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Abstract 

In this paper, time series models and neural networks are used for prediction of 

unemployment in nine Mediterranean countries. Accurate prediction of unemployment is 

very important for economic policy reasons. FARIMA is a suitable model when long 

memory exists in a time series and has been applied successfully for predicting 

unemployment. However, potential data characteristics such as heteroskedasticity, non-

normality and non linearity in unemployment time series may reduce the effectiveness of 

the classical FARIMA model. Here, is made an attempt for the improvement of 

forecasting accuracy, by applying models which take into account data characteristics, 

such as FARIMA/GARCH which takes into account heteroskedasticity. Furthermore, non-

linearity of the data is better captured by Neural Network models rather than the 

traditional time series models such as FARIMA and for this reason Artificial Neural 

Networks with multilayer feed-forward architecture are considered as predictors for 

unemployment. Non-normality is present at many cases of unemployment data and to 

further improve the results are considered FARIMA and FARIMA/GARCH models with 

student t distribution errors. Finally, is proposed a model selection based on data 

characteristics. We employ monthly seasonally adjusted data (source is  Eurostat database) 

from 2008 M1 to 2016M10 to train the data and we consider 1 step-ahead forecasts for the 

next 12 months, i.e. until 2017 M10 to compare the performance of the models.  
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1  Introduction 
 

Many economic decisions as well as policy designs are based on unemployment 

prediction. Policy-makers have the difficult task to recognize or better detect early the 

problem of unemployment and to define effective measures in order to reduce the 

problem or to avoid its future escalation. Clearly accurate forecasting of unemployment 

is central to the definition of such effective measures. Many time series models have 

been employed extensively for the forecasting of macroeconomic variables, including 

unemployment. ARIMA models have been used in empirical studies such as for Czech 

Republic (Stoklashová, 2012), for Romania (Dobre and Alexandru, 2008) and for Nigeria 

(Etuk et al, 2012). Mladenovic et al. (2017) used Seasonal ARIMA model to forecast 

unemployment at the EU28 level.  Many variations of ARMA and GARCH models were 

compared for forecasting UK unemployment in Floros (2005). GARCH assumes varying 

heteroskedasticity and offer additional insight in the case of heteroskedastic time series. 

The persistent effect of shocks on unemployment rates can be seen as an evidence for 

hysteresis (Blanchard and Summers, 1986). ARIMA models cannot allow for such 

persistent effects and fractional ARIMA (FARIMA) models which take into account the 

long-memory effect seems more suitable for unemployment prediction. These models 

have been used in studies of (Gil-Alana, 2001) for the forecasting of the UK 

unemployment rate, of (Kurita, 2010) for forecasting of the Japan’s unemployment rate 

and of Katris (2015) for forecasting Greece’s unemployment rate.  

Another issue is non-linearity and when is present other approaches are more suitable. 

In Rothman (1998) six nonlinear models were compared according to their out-of-sample 

forecasting accuracy, Proietti (2003) examined the forecasting accuracy of several linear 

and nonlinear forecasting models for the US monthly unemployment rate and Johnes 

(1999) reports the results of a forecasting competition between linear autoregressive, 

GARCH, threshold autoregressive and neural network models of the UK monthly 

unemployment rate series. Neural networks appear promising to model more accurately 

data which display non-linearity, thus to give better forecasts. The paper of (Aiken, 1996) 

shows how a neural network may be used to forecast unemployment rates in the United 

States. More recently, (Olemedo, 2014) used Neural Net techniques for forecasting 

unemployment in Spain.  

This paper is a comparison of time series and neural network models to forecast 

unemployment of nine Mediterranean countries using monthly seasonally adjusted data 

for unemployment (Eurostat database). Models which are considered are FARIMA, 

FARIMA/GARCH and neural networks, while ARIMA and Holt-Winters are used as 

benchmarks. In section 2 is described the nature of the data and potential problems of 

heteroskedasticity, non-linearity, non-normality and long-memory, while in section 3 are 

presented FARIMA, FARIMA/GARCH and Neural Network modeling approaches along 

with the description of a model selection method based on data characteristics. In section 

4 takes place the data analysis and the comparison of models and in section 5 the 

summary and conclusions of the paper.  
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2 Unemployment Data Characteristics 
 

Data characteristics play important role for the forecasting accuracy of various 

models. Models which take into account the specific characteristics of data can offer 

more accurate predictions. Based on past research on monthly unemployment rates, we 

observe that models such as FARIMA and GARCH have been used, thus characteristics 

such as long-memory and heteroskedasticity have been taken into account. Additionally, 

have been used models such as neural networks, to overcome the problem of non-

linearity. One more potential characteristic is the departure from normality in some cases.  

