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Abstract 

Bilevel programming problem is characterized as hierarchical structure, involving 

two optimization problems at deferent levels. When some variables are restricted 

into integer set, the problem is very challenging for most canonical optimization 

approaches. In the present paper, a class of nonlinear mixed-integer bilevel 

programs is taken into account in which the follower is an integer linear program, 

and a hybrid approach based on genetic algorithm is developed for solving the 

problems of this kind. Firstly, a genetic algorithm is used to explore the space of 

leader’s variable values. Secondly, in order to obtain the optimal solution to the 

follower’s problem, all potential bases of the follower's relaxed problem are 

determined and then the solution functions of the problem are presented by using 

these bases for distinct leader’s variable values. Finally, if the solution to the 

follower’s problem provided by the solution functions is not satisfy integer 

requirements, the follower is further solved by using traditional optimization 
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technique. Some computational examples are solved and the results show that the 

proposed algorithm is efficient and robust. 
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1  Introduction  

The bilevel programming problem (BLPP), as a mathematical model of the 

leader-follower game, been investigated extensively [1-3]. A bilevel programming 

problem consists of two optimization problems located at deferent levels with 

hierarchical structure, leader's problem and follower’s problem. In such a problem, 

the feasible region of the leader’s problem is implicitly determined by the 

follower's problem, and the decision variables are partitioned between the leader 

and the follower, each of whom optimizes his objective function. The general 

BLPP is of the form: 
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Where nRx∈  and mRy∈ are called the leader's and follower's variables, 

respectively, F(f) : RRR mn →×  is called the leader's (follower's) objective 

function, and the vector-valued functions G: pmn RRR →×  and g: 
qmn RRR →×  are called the leader's and follower's constraints, respectively; the 

sets X and Y place additional constraints on the variables, such as upper and lower 

bounds or integrality requirements [2]. Unlike other mathematical programs, the 
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constraints of the bilevel programming problem always involve the optimality to 

the follower's problem. In BLPP(1), the leader first chooses a vector nRXx ⊆∈  

in an attempt to optimize his/her objective function F(x, y). For this chosen x, the 

follower reacts by selecting a vector mRYy ⊆∈  that optimizes his/her objective 

function f(x, y). If the point ),( yx  satisfies all leader’s constraints, the point is 

called a feasible point of BLPP(1). The optimal solution to BLPP(1) is best one 

among all feasible solutions, which makes the leader’s objective minimized.  

When some or all variables in (1) are restricted into integer set, the problem 

is known as a mixed-integer bilevel programming problem (MIBLPP). This kind 

of problems always arises when decision makers face a 'yes or no' decision 

problem, or the values of variables represent numbers of machines, products or 

people. From a computational viewpoint, the optimization problems with integer 

requirements are harder to solve than continuous ones, especially when the 

feasible region of problem is large. For MIBLPP, it seems to pose more 

algorithmic challenges than one-level mixed-integer optimization problems [5]. 

First, for a mixed-integer BLPP, even if the solution of the relaxed problem is an 

integer vector, it may not be a globally optimal solution of the original 

mixed-integer BLPP. In addition, the solution to the relaxed problem does not 

provide a valid lower bound for the solution of the original problem. As a result, 

there are only a small number of attempts to solve (mixed-) integer bilevel 

programming problems, and most of research on the mixed-integer BLPP is 

concentrated on a very restricted class of problems, such as linear BLPPs.  

For integer linear bilevel programming problems, Moore and Bard 

developed a branch and bound type of implicit enumerative solution algorithm [5]. 

Vicente, Savard and Judice analyzed three classes of discrete linear bilevel 

programming problems, and presented some existence results of optimal solutions 

by which a penalty function method was developed for solving discrete linear 

bilevel programming problems [6]. Wen and Huang presented a simple tabu 

search algorithm to solve the mixed-integer linear bilevel programming problem 
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only when the leader’s variables involves integer requirement, and proposed two 

supplementary procedures [7]. Based on three weak assumptions, Xu and Wang 

proposed an exact algorithm for the mixed integer linear bilevel program and 

considered finite optimal, infeasible, and unbounded cases [8]. For nonlinear cases, 

parametric analysis technique is frequently adopted [9-12].  Dominguez and 

Pistikopoulos developed two algorithms for solving pure integer and 

mixed-integer bilevel programming problems by multi-parametric programming 

techniques [10]. However, additional parameters need to be added when problems 

to solve are not 0-1 case. Gümüs and Floudas presented a global optimization 

method to solve mixed-integer nonlinear BLPPs, in which the mixed-integer 

problem located at follower’s level is transformed into a linear programming [11]. 

