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Abstract 
 

We consider a space S of complex vectors in C
3
 with physically relevant constraints and the 

corresponding representation of the group SO(3,C) acting on S. The constraints are 

introduced to provide real-valued and hyperbolically calculated vector magnitudes. 

Additionally, in order to acquire the benefits that real numbers provide, we introduce a 

real-valued scalar product in S using scalar product definition with relaxed conditions. This, 

in turn, leads to consider a specific SO(3,C) representation and restricted SO(3,C) action on S 

in order to keep the scalar product invariant. 
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1  Introduction  

It is well known that the restricted Lorentz group SO(1,3)
+
 is isomorphic to the complex 

special orthogonal group SO(3,C). So, SO(3,C), which naturally acts on C
3
, offers an 

alternative way to represent elements of physical theories commonly expressed in terms of 

SO(1,3)
+
. Bringing elements of physical theories in C

3
 opens some useful prospects. The 
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12                                 On complex vectors in C
3
 with real valued scalar product  

vector product, which is not applicable in the four-dimensional real space, in 

three-dimensional complex space becomes an important tool. The increased number of vector 

components can be used to include additional physical quantities. Furthermore, the presence 

of real and imaginary vector parts enables a corresponding separation of distinct physical 

concepts. 

We introduce a space S of complex vectors in C
3
 with a real-valued scalar product and 

physically relevant constraints that include fixed vector magnitudes and orthogonality 

between real and imaginary vector parts. The orthogonality constraint is already used 

elsewhere (see [1] as a newer example), and the space S and the corresponding SO(3,C) 

representation is analyzed by means of a complex-valued scalar product [2]. Here, we 

examine the real-valued scalar product in S and the restricted SO(3,C) action that keeps the 

scalar product invariant. Firstly, we introduce representation G of the group SO(3,C) 

according to the constraints imposed on the complex vectors in S. The representation G is 

given in details through the polar decomposition of the SO(3,C) matrices on (real 

orthogonal)/(positive definite Hermitian). However, while G preserves the vector magnitudes, 

in general case it does not preserve the introduced real-valued scalar product. Thus, we 

consider restricted G action that leaves the scalar product invariant. This action corresponds 

to the action of the group SO(1,2), which is known to have applications in various branches 

of physics (see for example [3], Ch. 9). 

 

 

2  Representation of Vectors in the Space S 
 

Let u x ia   be a complex vector in C
3
, where ,x aR

3
. Our intention is to define a 

space of complex vectors with fixed, real-valued magnitude. Additionally, the magnitude 

calculation should exhibit a hyperbolic property in order to satisfy some physical 

requirements. Indeed, the "usual" conjugate scalar product in C
3
 gives real-valued vector 

magnitudes, but they are not hyperbolically calculated, 2 2u u x a   . On the other hand, the 

non-conjugate scalar product in its real part gives hyperbolically calculated vector 

magnitudes, but they are complex-valued, 2 2 2u u x a ixa    . To achieve our intention, it 

seems less demanding to adjust the non-conjugate scalar product by introducing a constraint 

on complex vectors in the form 0xa   (orthogonality constraint). Taking in mind physical 

applications where the orthogonality between 3-vectors is commonly used, it seems it is a 

good trade-off between obtaining real, hyperbolically calculated vector magnitudes and the 
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complications that the orthogonality constraint triggers. Throughout the paper we will use ∙ to 

denote the non-conjugate scalar product in C
3
. 

Definition 1. The space SC
3
 defined by 2{ | , , 0}S u x ia u u R xa         is the 

space of s-vectors in C
3
. 

The scalar product   applied on two vectors in S is, indeed, complex-valued scalar 

product that gives real vector magnitudes. However, some physical applications strongly 

benefit from real-valued scalar product where the differences in vectors directions will be 

real-valued. A natural way to provide a real-valued scalar product in S is to rotate one of the 

s-vectors until the directions of their real parts coincide.  

