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Procedure of Assessing the Electrical Transients 

with a View to Relative Extrema Localization 
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Abstract 

The assessment of transients in electrical systems requires numerical solving of 

systems of ordinary differential equations with the main purpose of localizing the 

relative extrema of state variables and of characteristic quantities in closely 

correlation with the selected state variables. Searching for relative extrema is 

traditionally performed immediately after the numerical integration is 

accomplished by sequentially processing a large file containing the amount of data 

recorded at all steps of numerical integration. Considering that, within the 

available software environments, the state variables time-related derivatives are 

usually discarded during numerical integration, finding approximations for the 

relative maxima and minima of each characteristic quantity could become a 

complex problem related to mathematical optimization. In this context, the present 

paper advances a simple procedure for real-time localizing of relative extrema of 

state variables and of the various characteristic quantities correlated with state 
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variables by employing a high-order explicit linear multistep method. Computer 

experiments will be carried out by considering the more elaborate case of a 

synchronous generator subjected to sudden three-phase short circuit fault. 
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1  Introduction 

The accurate assessment of transient phenomena occurring in electrical 

systems requires developing of comprehensive state-space models, which are 

described by means of systems of ordinary differential equations [1-8]. Having in 

view that, in the majority of cases, the set of characteristic quantities, describing in 

an exhaustive manner an electrical transient, is not identical to the set of 

state-space variables, the computations can be complex, thus requiring the system 

analyst to operate with different software environments in order to solve a specific 

problem. Since there is no commercial software environment designed to depict 

the transient behaviour of each electrical system component, it remains the task of 

software engineers to develop dedicated environments with a view to in silico 

experimentation. Given that, in many cases, it is necessary to assess a large 

number of contingency cases, the computational capabilities of the developed 

software environment are of utmost significance. 

The development of software environments for assessing transients in 

electrical systems has to be in accordance with the user requirements, which are 

customarily related to the computing rate and the visual representation of the 

evolution curves of characteristic quantities [9-14]. Within the available 
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environments, a fourth- or a fifth-order integrator is commonly employed to carry 

out the numerical solving of the systems of differential equations, which describe 

the state-space models, whilst the visualization of the time-related evolution 

curves is practically the result of accessing a large file that stores the data received 

at all steps of numerical integration. It has to be emphasized that in the case in 

which the characteristic quantities, necessary to depict the system transient 

behaviour, entirely differ from the selected state-space variables, the user 

intervention could result in loss of performance due to the large volume of 

computations requested both during the numerical integration and immediately 

after the numerical integration process is completed. 

To assess the transient phenomena in electrical systems, the analyst is 

especially interested in the relative extrema of certain characteristic quantities 

(currents, voltages) [15]. Hence, the system analyst requests access to the large 

amount of data recorded during numerical integration with the purpose of 

searching for relative maxima and minima of each characteristic quantity. Having 

this in view, the present investigation suggests a simple and effective procedure 

for localizing the relative extrema of state variables as well as of characteristic 

quantities that are closely correlated with the state variables. The procedure 

benefits from an eight-order explicit method, which is straightforwardly designed 

in the present paper starting from the generalized Adams-Bashforth predictor 

formula. It is common knowledge that unlike Runge-Kutta methods, at any given 

step of integration, the explicit multistep methods do not call on intermediate 

points in order to update the state variables. Instead of taking auxiliary points to 

increase accuracy, the explicit multistep methods use the values of state variables 

derivatives received at some previous steps during numerical integration. Hence, 

having in view that the information required for a mutistep method to make a step 

forward and update the state variables is precisely the one needed also for 

localizing the relative extrema, it follows that the employment of an explicit 

multistep method is entirely justified here. Furthermore, the computational 
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capabilities can be improved both by increasing the size of the integration time 

step, which is allowable because of the high-order of the integrator, and by 

recording only the significant data received during numerical integration. 

Considering the more elaborate case of a salient-pole synchronous generator, it 

will be shown that the proposed procedure allows the localization of relative 

extrema of the characteristic quantities just in the course of integration, without 

further processing. 