Jan and Chern proposed an algorithm using parametric analysis to deal with a 

special kind of nonlinear integer BLPPs in which functions need to be separable 

and monotone [12]. In addition, various intelligent methods have been applied to 

solve (mixed-) integer bilevel programs [13-15], especially when nonlinear or 

non-convex functions are involved [14].  

Some real-world problems modeled as mixed-integer bilevel programs have 

also been investigated, and for these problems some efficient approaches have 

been developed [13, 16-17].  

In this work, a class of mixed-integer nonlinear bilevel programming 

problems is discussed, in which only the follower’s problem is a linear 

mixed-integer program. We apply a real-coded genetic algorithm to search the 

space of the leader’s variable values. In order to obtain the follower’s variable 

value for any x  fixed, the relaxed problem of the follower, a linear program, is 

taken into account. First, all potential bases are taken and all solutions to the 

relaxed problem are represented as functions of leader’s variables by using these 

bases. In addition, if the solution to the relaxed problem don’t satisfy integer 

requirement for some selected x , the branch-and-bound approach is utilized to 

further solve the follower’s problem. 
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This paper is organized as follows. Some notations and discussed problem 

are stated in Section 2, and Section 3 gives the follower’s solution. In Section 4 

we present genetic operators as well as algorithmic approach. Section 5 analyzes 

the convergence of the algorithm, and in Section 6 some computational examples 

are given and solved. We finally conclude our paper in Section 7. 

 

 

2  Preliminaries 

The mixed-integer nonlinear BLPP can be represented as 
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Where ,),( nRxxx
CI
∈= mRyyy

CI
∈=

′′
),( ; I and I ′  stand for the index sets 

of the integer variables and C  and C ′are those of the continuous variables at 

both levels; ,:, RRRfF mn →×  )(:)( qpmn RRRRgG →× ; Just like one-level 

mixed-integer programs, when the integrality constraints in (2) are deleted, the 

resulting problem is called the relaxed problem associated with the original one. 

Basic Notations are listed as follows 

a) Constrained region: }integer  ,,0),(,0),(|),{( II yxyxgyxGyxS ′≤≤= ; 

b) For x  fixed, follower’s feasible set: }integer  ,0),(|{)( IyyxgyxS ′≤= ; 

c) Projection of S onto the leader’s decision space:  

 }),(such that ,|{)( SyxyxXS ∈∃= ; 

d) For each )(XSx∈ , follower’s rational reaction set:  

)}}(),,(min{arg|{)( xSvvxfyyxM ∈∈= ; 
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e) Inducible region: )}(|),{( xMySyxIR ∈∈= . 

In this work, we discuss MIBLPP (2) when the follower is a linear 

mixed-integer program, i.e., the discussed problem can be reformulated as 

follows： 
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Here, iii dBA ,, and qRb∈  are of conformal dimensions, 2,1=i .  

For leader’s variable x fixed, the problem 
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is called the follower’s problem of (3). Furthermore, the problem 
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is known as the relaxed problem of the follower’s problem, where ),( 21 ddd = , 

),( 21 AAA =  and ),( 21 BBB = . Since any inequality constraint can be 

transformed into equality by adding a slack variable, without any loss of 

generality, hence, (3) can be reformulated as  
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Also, the relaxed problem (5) can be rewritten as  
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y                                   (7) 

Which is a linear programming problem with parameter x . For the purpose of 

computational convenience, we further assume that the row rank of B is q . 

 

 

3  Solutions to the Follower’s Problem 
For a fixed x , we attend to solve the follower’s problem. Since the relaxed 

problem can provide a lower bound for one-level mix-integer program, as a result, 

(7) is first considered.  

Let kBBB ,,, 21
  are all potential optimal bases of (7). It means that iB  at 

least should satisfy:  

1) Nonsingular; 

2) There exists at least one )(XSx∈  such that 0)()( 1 ≥−− AxbB i , and 

3) 0)( 1 ≥− − ii
BN NBdd ii , here, ),,( ii BN ddd =  ),( ii NBB = .  

It follows that for each x , the solution to the relaxed problem of the follower 

can be represented as one of ,,,2,1),0,( kiyy iB == here, )()( 1 AxbBy i
Bi −= −  is 

basic component. Furthermore, if this solution don’t satisfy the integer 

requirement, the branch and bound method can applied to solve (4) with a starting 

solution y . 

 

 

4  Proposed Algorithmic Approach 

In the section, we begin with initial population, fitness function, crossover 

and mutation operators, and then propose a genetic algorithm using real number 

encoding to solve (3). 
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4.1 Initial Population 

N points are generated randomly in X. If some entries don’t satisfy integer 

restrictions, the entries are round into the nearest integers. As a result, a set, as an 

initial population denoted by pop(0), is obtained, satisfying all integer 

requirements on the leader’s variables.  

