represent the bivariate

copulas chosen to model the dependence between the currency exchange rates,

while the numbers correspond to subsequent Kendall’s τ correlation value be-

tween the two variables. For example in the EUR and CHF pair, the selected

copula is the Student-t, with 0.63 the Kendall’s τ value. The tree structure

graph shows a significant positive correlation between the currencies.

In order to determine the C-Vine structure, the root node must be selected

in every level (tree). Analogous to the approach of fitting an R-Vine structure,

the root node of the C-Vine is selected by summing Kendall’s τ ’s values over

each row and picking the node that maximizes the sum of absolute pairwise

dependencies to this node which is measured by the Kendall’s τ coefficient

as the root node [37]. For the first (level) tree of the C-Vine, the EUR cur-

rency exchange rate is selected as the root node, since it has the maximum

absolute Kendall’s tau value compared to the other nodes. The root nodes for

other (levels) trees of the C-Vine selected as described in [38] for the currency
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Tree 1

t(0.41)

t(0.45)

t(0.31)

t(0.67)

t(0.38)

CAD

GBP

JPY

CHF

EUR
AUD

Tree 2

t(0.1)

t(0.14)

t(−0.05)

G270(−0.05)

AUD,CAD

EUR,GBP

CHF,JPY

EUR,CHF
AUD,EUR

Figure 3: Tree 1 and Tree 2 for the estimated R-Vine specification of exchange

rates data.

exchange returns data are presented in Table 5.

The first and second (level) tree structure for both the C-Vine and D-Vine

specifications are illustrated in Figure 4 and 5 respectively. For T1 of the C-
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Table 5: Root nodes for the C-Vine structure of the currency exchange rates

Tree Root-node

Tree 1 EUR

Tree 2 AUD, EUR

Tree 3 AUD, JPY; EUR

Tree 4 JPY, GBP; AUD, EUR

Tree 5 CAD, GBP; JPY, AUD, EUR or GBP, CHF; JPY, AUD, EUR

Vine all the other five currencies exchange rates are linked to the EUR which

is the root node at the center of this tree diagram. The dependencies for pos-

sible pairs among the currency exchange rates in the first tree are positive and

significant. The CHF-EUR pair has the highest absolute value of Kendall’s τ

representing the strongest correlation between the currencies. Other pair cur-

rencies that represent significant correlations are between EUR, GBP, CHF

and AUD while JPY and CAD demonstrate lower dependence with other cur-

rency exchange rates.

Having selected the appropriate tree structures, the next step is to choose

the appropriate pair-copula for each currency exchange pair linked to the R-, C-

or D-Vine structures. The bivariate copulas considered in this paper include;

Gaussian (G), Student-t (t), Clayton (C), Gumbel (G), Frank (F), Joe, BB1,

BB6, BB7, BB8, Survival Clayton, Survival Gumbel, Survival Joe, Survival

BB1, Survival BB6, Survival BB7 and Survival BB8 copula. The copula pa-

rameters are estimated using maximum likelihood estimation method. Finally,

the most appropriate copula specification of each pair-copula is selected using

the Akaike and the Bayesian information criteria. The results of the sequential

selection procedure provide a tree structure, corresponding pair-copula types

and parameter estimates.

Table 6 reports parameter estimates of the regular vine (R-Vine) copula,

AIC, BIC, Log-likelihood, Kendall’s τ , the upper (λU) and lower (λL) tail

dependence values respectively. The corresponding p-values for the estimated

parameters are enclosed in parentheses. The parameter estimates of the condi-

tional and unconditional pair-copulas are observed to be significant at 1% level

of significance. The results also demonstrate that all the pair dependencies in

the first tree of the regular vine are modelled by Student-t copula, signifying

the presence of symmetric tail dependence. The degrees of freedom for the



Cyprian Omari, Peter Mwita and Anthony Waititu 123

Tree 1
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t(0.45)

t(0.24)
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JPY

CAD

EUR

AUD

Tree 2

G270(−0.05)

t(0.14)

t(0.03)

t(0.31)

EUR,CHF

EUR,GBP

EUR,JPY

EUR,CAD

AUD,EUR

Figure 4: Tree 1 and Tree 2 for the C-Vine specification of the currency ex-

change rates dataset

Student-t distribution demonstrate presence of heavy-tailed distribution for

the six currency exchange returns. Therefore, in general the results suggest

that movements in currency exchange rates are inclined in the same direction
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Tree 1

t(0.41)

t(0.22)
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Tree 2
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V3,V4

V2,V3
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Figure 5: Tree 1 and Tree 2 for the D-Vine specification of the exchange rates

dataset.

with different levels of price margins.