We are testing for normality and non-linearity characteristics using statistical tests, i.e. 

Jarque-Bera test for normality (Jarque & Bera, 1980; Cromwell et al, 1994) and White 

neural network test for non-linearity (Lee et al, 1993). For the detection of long-memory 

we compute the Hurst exponent (Hurst, 1951) with three methods: the R/S method 

(Mandelbrot, 1972), the aggregate variance method and the Higuchi method (Taqqu et al, 

1995) and we consider the smaller of the values as a conservative approach. A value of 

the Hurst exponent in (0.5, 1) suggests the existence of long memory and values closer to 

1 indicates stronger long memory. Values in (0, 0.5) display antipersistence, i.e. larger 

values are followed by smaller values and vice versa, while a value equal to 0.5 could be 

interpreted as independence of the data or exponential decay of their autocorrelation 

function.  

Autocorrelation of the data is checked through the Ljung-Box test in order to ensure 

that the time series display autocorrelation, thus time series models which model the 

dependence structure of the data are useful for predictions. Heteroskedasticity of data is 

checked through the Ljung-Box test on squared residuals of a fitted FARIMA model. 

This test helps us to decide if a FARIMA model is sufficient, or the volatility of the next 

period depends on these of past periods. If this is the case, then the use of a GARCH 

component for the volatility can lead to more accurate modeling of the data.  

 

 

3 Forecasting Models 
 

In this section we present the considered forecasting approaches for the prediction of 

unemployment rates. These approaches are compared with ARIMA and Holt-Winters 

models, which are considered as benchmarks.   

 

3.1  FARIMA Models 

The FARIMA forecasting models are extensions of the ARIMA (p, d, q) models 

where the fractional parameter d is allowed to take real, instead of only integers, values. 

A FARIMA model is given by the equation  

𝛷𝑝(𝐿)(1 − 𝐿)𝑑(𝑌𝑡) = 𝛷𝑞(𝐿)𝜀𝑡, 

where  

L is the lag operator, 𝛷𝑝(𝐿) = 1 − 𝜑1𝐿 − ⋯ − 𝜑𝑝𝐿𝑝 and 𝛩𝑞(𝐿) = 1 + 𝜃1𝐿 + ⋯ + 𝜃𝑞𝐿𝑞,  

(1 − 𝐿)𝑑 = ∑ (
𝑑
𝑗

)∞
𝑗=0 (−1)𝑗𝐿𝑗where   (

𝑑
𝑗

) (−1) =
𝛤(−𝑑+𝑗)

𝛤(−𝑑)𝛤(𝑗+1)
 , and 

𝜀𝑡~𝑁(0, 𝜎2) are the error terms.  
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Alternatively, there can be considered a model where error terms are following other than 

the normal distribution. Additionally, in this paper are considered models with the error 

terms to follow a student-t distribution t(0,σ,ν), where ν>2. The pdf in its location-scale 

version is  

       𝑓(𝑥; 𝛼, 𝛽, 𝜈) =
𝛤(

𝜈+1

2
)

√𝛽𝜈𝜋𝛤(
𝜈

2
)
 [1 +

(𝑥−𝛼)2

𝛽𝜈
]

(−
𝜈+1

2
)

                               

with location parameter α, scale parameter β and shape parameter ν. The mean equals to 

α and here is 0, while the variance is 
𝛽𝜈

(𝜈−2)
 .  

 

To fit a FARIMA model to a time series the following procedure is applied: 

At first we convert data to a zero-mean series. Then we specify the order of the model. 

The order ( , )p q of the corresponding ARMA model is first determined. For this study, 

we restrict the autoregressive and moving average orders to be less than or equal to 5 

( 0 ≤ 𝑝 ≤ 5, 0 ≤ 𝑞 ≤ 5 ) and use the lowest Bayes Information Criterion (BIC) for 

selecting the best combination. The same order ( , )p q  is used for the FARIMA model. 