 

Definition 2. For given two s-vectors u x ia   and v y ib   in S, the real-valued 

scalar product ̂  is defined by  

ˆ ˆˆ y xu v u Rot v   , (1) 

where ˆ x
x

x
 , ˆ

y
y

y
  and ˆ ˆy xRot   is a rotation that carries ŷ  to x̂ .  

 

Since the choice of a rotation axis does not affect the further considerations, we can 

choose it to be orthogonal to both x  and y  and so, the rotation will be in x y  plane. 

Now, ˆ ˆy xRot   can be easily represented by the Rodrigues' rotation formula, which adapted 

to this case, takes the form 

ˆ ˆ
1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )
ˆ ˆ1y xRot yx I x y y x y x y x
yx         


, (2) 

where I is the identity matrix. 

Observe that the scalar product (1) is in agreement with the already introduced 

magnitude of s-vectors in Definition 1, since ˆu u u u   . Actually, the scalar product ̂  can 

be considered as a restriction of the scalar product ∙ in the sense that it can be seen as a 

specific application of   on s-vectors with different real part directions. Indeed, on s-vectors 

u and v with parallel real parts ( ||x y ), the scalar products ̂  and   coincide. 

The standard addition and multiplication by a scalar are not closed operations in S, and 

also, the zero vector 0 0i  is not in S, so S is not a vector subspace of C
3
. This implies that 
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the scalar product ̂  is defined with relaxed conditions and it remains to show the symmetry, 

i.e. commutativity of ̂  . 

 

Proposition 1. The scalar product ̂  is commutative, i.e ˆ ˆu v v u   . 

Proof. The proof can be obtained by direct calculations. However, since ˆ ˆy xRot   is an 

orthogonal matrix with respect to the scalar product  it follows that 

1 1
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆy x x yy x y xu v u Rot v Rot u v v Rot u v Rot u v u 
             .  □ 

 

It is easy to show that an arbitrary vector p  (not necessarily orthogonal to a  or b ) 

can be also used to calculate the scalar product ˆu v . 

 

Consequence 1. The following equality holds, ˆ ˆ ˆ ˆˆ x p y pu v Rot u Rot v    .

 
Proof. It follows from ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )x p y p x p x p y x y xRot u Rot v Rot u Rot Rot v u Rot v           

The last equality holds since the rotation of x̂  to p̂  preserves the angle between the 

vectors a  and ˆ ˆy xRot b .  □ 

 

Consequence 2. The scalar product ̂  is always positive, i.e. 0ˆu v  . 

Proof. From the definition of s-vectors, it follows that 2 2x a  and 2 2y b . Since the 

rotations preserve the magnitudes of the real and the imaginary parts of s-vectors, we have 

ˆ ˆ ˆ ˆ( ) ( ) cos ( , )ˆ y x y xu v x ia Rot y ib x y a Rot b a b        

ˆ ˆ1 cos ( , ) 0y xa b a Rot b
   
 

.  □ 

 

Although the space S does not possess a suitable vector addition to become a vector 

space, we can introduce the vector addition inherited from C
3
 with the requirement the real 

part of the second vector to be parallel to the real part of the first one. Thus, analogously to 

the scalar product ̂  we can define s-vector addition ̂  by 

ˆ ˆ
ˆ

y xu v u Rot v   , (3) 

which obviously is not a closed operation in S. The addition ̂  is not commutative, since 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ( ) ( )y x y x x y y xu v u Rot v Rot Rot u v Rot v u          , 
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which is similar to the gyrocommutative law [4]. However, unlike the gyroassociative law, 

̂  is an associative operation. Namely, for w z ic  , we have 

ˆ ˆ ˆ ˆˆ ˆ
ˆ ˆ ˆ( ) ( ) ( )z y y x z yu v w u v Rot w u Rot v Rot w           

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ
ˆ ˆ ˆ( ) ( ) ( )y x y x z y z xu Rot v Rot Rot w u v Rot w u v w            . 

 

Corollary. The scalar product ̂  is distributive with respect to ̂ . 