Correspondingly, the C-Vine and D-Vine copula parameter estimates, AIC,

BIC, log-likelihood, Kendall’s τ , the upper (λU) and lower (λL) tail dependence
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Table 6: Parameter estimates for six-dimensional R-Vine copula
Tree Pair Copula ρ̂ ν̂ τ̂ λU λL

1 AUD,CAD t 0.60 (0.01) 10.90 (1.96) 0.41 0.11 0.11

EUR,GBP t 0.65 (0.01) 10.48 (1.69) 0.45 0.15 0.15

CHF,JPY t 0.47 (0.01) 5.52 (0.54) 0.31 0.17 0.17

EUR,CHF t 0.87 (0.00) 2.62 (0.16) 0.67 0.64 0.64

AUD,EUR t 0.56 (0.01) 7.71 (0.94) 0.38 0.15 0.15

2 EUR,CAD;AUD t 0.16 (0.02) 17.56 (4.79) 0.10 0.00 0.00

AUD,GBP;EUR t 0.22 (0.01) 13.72 (2.77) 0.14 0.01 0.01

EUR,JPY;CHF t −0.08 (0.02) 11.21 (1.86) −0.05 0.00 0.00

AUD,CHF;EUR G270 −1.05 (0.01) – 0.05 – –

3 GBP,CAD;EUR,AUD t 0.08 (0.02) 23.40 (8.00) 0.05 0.00 0.00

CHF,GBP;AUD,EUR t 0.07 (0.02) 19.92 (5.57) 0.04 0.00 0.00

AUD,JPY;EUR,AUD t 0.06 (0.02) 8.29 (1.11) 0.04 0.02 0.02

4 CHF,CAD;GBP,EUR,AUD F −0.02 (0.08) – −0.20 – –

JPY,GBP;CHF,AUD,EUR t 0.01 (0.02) 20.93 (6.46) 0.01 0.00 0.00

5 JPY,CAD;CHF,GBP,EUR,AUD F −0.05 (0.08) – −0.05 – –

For the Student’s-t copula, the first and second parameter components are the

correlation coefficient and degrees of freedom parameters respectively.

values are also presented in Tables 7 and 8 respectively. Similar to the first

tree of the R-Vine copula, the parameter estimates of the unconditional and

conditional pair-copulas are significant at 1% level of significance and Student-

t copula is again selected as the most appropriate fit for most pairs of currency

returns in the first and subsequent tree of both C-Vine and D-Vine, signifying

the presence of symmetric tail dependence. The Kendall’s τ values are also

highest in the first tree and reduces significantly in magnitude in the higher

levels starting from the third tree. The lower and upper tail dependence values

are also significant for the first two levels of the regular copulas.

4.4 Comparison of the Vine copulas

For purposes of comparison, we explore the benefits of using different reg-

ular vine copula specifications (R-Vine, C-Vine and D-Vine), with the pair-

copula families chosen independently from a variety of bivariate copulas and

evaluate their overall performance compared to regular vines fitting all pair-

copulas with only Student-t or Gaussian bivariate copulas. The six different

regular vine specifications compared include;

• R-Vine specification with pair-copulas selected independently from a list

of bivariate copula families listed in Section 3.
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Table 7: Parameter estimates for six-dimensional C-Vine copula
Tree Pair Copula ρ̂ ν̂ τ̂ λU λL