 

 

4.2 Fitness Evaluation 

For each )0(popx∈ , the inequalities 0)()( 1 ≥−− AxbBi , ki ,,2,1 = , are 

checked, one by one. If the s-th inequality is satisfied, the basic components of the 

optimal solution y  can be represented as )()( 1 AxbB s −−  while other 

components are taken as 0. If this y  don’t satisfy the integer restriction, then the 

follower is further solved by using the branch and bound method with a lower 

bound dy of the objective function. 

Once the optimal solution is obtained, a fitness function with a penalty term is 

presented as follows: 

         =),( yxR F(x, y) + M }...,,1),,(,0max{ piyxGi =                (8) 

Here, M is a penalty parameter large enough. 

 

 

4.3 Crossover and Mutation Operators 

Let bp  denote the best one found so far and ip  be a selected individual 

for crossover. The crossover offspring of the individual is gotten as follows. 

)( ibii pprpo −+=                               (9) 

Where r  is randomly taken in intervals [0, 1] and [1, 2], respectively. For each r, 

one offspring is generated. Hence, 2 offspring can be obtained for each crossover 

individual.  
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Gauss mutation with the mean value of 0 is adopted in this work. 

 

 

4.4 Hybrid Genetic Algorithm 

In this subsection we present a hybrid genetic algorithm based on the 

solution function of the follower’ problem (HGA/SF) as follows: 

Step1. (Initialization) Randomly generate N initial points NiXxi ,...,2,1, =∈ . 

These points form the initial population pop(0) with population size N. Let k = 0; 

Step2. (Fitness)  Evaluate the fitness value R(x, y) of each point in pop(k); 

Step3. (Crossover) Select parent individual x from pop(k) according to crossover 

probability cp . For each selected parent x, execute the crossover. Let O1 stand 

for the set of all crossover offspring; 

Step4. (Mutation) Select parents from O1 according to the mutation probability 

mp . For each selected parent x, execute the mutation for x and get its offspring. 

Let O2 represent the set of all these offspring. 

Step5. (Selection) Let 21 OOO ∪= . We evaluate the fitness values of all points in 

O, select the best N1 points from the set Okpop ∪)(  and randomly select 

1NN −  points from the remaining points of the set. These selected points form 

the next population pop(k + 1); 

Step6. If the termination condition is satisfied, then stop; otherwise, let k = k+1, 

go to Step3. 

 

 

5  Convergent Analysis 

In the proposed algorithm, it should be noted that once the optimal leader’s 

variable values are determined, the corresponding follower’s values can be 

obtained. As a result, we simply consider the leader’s problem. In addition, we 
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denote ),( yxR  by )(ˆ xR .  

In order to conveniently apply existing convergence results, some general 

assumptions are considered as follows [18]: 

 (A1) The search is executed in a bounded space Ŝ ; 

 (A2) Φ≠=∈=
∈

)}(ˆmin)(ˆ|ˆ{
ˆ

*** xRxRSxX
SX

; 

 (A3) For 0>∀ε , let  },)(ˆ)(ˆ|ˆ{ *** XxxRxRSxM ∈≤−∈= εε , and the 

Lebesgue measure of the set is positive. 

In addition, we denote the fitness values of the points in εM by *R  and the 

best fitness by *
tR at the t-th generation. Let ** RRD tt −= . 

 

Definition 5.1[18] For ,0>∀δ  if inequality ∑+∞
= +∞<≥0 }{t tDP δ  holds, the 

evolutionary algorithm generating this sequence is convergent completely.  

According the convergence results in [18], if the proposed algorithmic approach 

satisfies: (a) the best individual in Okpop ∪)(  is directly put into the next 

generation of population pop(k + 1), and (b) the survival probability of each 

individual in Okpop ∪)(  has a common lower-bound sp , then the algorithm is 

convergent completely. In fact, all points in Okpop ∪)(  are divided into two 

classes, i.e., the best N1 points and other points. All points in the first class 

including the best one are put into the next generation of population. For the 

second class, we set that the number of remaining points is tv , then it is obvious 

that Nvt 3≤ . It follows that the survival probability of each point in the second 

class is at least NNN 3/)( 1− . It means the proposed algorithm satisfies these 

conditions. As a consequence, we have 

Theorem 5.1 The proposed HGA/SF is convergent completely. 
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6  Computational experiment 

In the simulation section, 5 test problems denoted by T1-T5, are selected, 

which are often adopted as benchmark problems to illustrate the efficiency of 

proposed approaches in literature. In our proposed algorithm, simply linearity is 

required in the follower’s problem. It follows that the discussed model is more 

general than mixed-integer linear bilevel programs. These problems are as 

follows: 

T1) [10-11] 
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The problem is a mixed-integer nonlinear bilevel programming problem and the 

known best solution is (x, y)=(4/3,2) with F=4/9. In spite of the fact that the 

follower’s problem is nonlinear, it should be noted that when the 2),( yyxf =  is 

replace with yyxf =),( , these two problems have the same optimal solutions. 