Proof. We have  

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ
ˆ( ) ( )ˆ y x z x z x y x z xu v w u Rot v Rot w u Rot w Rot v Rot w              

ˆ ˆu w v w      □  

 

The real dimension of the space S is four, since one dimension is lost by the ortogonality 

constraint 0xa   and another dimension is lost by the constraint of fixed vector magnitude 

2 2u  . 

 

 

3  Action of SO(3,C) on S 

Let us consider the spaces (S,  )  and (S, ̂ ). Recall that S is not a vector space and the 

scalar products   and ̂  are with relaxed conditions. Both of them are commutative with 

strictly positive magnitudes, while the linearity condition can be inherited from C
3
. Actually, 

  is linear with respect to the ordinary +, while ̂  is linear with respect to ̂  in C
3
. Since 

the calculations of vector magnitudes give the same results in both spaces, we can consider 

the complex orthogonal group SO(3,C) acting on each of them and preserving vector 

magnitudes. So, for any gSO(3,C) 

ˆ ˆgu gu u u u u gu gu       , 

for all u S . In fact, we are interested in representation G of SO(3,C) acting on S. 

According to the polar decomposition of complex orthogonal matrices, a matrix M  

SO(3,C) can be represented as iAM Re , where R is a real orthogonal matrix (a rotation 

matrix) and A is a real antisymmetric matrix. The latter implies that iAe  is a positive definite 

Hermitian coninvolutory matrix [5] (p.487). So, every G-matrix is a product of an SO(3) 

matrix representing a rotation and a positive definite Hermitian matrix, which by analogy of 

SO(1,3)
+
, can be called hyperbolic rotation (h-rotation). The h-rotations deserve special 
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attention, since unlike the rotations, they change magnitudes of the real and the imaginary 

parts of s-vectors. 

 

Definition 3. The matrix Hu , parameterized by the s-vector u x ia   and given by 

2 2 2 2

1 1 1
( )

(1 )u
k

H I x x a a i a x x a
k k k  


        


, where 
2

2
1

a
k


       (4) 

is an h-rotation acting on S. 

 

Now, we will show that the matrix Hu is in agreement with the polar decomposition of 

complex orthogonal matrices. 

 

Proposition 2. The matrix Hu given by (4) is an orthogonal coninvolutory and positive 

definite Hermitian matrix. 

Proof. The straightforward calculation gives 

Re( ) Im( ) Im( ) Re( )u u u uH H H H  

and then, 

2 2

2 2 2 2

1 1 1
( )

(1 )u u u u u u
k

H H H H I x x a a a x x a I H H
k k k  

                    
. 

Thus, 1
u uH H   and since T

u uH H , it follows that Hu is orthogonal. Obviously, it 

follows then that T
u uH H  and with u uH H I  it means that Hu is a Hermitian 

coninvolutory matrix. From 

 2 2 2 2 2

1 1 1 1

(1 )u
k

H v y x y ab x ya bx a
k k k k   

  
        

 

 2 2 2 2 2

1 1 1 1

(1 )

k
i v bx ya x ab xy a

k k k k   

  
        

,          (5) 

by using simple algebraic operations, one obtains ( ) 0uv H v  . Observe that in case of ̂ , 

we also have ( ) 0ˆ uv H v  , as it follows from the Consequence 2 of Proposition 1.  □ 

 

Notice that the matrix Hu applied to the corresponding "zero" vector x̂  in S gives u, i.e. 

ˆuH x u  . One can easily check that, in general, two h-rotations do not commute, even when 
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they are generated from s-vectors with a common real part. It means that, generally, a product 

of two h-rotations is not a Hermitian matrix and so the resulting transformation is not an 

h-rotation. 

Although both scalar products give the same vector magnitudes in S, it is important to 

underline that   is complex-valued, while ̂  is real-valued. Definition 3 and Proposition 2 

show that h-rotation Hu is defined with respect to the scalar product  . Thus, as one can 

expect, the scalar product ̂  is not in accordance with h-rotations, i.e. in general, 

ˆ ˆw wH u H v u v   . One can directly verify that 

ˆ ˆ ˆ ˆˆ ˆw w w q p w y xH u H v H u Rot H v u Rot v u v        , 

where Re( )wp H u , Re( )wq H v  and for wH u  and wH v see (5). Thus, the conveni-

ence to have a real-valued scalar product ̂  is paid by breaking the scalar product invariance. 