1 EUR,CHF t 0.87 (0.00) 2.62 (0.16) 0.67 0.64 0.64

EUR,GBP t 0.65 (0.01) 10.48 (1.69) 0.45 0.15 0.15

EUR,JPY t 0.37 (0.01) 4.67 (0.39) 0.24 0.16 0.16

EUR,CAD t 0.44 (0.01) 9.77 (1.57) 0.29 0.06 0.06

EUR,AUD t 0.56 (0.01) 7.71 (0.94) 0.38 0.15 0.15

2 AUD,CHF;EUR G270 −1.05 (0.01) – −0.05 – –

AUD,GBP;EUR t 0.22 (0.01) 13.72 (2.77) 0.14 0.01 0.01

AUD,JPY;EUR t 0.04 (0.02) 6.59 (0.71) 0.03 0.03 0.03

AUD,CAD;EUR t 0.47 (0.01) 10.95 (1.92) 0.31 0.06 0.06

3 JPY,CHF;AUD,EUR t 0.32 (0.01) 20.27 (5.68) 0.20 0.00 0.00

JPY,GBP;AUD,EUR t 0.03 (0.02) 14.49 (3.24) 0.02 0.00 0.00

JPY,CAD;AUD,EUR F −0.53 (0.08) – −0.06 – –

4 GBP,CHF;JPY,AUD,EUR F 0.44 (0.08) – 0.05 – –

CAD,GBP;JPY,AUD,EUR t 0.09 (0.02) 23.52 (8.00) 0.05 0.00 0.00

5 CAD,CHF;GBP,JPY,AUD,EUR F −0.06 (0.08) – −0.01 – –

Table 8: Parameter estimates for six-dimensional D-Vine copula

Tree Pair Copula ρ̂ ν̂ τ̂ λU λL

1 CAD,AUD t 0.60 11.02 0.41 0.11 0.11

CHF,CAD t 0.34 8.61 0.22 0.06 0.06

JPY,CHF t 0.47 5.52 0.31 0.17 0.17

EUR,JPY t 0.37 4.67 0.24 0.16 0.16

GBP,EUR t 0.65 10.63 0.45 0.14 0.14

2 CHF,AUD;CAD t 0.32 13.71 0.21 0.01 0.01

JPY,CAD;CHF t −0.06 11.19 −0.04 0.00 0.00

EUR,CHF;JPY t 0.85 3.00 0.64 0.59 0.59

GBP,JPY;EUR t 0.04 9.70 0.02 0.01 0.01

3 JPY,AUD;CHF,CAD t 0.07 11.58 0.04 0.01 0.01

EUR,CAD;JPY,CHF t 0.27 28.52 0.18 0.00 0.00

GBP,CHF;EUR,JPY t 0.04 25.17 0.03 0.00 0.00

4 EUR,AUD;JPY,CHF,CAD F 1.84 0.00 0.20 – –

GBP,CAD;EUR,JPY,CHF t 0.18 15.50 0.11 0.00 0.00

5 GBP,AUD;EUR,JPY,CHF,CAD BB8 2.14 0.52 0.01 – –

• R-Vine specification with all pair-copula selected as Student-t copula.

The student-t copula models both the lower and upper tail dependence.

• R-Vine specification with all pair-copula selected as Gaussian copula.

This corresponds to the elliptical multivariate normal copula.
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• C-Vine specification with pair-copulas selected independently from a list

of bivariate copula families (as above).

• D-Vine specification with pair-copulas selected independently from a list

of bivariate copula families (as above).

The [39] and [40] tests are used to test the hypothesis that the regular vine

copula specification with independently selected pair-copulas compared to the

other regular copula specifications fit the data more appropriately. In par-

ticular, we apply AIC, BIC, the log-likelihood and results of the Vuong and

Clarke tests to select among six different regular vine specifications. Table 9

reports the log-likelihoods, AIC, BIC, numbers of parameters, number of fitted

pair-copulas and goodness-of-fit tests for all regular vine copula specifications.

The first row shows AIC, BIC, the log likelihood of the selected regular vine

copula specification and number of estimated parameters for the selected pair-

copulas families. The second rows lists the number of different pair-copula

families selected. The third and fourth rows give the results of the Vuong

and Clarke tests (corresponding p-value in parenthesis), with and exclusive of

Akaike and Schwarz corrections, respectively, testing the regular vine specifica-

tion with pair-copulas selected independently against the other specifications

represented in the particular columns. The different pair-copula families for

the fitted regular vine specifications are distributed as follows; for the R-Vine

mixed copula; 12 Student-t, 2 Frank and 1 G270 copulas requiring 27 param-

eter estimates. The R-Vine (Student-t) has 30 parameters to be estimated

for the 15 Student-t copulas while the R-Vine (Gaussian) has 15 parameters

for the 15 Gaussian copulas. When the selection for a pairwise independent

pair-copula is permitted, the results remain the same as regular mixed vine

model. For the C-Vine mixed copula there are; 11 Student-t, 3 Frank and G270

pair-copulas. Finally, for the D-Vine mixed copula there are; 13 Student-t, 1

Frank and 1 BB8 pair-copulas. The Student-t copula is selected the highest

number of time for all the regular vine specification. Note that the number of

parameters to be estimated can reduce when using different copulas. The most

appropriate regular vine copula specification can be selected based on the AIC,

BIC and the log-likelihood values. From Table 9, the log-likelihood value of the

regular vine (R-Vine) is 7325.70, the log-likelihood value of C-Vine specifica-

tion is 7335.86 and the log-likelihood value of D-Vine specification is 7263.40.
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Table 9: AIC, BIC, Log-Likelihoods, numbers of parameters, and of copulas