As a result, the original problem can be transformed into a MIBLPP in which the 

follower’s problem is linear and solved by HGA/SF. 

T2) [10-11] 
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The problem is an integer bilevel program and the best solution provided by the 
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existing algorithm is (x, y)=(3,1) with F=5. 

T3) [5, 10-11]  
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The problem is also an integer bilevel program and the known best solution is (x, 

y)=(2,2) with F=-22. 

T4) [8] 

















∈≥
≥

≥
≥

−

Zyy
xyts

y
xy

xts

yx

y

yx

,0
,..

min
,2

,1..

max
,

 

The problem is infeasible and was given in reference [8] as a 

counterexample to illustrate the presented algorithm can’t be terminated in a finite 

number of steps when the leader’s variables are unbounded or have a large value 

region. 
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T5) [9] 
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In this problem only the leader’s variables are restricted into integer set. The 

optimal solution is (x, y) = (0, 1, 0, 1, 0, 75, 21.67) with F=-1011.67. 

The parameters are chosen as follows: the population size N = 50 for T1 and 

T4, whereas N=10 for other problems; the crossover probability pc = 0.8, the 

mutation probability pm = 0.1, N1 = [N/2], M = 10000. For T1–T5, the algorithm 

stops while the best results are not improved within 10 continuous generations or 

Table 1: Comparisons of the objective values 

No. Fbest Fwost Fmean std Fknown 
1 0.4444 0.4446 0.4444 1.1e-5 0.4444 
2 5 5 5 0 5 
3 -22 -22 -22 0 -22 
4 infeasible infeasible infeasible - infeasible 
5 -1011.67 -1011.67 -1011.67 1.6e-3 -1011.67 

 

Table 2: Computational cost and best solutions 

No. CPU(s) MNI Solutions 
1 44.1 4.3e3 (1.333,2) 
2 0.50 179 (3,1) 
3 0.30 173 (2,2) 
4 0.51 198 infeasible 
5 0.14 189 (0,1,0,1,0,75,21.67) 
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after 50 generations. We execute EDGA in 20 independent runs on each problem 

on a computer (Intel® Cor™2 Duo CPU E8400 2.99GHz), and record the 

following data: 

(1) Best solutions ( **, yx ) and leader’s objective values bestF  at the best points. 

(2) Leader’s objective function values worstF  at the worst solutions. 

(3) Mean values ( meanF ) and standard deviations (Std) of objective functions 

),( yxF  in 20 runs. 

(4) Mean values of CPU time (CPU) in 20 runs and mean number of individuals 

evaluated by HGA/SF (denoted by MNI). 

All results are presented in Tables 1-2, in which Table 1 provides the 

comparison of the objective values found by HGA/SF in 20 runs and the 

compared algorithms. Table 2 shows CPU, MIN and the best solutions found by 

HGA/SF in 20 runs.  

It can be seen from Table 1 that for all test problems, HGA/SF can find the 

best (optimal) results. 

In all 20 runs, HGA/SF found uniformly the results of all problems since the 

standard deviations std of those problems are close to zero. This means that 

HGA/SF is stable and robust for these test problems. 

In Table 2, from MIN and CPU, one can see easily that HGA/SF found the 

best solutions of these problems. 

In spite of the fact that the proposed algorithm has obtained the same 

computational results as those presented in compared references, some advantages 

of HGA/SF should be noted when comparing the performance of these approaches: 

(i) the algorithms presented in references [5] and [8] can only deal with linear 

bilevel programming problems with integer variables. When the leader’s problem 

involves nonlinear terms, these algorithms are applied directly, for example, 

problem T1. (ii) In references [9-11] parametric programming method is used to 

deal with integer variables and nonlinear terms, but the procedure cause additional 

variables generated, which increases the computational cost. 
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7  Conclusion 

In presented paper a hybrid approach based on genetic algorithm has been 

developed for solving nonlinear mixed-integer bilevel programs with linear 

lower-level problems. In proposed approach genetic algorithm is used to explore 

the space of leader’s variable values, and the solution functions of the follower are 

obtained in advance, which avoids frequently solving the lower level problem. 

The discussed problem extended linear cases to nonlinear ones and no additional 

variables are involved.  
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