Finally, we estimate the parameters of the model. After the order of the model has been 

fixed, the rest of the parameters d, φi  and θj  are estimated. The Geweke and Porter-

Hudak (GPH) estimator (Geweke and Porter-Hudak, 1983) is our choice for d and is 

computed using R package fracdiff (Fraley et al, 2012), while a recursive Maximum 

Likelihood (ML) procedure is used for the estimation of the other parameters. The ML 

procedure suggested in (Sowell, 1992) goes through nonlinear optimization using the 

nlminb optimizer or augmented Lagrange method and it is all implemented in the R 

package rugarch (Ghalanos, 2014).  

 

3.2 FARIMA/GARCH Models 

The FARIMA/GARCH models are extensions of FARIMA, in the sense that in 

addition to all previously discussed assumptions they also assume conditional 

heteroskedasticity for the errors and then it is possible to give better results than 

FARIMA. These models were developed and used initially for the prediction of inflation 

(Baillie et al, 1996) where often the variance appears to be non-stationary. A 

FARIMA/GARCH model is given by the equation:  

 Φ𝑝(𝐿)(1 − 𝐿)𝑑(𝑌𝑡 − μ) = Θ𝑞(𝐿)𝜀𝑡 

where  

𝜀𝑡|Ω𝑡−1~ probability distribution (𝑝1, … , 𝑝𝑘) and σ𝑡
2 = 𝜔 + ∑ αi𝜀𝑡−i

2𝑞
i=1 + ∑ βi

𝑝
𝑖=1 σ𝑡−i

2    

The new element here, comparing with the description of the FARIMA model, is the fact 

that given an information set Ω𝑡−1the error terms t  follow a probability distribution with 

parameters (𝑝1, … , 𝑝k). This distribution is usually assumed to be Normal with zero mean 

and σ𝑡
2 variance (Bollershev, 1986).  Here, we assume both normal and student-t errors as 

described in 3.2.  

The fitting of a FARIMA/GARCH model for this paper will follow the same steps as 

for the FARIMA, so that the order (p, q) and the fractional parameter d would be the 

same as in the corresponding plain FARIMA. Additionally, we will consider a 

GARCH(1,1) model, which in most applications is sufficient for capturing the 
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conditional variance of the errors. The fitting of a FARIMA/GARCH model can also be 

performed with the use of the R software package rugarch (Ghalanos, 2014). 

 

3.3  Feed-forward Neural Network Models  

Since their introduction, neural networks have been successfully applied to many 

disciplines, including forecasting (Lippmann, 1987; Zhang et al., 1998). They can handle 

non-linear phenomena more successfully than traditional time series models. ANN 

forecasting models for time series use sliding windows in the sense that a window with 

the k most recent values is used to predict the next value. More specifically, the 

forecasting model is expressed as in Eq. (3): 

( 1) ( ( ))x t f t  x         (3) 

where ( ) ( ( ), ( 1 ), , ( ( 1) )t x t x t x t n    x  is the vector of the lagged variables to be used 

as input for the forecast. An application of the use of neural networks for time series 

forecasting can be found at (Frank et al, 2001). The process of the information is the 

following: the input nodes contain the value of the explanatory variables (in our case past 

values). Each node connection represents a weight factor and the information reaches a 

single hidden layer node as the weighted sum of its inputs. Each node of the hidden layer 

passes the information through a nonlinear activation function and passes it on to the 

output layer if the calculated value is above a threshold. 

There have been a number of different architectures for ANNs and in this paper will 

be used the multilayer feed-forward design. In order to construct an ANN for time series 

one-step ahead prediction one needs to decide about the input variables, the number of 

hidden layers and number of nodes for each layer. Empirical research has shown that one 

hidden layer is sufficient in most cases; therefore we only have to define the number of 

input nodes and number of hidden nodes.  The neural network used in this paper is a 

feed-forward ANN comprising of an input layer, one hidden layer and an output node. 

Each layer is fully connected to the next one and the activation function used in the 

hidden layer is the sigmoid: 
1

( )
1 t

S t
e




. 

Moreover, a linear function is used in the output layer in order to transform the previous 

inputs to final outputs. The training of the network has been done with the back-

propagation technique (i.e. to find a function that best maps a set of inputs to their correct 

output, thus determine final neuron weights) (Rumelhart et al, 1986), where the weights 

of the connections in the neural network are updated using the adaptive gradient descent 

optimization algorithm (Haykin, 1999).   

In this paper, for the construction of an ANN for an unemployment time series, the 

following steps are performed: 

1. Determine the resampling rate k: We consider k=1, i.e. no resampling is taking place 

and we apply the neural network model to the full time series.  