However, ˆ ˆw wH u H v u v    when ||x y , since then, the involved rotation in (1) vanishes 

and the scalar product ̂  coincides with  . This situation is a motivation for the next 

section. 

 

 

4  Restricted Action of SO(3,C) on S 
 

As one can see from (5), applying an h-rotation Hu on a given s-vector v results in an 

s-vector whose real part is a linear combination of x , y  and a , which is indeed, different 

from the real parts of both, u and v. We introduce a restricted h-rotation action which does 

not change the real parts of s-vectors, in order to obtain invariance of the scalar product ̂ . 

The change of the real parts of s-vectors is left to the rotations. 

 

Definition 4. A restricted action ˆ
uH of the h-rotation Hu on vectors in S is given by 

1
ˆ ˆˆ ˆ

ˆ
u u xx

H Rot H Rot


 , (6) 

where   is the real part of the s-vector on which the h-rotation ˆ
uH  is applied. 

 

The matrix ˆ
uH  obviously remains orthogonal and positive definite on S (see 

Consequence 2, of Proposition 1). It is also Hermitian, since Hu  is Hermitian and ˆ x̂Rot  

and its inverse are unitary matrices. Thus, ˆ
uH  is also an h-rotation which obviously keeps 
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the real parts of s-vectors in place. Actually, ˆ
uH  should be considered as a "locally 

implemented" h-rotation in G with respect to the scalar product ̂ . Notice that Hu and ˆ
uH  

coincide when they are applied to an s-vector with real part   parallel to x  (the labels are 

as in (6)), as was the case for the scalar products   and ̂ . 

Let us write (6) in the form ˆ ˆˆ ˆ
ˆ

u x x uH Rot Rot H  . This equality represents left and 

right polar decomposition of an orthogonal matrix in G. The unitary matrices in the left and 

the right polar decomposition, represented by rotation ˆx̂Rot   are indeed equal. The 

h-rotation matrices are connected by the equality 

ˆˆ
ˆ

xu Rot uH H


  

since this restricted h-rotation ˆ
uH  relates to the corresponding action in the group SO(1,2) 

  SO(3,C). To explain how 1
ˆ ˆˆ ˆ u xx

Rot H Rot


 and 
ˆx̂Rot uH


 work, let us apply them on 

a given s-vector, say v y ib  . In the case of 1
ˆ ˆˆ ˆ

ˆ
u u y xy xH v Rot H Rot v

 , the real part of v 

(i.e. y ) is rotated toward the real part of the s-vector which parameterizes the h-rotation (i.e. 

x ) and after the h-rotating, the direction of the real part of the resulting s-vector is returned to 

the direction of y . In the case 
ˆ ˆ

ˆ
x yu Rot uH v H v


 , the real part of the s-vector which parame-

terizes the h-rotation (i.e. x ) is rotated toward direction of y . A resembling equality 

appears in action of SO(1,3)
+
 on upper-half hyperboloid in R

4
 (see [6] (p.140)). 

 

Proposition 4. The restricted h-rotation preserves the scalar product ̂  in S, i.e. 

ˆ ˆˆ ˆw wH u H v u v    for any s-vectors u x ia  , v y ib   and w z ic  . 

Proof. Using (6) one can directly obtain 

 ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆˆ

z x z yw w Rot w y x Rot w x y y xH u H v H u Rot H Rot Rot v
      

 ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )z x z y z x y x z yRot w y x Rot w x y y x Rot w Rot Rot w y xH u Rot H Rot Rot v H u H Rot v
          

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ
z x z xRot w Rot w y x y xH u H Rot v uRot v u v
        

The second from last equality holds since it is an equality of preserving the scalar product ∙ 

by an h-rotation in G.  □ 
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The restriction of h-rotations actually makes the action of the group G on S to be partial, 

since the function G S S   becomes a partial function. The concept of restriction of 

h-rotations corresponds to the concept of partial action of groups [7], or even more, to the 

slightly broader concept of local transformation groups [8] (p.20) usually related to local 

actions of Lie groups in geometry. 