 

 

2  Design of the Numerical Integration Method 

The relatively large number of state variables needed to comprehensively 

depict the behaviour of an electrical system during transients as well as the 

occurrence of time intervals over which the selected state variables have very fast 

variations require the use of a highly accurate numerical integration method for 

solving the systems of ordinary differential equations that describe the various 

state-space models. Valuable numerical results can be obtained by employing 

high-order multistep methods, which are recognized for the effectiveness acquired 

through the use of the values of state variables derivatives received at some 

previous steps of integration in the place of adding intermediate points at which 

the state variables derivatives are to be computed [16-19]. In the present paper, 

with the purpose of in silico experimentation, an eight-order linear multistep 

method is applied, with the start-up being achieved by employing the original 

fourth-order Runge-Kutta method to execute the first seven steps of integration. In 

what follows right away, we present the development of the multistep method 

based on the generalized Adams-Bashforth explicit formula. We consider the 

initial value problem: 

 ( ) ( ) .;, 00 ytyytg
td
yd

==  (1) 
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Suppose that we have determined approximations [ ]{ }nsys ,1, ∈  for the 

solution of (1) at instants [ ]{ }nshstts ,1,0 ∈⋅+= . Next, we have to find an 

approximation for ( )1+nty  where htt nn +=+1 . We will employ the symbol sg  

to designate the expression ( )ss ytg , . We consider ( )tp  as being the 

interpolation polynomial in Lagrange form associated with data points ( )ss gt ,  

where [ ]nns ,7−∈ . We have: 
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and the Adams-Bashforth formula [18, 19]: 
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Relation (3) enables the computation of 1+ny  that is the approximation of 

( )1+nty , having at hand the values of function g  at data points ( )ss yt ,  with 

index [ ]nns ,7−∈ . Based on relationships (2) and (3), we receive the expanded 

formula: 
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equivalent to 
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where we have to identify the coefficients: 
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for [ ]nns ,7−∈ . For this purpose, we perform the following change of variable: 

 ,
h

tt n−
=τ  (5) 

which leads to 
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and, eventually 
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Hence, by means of the change of variable defined by (5), the coefficients in the 

explicit formula (4) obtain a more convenient form: 
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Performing the calculations, one receives: 

 ;120960295767;12096036799 67 =−= −− nn BB  

 ;1209602102243;1209601041723 45 =−= −− nn BB  

 ;1209602183877;1209602664477 23 =−= −− nn BB  

 .120960434241;12096011521691 =−=− nn BB  (6) 

Since the eight coefficients (6) have constant values, they can be employed within 

(4) to carry out the integration for any initial value problem, regardless the size of 

time step h . 

Having in view (1), formula (4) emphasizes the state variable derivatives: 
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Thus, at each step of numerical integration, in order to compute the state variable 

value at the current point, the integrator has to evaluate and store the state variable 

time-related derivative corresponding to the previous point, taking into account 

that the other seven state variable derivatives are already stored as elements within 

a reserved vector. In other words, to compute 1+ny , the integrator evaluates: 

 ( ) ( ) ., nnn
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ydytg

td
yd
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 (7) 

It has to be emphasized that computing (7) at each step of numerical integration 

appears here to be of crucial interest in the process of localizing the relative 

extrema of state variable and of any other characteristic quantity in correlation 

with the state variable y . 

 

 

3  The System under Consideration 

We consider the more complex case of a three-phase salient-pole 

synchronous generator endowed with damping cage. As it is advanced in literature, 

the generalized d-q (orthogonal) axis mathematical model of synchronous 

generators is described by means of two distinctive sets of structural equations. 

These are the voltage equations, put forward as a set of ordinary differential 

equations, and the flux equations, depicted by a set of algebraic correlations 

between winding flux linkages and winding currents [20-22]. 

To facilitate the employment of mathematical concepts and language as well 

as to allow the generalization of conclusions, the synchronous generators 

representation is performed by adopting a per unit (p.u.) dimensionless system [21, 

22]. The following base quantities will be considered: 
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- for voltages, denoted by symbol u , we have: ratedbase Uu 2= ; 

- for currents, denoted by symbol i , we have: ratedbase Ii 2= ; 

- for flux linkages, denoted by symbol ψ , we have: ratedratedbase U ωψ 2= ; 

- for resistances, denoted by symbol R , we have: ratedratedratedbase IUZR == ; 

- for inductances, denoted by symbol L , we have: ratedratedbase ZL ω= ; 

- for angular velocity, denoted by symbol ω , we have: ratedbase ωω = ; 

- for time variable we have: ratedbaset ω1= . 