2. Determine the number of input variables: We consider all possible models from one 

to four input nodes.   

3. Determine the hidden layer nodes and training epochs: We consider one hidden 

layer and decide from 1 to 10 nodes. The training is performed using back-propagation 

http://en.wikipedia.org/wiki/Feedforward_neural_network
http://en.wikipedia.org/wiki/Backpropagation
http://en.wikipedia.org/wiki/Backpropagation
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with the adaptive gradient descent algorithm and for 500 periods of training. The 

activation function is sigmoid for the hidden layer and linear for the output.  

The final topology of the ANN will consist of an input layer with I nodes, one hidden 

layer with H nodes and an output layer with one node, denoted as ( ,I ,H 1). From the 

above description, the following applies: 𝐼 ∈  {1,2,3,4}, 𝐻 ∈  {1, … ,10} 𝑎𝑛𝑑  𝐼, 𝐻 ∈  ℤ. 

The implementation of the models is performed using R package AMORE (Limas et al, 

2014). 

 

3.4  Model Selection Method 

Except from the above models, a model selection method is considered in order to 

further improve the accuracy of the FARIMA and FARIMA/GARCH models. The 

selection is based on the characteristics of normality and of heteroskedasticity of the data. 

The selection rules are the following: 

1. Select FARIMA/GARCH model with student t innovations if non-normality and 

heteroskedasticity are detected.  

2. Select FARIMA model with student t innovations if only non-normality is 

detected.  

3. Select FARIMA/GARCH model with normal innovations if only 

heteroskedasticity is detected.  

4. Select FARIMA with normal innovations elsewhere, i.e. neither non-normality 

nor heteroskedasticity are detected.  

 

 

4 Data Analysis 
 

Data are monthly seasonally adjusted unemployment rates of nine Mediterranean 

countries. Source of the data is the publicly available Eurostat database, the time period is 

from 2008 M1 to 2016 M10 to train the data and are considered 1 step-ahead predictions 

for the next 12 months, i.e. until 2017 M10 to compare the performance of the models.  

However, there is no global accepted best criterion for comparison of forecasting 

accuracy of models. The comparison of the forecasting accuracy of the models is 

performed with the well-known RMSE and MAE criteria. There are considered five 

different metrics to assess the overall performance of models.  

1. Average RMSE. 

2. Average MAE. 

3. Number of times when a model is the best choice for forecasting. 

4. Average position according to RMSE. 

5. Average position according to MAE. 

 

To calculate the values of criteria 4 and 5, for every dataset we rank the models according 

to their performance and we specify their position and then we calculate the average 

value of the positions for each model. The consideration of different metrics allows a 

more complete comparison of models.    
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4.1  Exploratory Analysis of Data 

Table 1 displays descriptive statistics of data, i.e. mean, standard deviation (sd), 

skewness, (excess) kurtosis and coefficient of variation (CV) and Table 2 displays 

statistical tests for data characteristics, i.e. Ljung-Box test for autocorrelation, Jarque-

Bera test for Normality, Ljung-Box test on squared residuals of a FARIMA model (noted 

on table 3) for heteroskedasticity, White neural network test for non-linearity and the 

estimation of Hurst exponent, via R/S method, to measure the long memory of the time 

series.  

 
Table 1: Descriptive statistics of data characteristics 

Country Mean Sd Skewness Kurtosis CV 

Greece 19.3896 7.3698 -0.4327 -1.4639 0.3801 

Spain 20.8755 4.3715 -1.0158 0.6333 0.2094 

France 9.5292 0.9087 -1.1743 0.6396 0.0954 

Croatia 13.7085 3.1592 -0.4061 -1.2102 0.2305 

Italy 9.9849 2.1391 -0.1806 -1.5635 0.2142 

Cyprus 10.5302 4.6778 -0.1166 -1.5448 0.4442 

Malta 6.1132 0.6592 -0.5561 -0.2729 0.1078 

Slovenia 7.9509 1.8241 -0.6650 -0.4843 0.2294 

Turkey 10.1783 1.4027 0.7925 0.0026 0.1378 

 

Table 2: Statistical Tests of data characteristics and Hurst exponent estimation 

Country 
Auto-correlation 

(Ljung-Box) 

Normality 

(Jarque-Bera) 

Heteroskedasticity 

(Ljung-Box  

on squared.resid.)* 

Non-linearity 

(White test) 

Hurst 

Exponent 

Greece 
105.9915 

(<0.01) 