for all regular vine specifications as well as results of the Vuong and Clarke

tests for all copula specifications with corresponding p-values in parentheses
R-Vine R-Vine R-Vine R-Vine C-Vine D-Vine

mixed all t all Gauss Indep. mixed mixed

AIC −14597.40 −14577.79 −13102.33 −14597.40 −14619.73 −14468.80

BIC −14424.21 −14385.36 −13006.11 −14424.21 −14452.96 −14282.79

Log Likelihood 7325.70 7318.89 6566.16 7325.70 7335.86 7263.40

No. of parameters 27 30 15 27 26 28

Indep 0 0 0 0 0 0

Gaussian 0 0 15 0 0 0

Student t 12 15 0 12 11 13

No. of Frank 2 0 0 2 3 1

copulas G270 1 0 0 1 1 0

BB8 0 0 0 0 0 1

No correction 1.233 10.918 0.000 −1.319 3.820

p-value (0.218) (0.000) (1.000) (0.187) (0.000)

Vuong Akaike corr. 1.776 10.745 0.000 −1.448 3.943

tests p-value (0.076) (0.000) (1.000) (0.148) (0.000)

Schwarz corr. 3.519 10.192 0.000 −1.864 4.336

p-value (0.000) (0.000) (1.000) (0.062) (0.000)

No correction 2149 2885 0.000 2382 2293

p-value (0.002) (0.000) (1.000) (0.000) (0.271)

Clarke Akaike corr. 2184 2874 0.000 2374 2303

tests p-value (0.035) (0.000) (1.000) (0.000) (0.162)

Schwarz corr. 2267 2846 0.000 2350 2320

p-value (0.743) (0.000) (1.000) (0.005) (0.057)

The table presents AIC, BIC, log-likelihoods, numbers of parameters, and of copulas
for all models as well as results of the Vuong and Clarke tests (test statistics and
p-values in parentheses) comparing the R-vine model with mixed copulas to all other
models. The positive values of Vuong test statistics indicate that the test favours
the R-vine model over the respective alternative model

Thus, the C-Vine copula specification is the most appropriate fit, with minor

discrepancy compared to the R-Vine copula specification, demonstrating evi-

dence of both upper and lower tail dependence. However, when comparing an

R-Vine specification with independently selected copulas to the other R-Vine

specifications like the C-Vine and D-Vine, the likelihood cannot be used since

the models are non-nested. The Vuong and Clarke’s likelihood-ratio tests are

used to compare non-nested models.

The R-Vine copula specifications are compared here to determine which

specification fits the currency exchange data better compared to the others.

The null hypothesis is “The mixed R-Vine copula specification fits the data
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more appropriately than all other copula specifications under consideration”.

Based on the Vuong and Clarke tests results it is observed that the regular vine-

copula specification with independently selected pair-copulas is favoured over

the D-Vine specification and the multivariate Gaussian copula. In this cases

the hypothesis cannot be reject given the corresponding high p-value. There

is no statistical significant difference between regular vine copula specification

with independently selected pair-copulas to the independent R-Vine. The

negative test statistic values for the Voung tests and the corresponding high

p-value confirms that the C-Vine specification is favoured over the regular

vine copula specification with independently selected pair-copulas. This is

as a result of the dependence structure exhibited by currency markets which

are most likely to experience a crash and boom together thus, concluding

that currency markets are integrated due to the nature of the global financial

systems.

5 Conclusion

Understanding and modelling high-dimensional dependence behaviour be-

tween currency exchange rates can be a challenging task. The vine copula-

based approach offers superior flexibility that facilitates modelling complex

asymmetric dependence patterns common in multivariate financial variables.

In this paper, a general regular vine copula model selection approach is pro-

vided to choose sequentially the vine tree structure, the copula families for each

pair-copula term from a wide variety of bivariate copula classes and estimating

their corresponding parameters. The selection approach employs [41] sequen-

tial algorithm which determines a maximum spanning tree and the absolute

Kendall’s tau empirical values are used as weights. The results of the sequential

selection procedure provide a tree structure, corresponding pair-copula types

and parameter estimates for all the regular vine-copula specifications. For

purposes of comparison, we explore the benefits of using different regular vine

copula specifications using the Voung and Clarke tests. The C-Vine copula

specification is favoured over all the other regular vine copula specifications in

modelling the dependence dynamics between currency exchange rates. In fu-

ture research, we propose to implement the matrix representation of an R-vine
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copula specification and also investigate further the model selection problem

to include the choice of other weights other than Kendall’s tau. The regular

vine-copula based model can also be used to explore the practical application

of R-Vine copulas in estimating portfolio Value-at-Risk.
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