The voltage equations of synchronous generators traditionally provide the 

time-related derivatives of winding flux linkages in terms of all winding currents 

and stator d-q axis flux linkages: 

 ,ddq
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td
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The flux equations of synchronous generators are given by means of the 

following algebraic correlations: 
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Within (8)-(17), the subscripts are as follows: d - designates the “direct” 

axis components; q  - designates the “quadrature” axis components; f  - 

associated with field winding; D  - associated with “direct” axis damper circuit; 

Q  - associated with “quadrature” axis damper circuit; m  - associated with 

magnetizing circuit; σ  - denotes leakage inductances. 

The role of flux equations (13)-(17) is to enable the selection of state 

variables (currents and/or flux linkages) in a manner suitable for the intended 

purpose. Since the values of stator d-q axis winding currents are of significant 

interest and, besides, taking into account that all parameters are considered here to 

be constant, in order to get the most from the numerical integration routine, we 

proceed to select all winding currents as state variables. Thus, the vector of state 

variables is 

 [ ] .
T

QDfqd iiiii=I  

Having in view (13)-(17), we have now to process the set of voltage 

equations (8)-(12) in order to receive a state-space model, prepared for software 

implementation. Employing correlations (13)-(17) to replace the flux linkage 

variables within (8)-(12), one obtains the following differential-algebraic 

structure: 
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With a view to transient assessment, structure (18)-(22) is routinely implemented 

without change within various software environments. In this way, the 

environments are forced to call an elimination procedure at the beginning of each 

step of numerical integration in order to provide the values of state currents 

time-related derivatives, which are requested by the integrator to update the state 

currents values. To increase the computational efficiency, we will symbolically 

manipulate structure (18)-(22) with the purpose of explicitly expressing the state 

currents derivatives in the most convenient form. Thus, the next step in the course 

of derivation here is represented by the processing of system (18)-(22) in order to 

receive an explicit (normal) form. We observe that equations (18), (20), (21) can 

be coupled to identify the set of expressions of the d-axis winding currents 

derivatives i.e. 
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whilst equations (19), (22) yield the set of expressions of the time-related 

derivatives of q-axis winding currents i.e. 
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Accordingly, solving the set of equations (18), (20), (21) in relation to 

winding currents time-related derivatives, we receive: 
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The coefficients of currents and voltages interfering in (23) are the following: 

 ( ) ( ) ,1,1 1
1

,21,1 dkq
k

kddk
k
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 ( ) ( ) ,1,1 3,42
1
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 ( ) ,1 1
1
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 ( ) ( ) dk
k

kddk
k

kd ∆−=∆−= 2,21,1 1,1 δαδα  

wherein 

 ( ) ,mdDfDfDfd LLLLLLLLLL σσσσσσσσσ +++=∆  

 ( ) ,,, 131211 mdfmdDmdDfDf LLLLLLLLL σσσσσσ δδδ −==++=  

 ( ) ,,, 23221221 mdmdDD LLLLLLL σσσσσ δδδδ =++=≡  

 ( ) .,, 3323321331 mdff LLLLL σσσσδδδδδ ++=≡≡  

With a view to optimal software implementation, the coefficients of state currents 

in (23) should be computed in the following manner: 

 ;;;; 313,1212,1111,1 auxcauxcauxcRaux dddd ⋅−←⋅←⋅−←∆← δδδ  

 ;;;; 313,2212,2111,2 auxcauxcauxcLaux ddddq ⋅←⋅−←⋅←∆← δδδω  

 ;;;; 323,3222,3121,3 auxcauxcauxcRaux ddddf ⋅←⋅−←⋅←∆← δδδ  

 ;;;; 333,4232,4131,4 auxcauxcauxcRaux ddddD ⋅−←⋅←⋅−←∆← δδδ  

 .;;; 313,5212,5111,5 auxcauxcauxcLaux ddddmq ⋅←⋅−←⋅←∆← δδδω  

Solving now the set of equations (19), (22) in relation to q-axis winding 

currents derivatives, one obtains: 

 ,11,51,41,31,21,1 qqQqDqfqqqdq
q uicicicicic
td
id

α+++++=  (24) 