12.7729 

(<0.01) 

1.078e-05 

(0.9974) 

33.1988 

(<0.01) 
0.8933 

Spain 
100.8528 

(<0.01) 

20.0021 

(<0.01) 

22.97 

(<0.01) 

26.9608 

(<0.01) 
0.9479 

France 
101.5882 

(<0.01) 

26.1688 

(<0.01) 

0.003717 

(0.9514) 

4.8784 

(0.087) 
0.9344 

Croatia 
106.3243 

(<0.01) 

9.3827 

(<0.01) 

4.206e-05 

(0.9948) 

5.71 

(0.058) 
0.9240 

Italy 
104.4151 

(<0.01) 

11.3729 

(<0.01) 

0.01072 

(0.9175) 

7.7441 

(0.021) 
0.9041 

Cyprus 
106.1092 

(<0.01) 

10.7797 

(<0.01) 

25.82 

(<0.01) 

8.5385 

(0.014) 
0.8652 

Malta 
95.5515 

(<0.01) 

5.7923 

(0.055) 

0.9103 

(0.3400) 

3.8054 

(0.1492) 
0.7113 

Slovenia 
104.6452 

(<0.01) 

8.8474 

(0.012) 

1.088 

(0.2969) 

2.6315 

(0.2683) 
0.9363 

Turkey 
104.2006 

(<0.01) 

11.0957 

(<0.01) 

23.67 

(<0.01) 

1.2239 

(0.5423) 
0.8966 

*test in the FARIMA squared residuals 
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The time series of unemployment rates are relatively heterogeneous as mean values 

range from 6.11 to 20.88 and sd’s from 0.66 to 7.37. This heterogeneity is reflected to 

CV values, where ranges from 0.095 for France to 0.444 for Cyprus. Most series are 

platykurtic (except Spain, France and Turkey) and left skewed (except Turkey). 

All datasets display autocorrelation, while at 8 out of 9 time series (exception is 

Malta) is detected significant deviation from normality (at 5% level). Furthermore, in 

Greece, Spain, Italy and Cyprus is detected non-linearity (significant at 5% level). 

Additionally, existence of (strong) long – memory can be detected for all series via Hurst 

exponent. Finally, heteroskedasticity can be detected through the Ljung-Box test on the 

squared residuals after the fitting of a FARIMA model (order of the model is displayed at 

table 3). In Spain, Cyprus and Turkey it can be observed heteroskedasticity and this fact 

indicates that models such as GARCH which take into account time varying variance can 

offer additional forecasting accuracy. 

 

4.2  Comparison of Models 

In Table 3 are displayed the orders of ARIMA and FARIMA models, the prediction 

error of ARIMA, FARIMA, FARIMA/GARCH and Holt-Winters models and finally the 

architecture and the prediction error of ANN model. For each model are calculated the 

five different performance metrics and the final row displays the number of performance 

metrics (criteria) for which each model is the best choice.   

 

Table 3: Order and forecasting accuracy of models 

   Prediction Error   

Country 
  ARIMA  

  order 

FARIMA 

order 
FARIMA ARIMA 

FARIMA/ 

GARCH (1,1) 
Holt-Winters ANN 

Greece (0,2,1) (0, 1.2412, 1) 
RMSE=0.2598 

MAE=0.2098 

RMSE=0.5533 

MAE=0.4560 

RMSE=0.2068 

MAE=0.1582 

RMSE=0.2422 

MAE=0.1912 
(3,2,1) 

RMSE=0.2541 

MAE=0.1819 

Spain (2,2,0) (2, 1.2304, 0) 
RMSE=0.1208 

MAE=0.0954 

RMSE=0.2275 

MAE=0.1947 

RMSE= 0.1002 

MAE=0.0809 

RMSE= 0.1034 

MAE=0.0792 
(3,9,1) 

RMSE=0.1029 

MAE=0.0795 

France (1,2,0) (1, 1.2103, 0) 
RMSE= 0.1135 

MAE=0.0879 

RMSE=0.1524 

MAE=0.1333 

RMSE=0.1106 

MAE=0.0900 

RMSE=0.1164 

MAE=0.0954 
(1,2,1) 

RMSE=0.1189 

MAE=0.0954 

Croatia (0,2,1) (0, 1.5974, 1) 
RMSE=0.1307 

MAE=0.1163 

RMSE=0.3363 

MAE=0.3031 

RMSE=0.1251 

MAE=0.1073 

RMSE=0.1308 

MAE=0.1139 
(2,2,1) 