 

5  Discussion 
 

Vectors in the space S have two constraints, fixed magnitude and orthogonal real and 

imaginary parts. Both of the constraints have important mathematical and physical 

implications. 

From geometrical point of view, it is important the group G acting on S to be orthogonal 

in order to preserve vector lengths and angles. Additionally, it is desirable the action of G to 

be transitive, that is, for any two elements ,u v S , there should be an element Gg such 

that gu v . Then, the fixed vector magnitudes are required to obtain transitive action of G, 

i.e. to make the space S homogeneous. Actually, in the case of (S, ∙) one can directly show 

that the representation G of SO(3,C) acts transitively. Taking in mind that for ,u v S , we 

have 2( )u v u u v      and 2 2( ) 2( )u v u u v     , one can write the transformation 

u vH   that carries u to v in the following way 

2
2 2

2 2
( ) ( ) , ( ) 0

( )u vH I u v u v v u u v
u v v         


. 

In the case of (S, ̂ ), we have 2 2ˆ ˆ( ) 2( ) 2( )ˆu v u v u v u       and the corresponding 

transformation is  

ˆ ˆˆ ˆ
ˆ

y xu v x y u Rot vT Rot H
   , where 

ˆ ˆ

ˆ ˆ

2 2

22ˆ ˆ ˆ( ) ( )
ˆ( )y x

y x
u Rot v

Rot v u
H I u v u v

u v v





     


. 

The orthogonality of u vH  ,
ˆ ˆ

ˆ
y xu Rot vH
  and the equalities u vH u v  , u vT u v  , can 

be straightforwardly checked. Observe that 
ˆ ˆ

ˆ
y xu Rot vH
  is not given in form (6), as the 

vector parameterizing 
ˆ ˆy xu Rot vH
 is rather complicated. However, 

ˆ ˆ
ˆ

y xu Rot vH
  is a 

restricted h-rotation action adapted to the vector u, since it keeps the real part of u in place. 
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From physical point of view, the fixed vector magnitudes indicate that the real and 

imaginary parts of vectors describe dependent physical quantities with magnitudes that 

hyperbolically complement each other.  

The orthogonality condition 0xa   on u x ia   seems more interesting constraint. 

Mathematically, it is necessary condition to achieve both, real vector magnitudes and their 

hyperbolic calculations. From physical point of view, as we already mentioned in the 

introduction, separation of complex vectors on real and imaginary parts enables a 

corresponding separation of distinct physical concepts. However, the complex vector as a 

whole should be related to some physical system, and the relationship between real and 

imaginary part is necessary to reflect an important characteristic of the system. Beside fixed 

vector magnitudes, the orthogonality constraint provides an additional relation between the 

real and imaginary vector parts, i.e. between 3-vectors, which is useful concept in physical 

applications. 

 

6  Conclusions 
 

We considered a space S of complex vectors in C
3
 with constraints called s-vectors. 

Taking in mind the physical applications, we introduced the real-valued scalar product ̂  

which is always calculated from the point of view of a fixed direction of the s-vector real 

parts. So, the latter can be naturally associated to a physical coordinate system, where the 

fixed 3-vector can be related to an observer. Then, we introduced a representation G of the 

group SO(3,C) acting on S through the polar decomposition of the SO(3,C) matrices on (real 

orthogonal) / (positive definite Hermitian), i.e. rotation / h-rotation matrices. We found that 

the scalar product ̂  is not in agreement with the action of G since the h-rotations break the 

scalar product invariance. So, we introduced a restricted action of G that locally preserves the 

scalar product ̂  and corresponds to the action of the group SO(1,2), which is known to have 

applications in various branches of physics, including classical, relativistic and particle 

mechanics. 
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