 ,22,52,42,32,22,1 qqQqDqfqqqdq
Q uicicicicic
td
id

α+++++=  (25) 

wherein the coefficients are: 

 ,, 2,11,1 qmqdqqQdq LLcLLc ∆=∆−= ωω  
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 ,, 2,21,2 qmqqqQq LRcLRc ∆=∆−=  

 ,,,, 2,32,41,31,42,31,3 qqqqqmqmdqqQmdq ccccLLcLLc ≡≡∆=∆−= ωω  

 ,, 2,51,5 qqQqqmqQq LRcLRc ∆−=∆=  

 ,, 21 qmqqqQq LL ∆=∆−= αα  

with 

 ( ) .mqQQq LLLLL σσσσ ++=∆  

Equations (23), (24) and (25) describe a state-space model in explicit (normal) 

form: 
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represent the state currents vector and the matrices of coefficients whilst 

 [ ] T

fqd uuu=U  

is the voltages vector, selected here as input. 

In the absence of the zero sequence component, a certain stator phase current 

results from the well-known converse Park-Gorev transform in terms of stator d-q 

axis winding currents [20, 21]: 

 ( ) ( )titii qdph ωγωγ −+−= 00 sincos  
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or, at synchronous angular velocity ( )p.u.1=ω  

 ( ) ( )00 sincos γγ −−−= titii qdph  (27) 

wherein 0γ  is the initial value of the rotor lag angle. 

From (27) we obtain the time-related derivative of stator phase current in 

terms of stator d-q axis winding currents, selected here as state variables, and their 

time-related derivatives: 
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Extending formula (4) to solve system (26), we get the vector of state 

variables at step ( )1+n  of numerical integration based on the values of state and 

input variables at the previous eight steps: 
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More specifically, in order to update the values of state currents at step ( )1+n  of 

integration, it is necessary to evaluate the expressions of state currents time-related 

derivatives (26) at step n  of integration, having in view that, at the other 

previous seven steps, the values of state currents derivatives are already stored as 

array elements. 

 

 

4  Computer Experiments 

The transient selected in order to emphasize the benefits of the suggested 
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assessment procedure is represented by the sudden three-phase short-circuit fault 

at the terminals of a salient-pole synchronous generator with the following per unit 

(dimensionless) parameters [22]: 

 ,0.036,0.088,0.0032,0.0256 ==== QDf RRRR  

 ,0.066,0.33,0.258,0.088 ==== σσσσ QDf LLLL  

 .0.705,1.31 == mqmd LL  

The selection of this transient for performing numerical experiments is justified by 

the fact that dynamic simulation has been extensively employed as the benchmark 

approach in order to evaluate the accuracy of the results received from various 

standardized semi-rigorous procedures designed for short circuit fault analysis in 

electrical systems [23-28]. In silico experimentation has been carried out for the 

widely accepted initial circumstance of generator no-load operation, with rated 

phase voltage. We have also assumed that the generator operates at synchronous 

velocity. 

The outlined assumptions correspond to the following initial condition (in per 

unit): 

 .0,0,1,0,0 0,0,0,0,0, ===== QDmdfqd iiLiii  (30) 

Besides, the restrictive conditions characteristic of three-phase short circuit are: 

 ( ) ( ) .0≡≡ tutu qd  (31) 

Hence, state-space model (26), wherein we have (31) and .const0, == fff iRu , 

together with (30) provide here the initial value problem. 

Figure 1 and Figure 2 indicate the evolution curves of stator d-q axis currents, 

along with their time-related derivatives, recorded in real-time i.e. during 

numerical integration. The evolution of stator phase current (27), which is of 

major practical interest, is presented in Figure 3 together with its time-related 

derivative, computed in real-time with (28). Both stator phase current curve and 

stator phase current derivative, wholly depicted in Figure 3, correspond to the 

initial lag angle of the rotor 4,00 πγγ −== lag . 
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 Figure 1:  Evolution curves of stator d-axis current together with its time-related      

          derivative, recorded during numerical integration 

 

 

 
 Figure 2:  Evolution curves of stator q-axis current together with its time-related      

          derivative, recorded during numerical integration 

 