RMSE=0.1285 

MAE=0.1140 

Italy (0,1,0) (0, 1.1258, 0) 
RMSE= 0.1817 

MAE=0.1537 

RMSE=0.1971 

MAE=0.1660 

RMSE=0.1817 

MAE=0.1537 

RMSE=0.1656 

MAE=0.1349 
(2,2,1) 

RMSE=0.2189 

MAE=0.1828 

Cyprus (0,2,2) (0, 1.1126, 2) 
RMSE= 0.1873 

MAE=0.1545 

RMSE=0.4641 

MAE=0.4293 

RMSE= 0.2006 

MAE=0.1669 

RMSE=0.1805 

MAE=0.1505 
(3,1,1) 

RMSE=0.2021 

MAE=0.1601 

Malta (0,1,0) (0, 0.9371, 0) 
RMSE=0.1196 

MAE=0.0843 

RMSE= 0.0988 

MAE=0.0666 

RMSE=0.1196 

MAE=0.0843 

RMSE=0.1013 

MAE=0.0706 
(4,7,1) 

RMSE=0.1414 

MAE=0.0994 

Slovenia (0,2,0) (0, 1.3525, 0) 
RMSE=0.1402 

MAE=0.1151 

RMSE=0.3617 

MAE=0.2754 

RMSE=0.1402 

MAE=0.1151 

RMSE= 0.1458 

MAE=0.1092 
(1,1,1) 

RMSE=0.1554 

MAE=0.1188 

Turkey (2,1,0) (2, 1.1670, 0) 
RMSE= 0.1620 

MAE=0.1431 

RMSE= 0.1631 

MAE=0.1445 

RMSE= 0.1572 

MAE=0.1398 

RMSE= 0.1647 

MAE=0.1450 
(3,4,1) 

RMSE=0.1177 

MAE=0.0879 

        

Average RMSE 0.1573 0.2838 0.1491 0.1501 0.1600 

Average MAE 0.1289 0.2410 0.1218 0.1211 0.1244 

Best Model 2 1 5 4 1 

Average Position RMSE 2.6667 4.3333 1.6667 2.6667 3.3333 

Average Position MAE 2.7778 4.3333 2.1111 2.1111 3.2222 

number of best criteria 0 0 4 2 0 
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From the above models, FARIMA/GARCH is the best model with four metrics (only 

on average MAE is outperformed by Holt-Winters).  The distribution of errors in 

ARIMA, FARIMA and FARIMA/GARCH is considered Normal. 

 

4.3  The Effect of Non-Normality and model selection strategy 

The non-normality of some datasets suggests that we may improve the forecasting 

accuracy of models with the use of non-normal errors. To further improve the results, we 

consider FARIMA and FARIMA/GARCH models with student-t error distributions. 

Table 4 displays the prediction error of FARIMA with normal and student-t error 

distributions, the selected model and the prediction error of the model selection strategy 

which described in section 3.4. Figures 1 and 2 display the comparison of models using 

average values and average positions respectively, while Figure3 displays the number of 

times where a model is the best either with RMSE or MAE criterion and the number of 

criteria with which a model is the best choice.  

 

 