As aforementioned, the base quantity for time variable is ratedbaset ω1= , 

where ratedω  represents the rated angular velocity. Having this in view, the 

integration has been carried out with a step size of 0.001 rad. over the interval [0 

rad., 50 rad.]. It has to be emphasized that by adopting a 10-bytes extended data 

representation (1.9E-4932…1.1E+4932), no changes have been observed in the 

results at step size reduction below 0.001 rad. To develop the dedicated software 

environment, we have employed Free Pascal IDE [29] on Ubuntu OS. 
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 Figure 3:  Evolution curves of stator phase current (27) together with its  

          time-related derivative (28), recorded during numerical integration 

 

 

The currents curves plotted in Figure 1, Figure 2 and Figure 3 highlight the 

traditional manner of assessing an electrical transient. More precisely, the 

evolution curves of currents in Figure 1 up to Figure 3 are the result of accessing 

the huge file that stores the data corresponding to all steps of numerical integration 

i.e. time variable values, currents values. Thus, although merely the relative 

maxima and minima of stator phase current (27), which is the main characteristic 

quantity of the process, are of practical interest to assess the selected short circuit 

scenario, the currents values have been traditionally recorded at each step of 

numerical integration. It has to be pointed out that in this case, the access time to 

the storage media is extremely high, having in view that data have been computed 

and recorded at all steps during the integration. This observation comes to be very 

significant in the situation in which a set of contingency cases is to be solved in 

online mode. 

Since the main characteristic quantity here is the stator phase current, 

provided by (27), the next set of experiments will refer specifically to this quantity. 

To highlight the domains of interest in the evolution of stator phase current and to 

increase the computational capabilities of the dedicated software environment, we 

have proceeded to evaluate and record the selected stator phase current only if the 
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following condition: 
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has been met. More precisely, at each step of numerical integration, we have 

computed the absolute value of stator phase current derivative (28) to decide 

whether the value of stator phase current is within the area of practical interest, 

determined here by means of extremum ε  in (32). The efficiency of this 

assessing procedure to localize the relative maxima and minima is suggestively 

revealed by the data of Figure 4, plotted for { }5.0,1,5.1,2,5.2,3∈ε . 

 

 
Figure 4(a):  Values received for 3=ε  in criterion (32) 

 

 
Figure 4(b):  Values received for 5.2=ε  in criterion (32) 
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Figure 4(c):  Values received for 2=ε  in criterion (32) 

 

 
Figure 4(d):  Values received for 5.1=ε  in criterion (32) 

 

 
Figure 4(e):  Values received for 1=ε  in criterion (32) 
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Figure 4(f):  Values received for 5.0=ε  in criterion (32) 

 

 

Figure 4:  Values of selected stator phase current and its time-related derivative,     

     received for { }5.0,1,5.1,2,5.2,3∈ε  in criterion (32) of data   recording: 

     (a) 3=ε ; (b) 5.2=ε ; (c) 2=ε ; (d) 5.1=ε ; (e) 1=ε ; (f) 5.0=ε  

 

Applying of criterion (32) of data recording calls for the values of stator d-q 

axis currents and their time-related derivatives at each step of numerical 

integration. However, no further processing is needed since, in contrast to stator 

phase current, the stator d-q axis currents, depicted in Figure 1 and Figure 2, are 

precisely state variables and, implicitly, along with their time-related derivatives, 

they are to be updated at each step of numerical integration. 

 

 

5  Conclusion 

The present paper puts forward a new procedure of assessing the transients in 

electrical systems with a view to relative extrema localizing and computing rate 

increasing. The suggested procedure involves an eight-order explicit multistep 

method, which is straightforwardly designed in the paper based on the generalized 

Adams-Bashforth formula. The employment of an explicit multistep method is 
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justified having in view that the information required in order to update the state 

variables is exactly the one needed also to localize the relative extrema of state 

variables and of any characteristic quantity correlated with the selected state 

variables. To facilitate the understanding, the complex case of a synchronous 

generator subjected to sudden three-phase short circuit fault is depicted in detail 

by plotting various novel and suggestive characteristic curves. To highlight the 

areas of interest, encompassing the relative maxima and minima, as well as to 

optimize the size of the file that stores the significant values received during 

numerical integration, we have advanced a criterion of data recording, which 

requires a test that involves the state variables and their time-related derivatives. 
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