Table 4: Forecasting accuracy of models 

 Prediction Error  Strategy 

Country FARIMA-N FARIMA-t 
FARIMA/ 

GARCH (1,1)-N 

FARIMA/ 

GARCH (1,1)-t 
Model Error 

Greece 
 RMSE=0.2598 

 MAE=0.2098 

 RMSE= 0.2113 

 MAE=0.1605 

RMSE=0.2068 

MAE=0.1582 

RMSE= 0.2158 

MAE=0.1649 

 FARIMA/ 

 GARCH-t 

RMSE= 0.2158 

MAE=0.1649 

Spain 
 RMSE=0.1208 

 MAE=0.0954 

 RMSE= 0.1004 

 MAE=0.0785 

RMSE= 0.1002 

MAE=0.0809 

RMSE= 0.1013 

MAE=0.0788 

 FARIMA/ 

 GARCH-t 

RMSE= 0.1013 

MAE=0.0788 

France 
 RMSE= 0.1135 

 MAE=0.0879 

 RMSE= 0.1106 

 MAE=0.0907 

RMSE=0.1106 

MAE=0.0900 

RMSE= 0.1123 

MAE=0.0885 
 FARIMA-t 

RMSE= 0.1106 

MAE=0.0907 

Croatia 
 RMSE=0.1307 

 MAE=0.1163 

 RMSE= 0.1230 

 MAE=0.1064 

RMSE=0.1251 

MAE=0.1073 

RMSE= 0.1223 

MAE=0.1064 
 FARIMA-t 

RMSE= 0.1230 

MAE=0.1064 

Italy 
 RMSE= 0.1817 

 MAE=0.1537 

 RMSE= 0.1817 

 MAE=0.1537 

RMSE=0.1817 

MAE=0.1537 

RMSE=0.1817 

MAE=0.1537 

 FARIMA/ 

 GARCH-t 

RMSE=0.1817 

MAE=0.1537 

Cyprus 
 RMSE= 0.1873 

 MAE=0.1545 

 RMSE= 0.1908 

 MAE=0.1578 

RMSE= 0.2006 

MAE=0.1669 

RMSE= 0.1899 

MAE=0.1570 

 FARIMA/ 

 GARCH-t 

RMSE= 0.1899 

MAE=0.1570 

Malta 
 RMSE=0.1196 

 MAE=0.0843 

 RMSE=0.1196 

 MAE=0.0843 

RMSE=0.1196 

MAE=0.0843 

RMSE=0.1196 

MAE=0.0843 
 FARIMA-N 

RMSE=0.1196 

MAE=0.0843 

Slovenia 
 RMSE=0.1402 

 MAE=0.1151 

 RMSE=0.1402 

 MAE=0.1151 

RMSE=0.1402 

MAE=0.1151 

RMSE=0.1402 

MAE=0.1151 
 FARIMA-N 

RMSE=0.1402 

MAE=0.1151 

Turkey 
 RMSE= 0.1620 

 MAE=0.1431 

 RMSE= 0.1602 

 MAE=0.1419 

RMSE= 0.1572 

MAE=0.1398 

RMSE=0.1540 

MAE= 0.1375 

 FARIMA/ 

 GARCH-t 

RMSE=0.1540 

MAE= 0.1375 

       

Average RMSE 0.1573 0.1486 0.1491 0.1486 0.1485 

Average MAE 0.1289 0.1210 0.1218 0.1207 0.1209 

Best Model 5 6 6 5 6 

Average Position 

RMSE 
3.2222 2.0000 2.0000 1.8889 1.6667 

Average Position 

MAE 
2.7778 2.1111 2.5556 1.5556 1.7778 

number of best criteria 0 1 1 2 3  
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Fig.1: Comparison of models with Average RMSE and MAE 

 

 

Fig.2: Comparison of models with Average Positions based on RMSE and MAE 

 

 

Fig.3: Number of times a model is the best choice with RMSE or MAE and overall 
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The consideration of student –t errors led to improvement of forecasting accuracy of 

both FARIMA and FARIMA/GARCH models. FARIMA with student-t errors displayed 

better results than FARIMA with normal errors in all 5 metrics, while FARIMA/GARCH 

with student-t errors appeared more accurate than FARIMA/GARCH with normal errors 

in 4 out of 5 metrics.  

The (model selection) strategy is the best approach with 3 metrics (Average RMSE, 

number of traces where is the best model and average position based on RMSE). The 

FARIMA/GARCH model with student-t errors is the best individual model approach and 

is very close to the model selection strategy (better in Average MAE and average 

position based on MAE).  

 

 

5 Summary and Conclusions 

 In this work is presented and applied a number of time series models, multilayer feed-

forward neural networks and a model selection method for forecasting of the 

unemployment time series of nine Mediterranean countries. At the core of time series 

models is the existence of long-memory and FARIMA model which incorporates this 

property is the basis of the considered approaches. Data properties (non-linearity, 

heteroskedasticity and non-normality) are explored and tested and a framework for 

evaluation is presented. 

First, are compared FARIMA and FARIMA/GARCH models with normal error 

distribution, MLP neural network models with ARIMA and Holt-Winters which are 

considered as benchmark models. FARIMA/GARCH model found to be the best 

approach.  

 To further improve the forecasting accuracy, the effect of non-normality is taken into 

consideration. FARIMA and FARIMA/GARCH models with student-t errors are 

considered and led to improved accuracy compared to the same models with normal 

errors. Finally, a model selection method which is based on data characteristics was even 

more accurate. The consideration of data characteristics in our model building, offered 

additional forecasting ability.  
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