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2                                                                    Research Directions and Foundations… 

1  Introduction  

A conventional computer uses bits, which are classical two-state systems. 

On the contrary, a quantum computer uses quantum two-state systems (called 

qubits). A quantum computer could efficiently decrypt many of the cryptographic 

systems in use today, including the prime integer factorization problem or the 

related discrete logarithm problem ([45]) and represent data to perform operations 

with polynomial speedup (including quantum database search, finding collisions 

in two-to-one functions and evaluating NAND trees). Frequently, quantum 

computers offer a more than polynomial speedup over the best known classical 

algorithm have been found for several problems, including simulation of quantum 

physical processes from chemistry and solid state physics, the approximation of 

Jones polynomial, and solving Pell’s equation. 

However, other existing cryptographic algorithms do not appear to be 

broken by these algorithms ([4]). For instance, some public-key algorithms are 

based on problems other than the integer factorization and discrete logarithm 

problems, like the McEliece and Niederreiter cryptosystems based on a problem in 

coding theory ([21]). Further, lattice-based cryptosystems are also not known to be 

broken by quantum computers, and finding a polynomial time algorithm for 

solving the dihedral hidden subgroup problem, which would break many lattice 

based cryptosystems, is a well-studied open problem ([31]).  

The main problems in realizing a quantum computer are local errors, 

thermic noise and quantum decoherence. Errors are typically corrected in classical 

computers by keeping multiple copies of information and checking against these 

copies. With a quantum computer, however, the situation is more complex. If we 

measure a quantum state during an intermediate stage of a calculation to see if an 

error has occurred, we collapse the wave function and thus ruin the calculation. 

Remarkably, in spite of these difficulties, error correction is possible for quantum 

computers ([16]). One can represent information redundantly so that errors can be 

identified without measuring information. However, the error correction process 
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may itself be a little noisy. More errors could then occur during error correction, 

and the whole procedure will fail unless the basic error rate is very small ([3]). 

Random errors are also caused by the interaction between the quantum computer 

and the environment. As a result of this interaction, the quantum computer, which 

is initially in a pure superposition state, becomes entangled with its environment. 

This can cause observable errors. Since we cannot measure the state of the 

environment accurately, information is lost. In other words, the environment has 

caused decoherence. It was universally assumed until the advent of quantum error 

correction that quantum computation is intrinsically impossible since 

decoherence-induced quantum errors simply cannot be corrected in any real 

physical system ([44]). However, when error-correcting codes are used, the 

entanglement is transferred from the quantum computer to ancillary qubits so that 

the quantum information remains pure while the entropy is in the ancillary qubits. 

One of the greatest challenges is controlling or removing quantum 

decoherence. This usually means isolating the system from its environment as 

interactions with the external world causes the system to decohere. This effect is 

irreversible and is usually something that should be highly controlled, if not 

avoided. Decoherence times for candidate systems, in particular the transverse 

relaxation time, typically range between nanoseconds and seconds at low 

temperature ([18]). These issues are more difficult for optical approaches as the 

timescales are orders of magnitude shorter and an often-cited approach to 

overcoming them is optical pulse shaping. Error rates are typically proportional to 

the ratio of operating time to decoherence time, hence any operation must be 

completed much more quickly than the decoherence time. 

If the error rate is small enough, it is thought to be possible to use quantum 

error correction, which corrects errors due to decoherence, thereby allowing the 

total calculation time to be longer than the decoherence time. However, the use of 

error correction brings with it the cost of a greatly increased number of required 

qubits. The number required to factor integers using Shor's algorithm is still 
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polynomial, and thought to be between 𝐿 and 𝐿2, where 𝐿 is the number of bits in 

the number to be factored; error correction algorithms would inflate this figure by 

an additional factor of 𝑳 ([19]).  

A very different approach to the stability-decoherence problem is to create 

a topological quantum computer with anyons, quasi-particles used as threads and 

relying on braid theory to form stable logic gates ([22]). 

A topological quantum computer is a theoretical quantum computer that 

employs two-dimensional quasiparticles called anyons, whose world lines cross 

over one another to form braids in a three-dimensional spacetime (i.e., one 

temporal plus two spatial dimensions). These braids form the logic gates that 

make up the computer. 

The advantage of a quantum computer based on (quantum) braids over 

using trapped quantum particles is that the former is much more stable. When 

anyons are braided, the transformation of the quantum state of the system depends 

only on the topological class of the anyons' trajectories (which are classified 

according to the braid group): the smallest perturbations do not change the 

topological properties of the braids. This is like the effort required to cut a string 

and reattach the ends to form a different braid, as opposed to a ball (representing 

an ordinary quantum particle in four-dimensional spacetime) simply bumping into 

a wall. Thus, the quantum information which is stored in the state of the system is 

impervious to small errors in the trajectories. 

While the elements of a topological quantum computer originate in a 

purely mathematical realm, recent experiments indicate these elements can be 

created in the real world using semiconductors made of gallium arsenide near 

absolute zero and subjected to strong magnetic fields. 

Anyons form from the excitations in an electron gas in a very strong 

magnetic field, and carry fractional units of magnetic flux in a particle-like 

manner. This phenomenon is called the fractional quantum Hall effect. The 

electron "gas" is sandwiched between two flat plates of gallium arsenide, which 
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create the two-dimensional space required for anyons, and is cooled and 

subjected to intense transverse magnetic fields.  

Topological quantum computers are equivalent in computational power to 

other standard models of quantum computation, in particular to the quantum 

circuit model and to the quantum Turing machine model. That is, any of these 

models can efficiently simulate any of the others. Nonetheless, certain algorithms 

may be a more natural fit to the topological quantum computer model. For 

example, algorithms for evaluating the Jones polynomial were first developed in 

the topological model, and only later converted and extended in the standard 

quantum circuit model.  

In what follows, we will be interested in give a short overview of the 

recent research perspectives and mathematical foundations in topological 

quantum computation theory. In particular, we will be interested in braid 

representation theory, topological invariants of braids, approximation with 

braiding generators and quantum hashing with the icosahedral group.  

 

 

2  Quantum Computation 

2.1. Background 

Supposeℋ is a complex Hilbert space. We use Dirac’s bra-ket notation as 

commonly used in quantum physics. This means vectors inℋ are denoted as ket’s  

| � 〉�. 

Without loss of generality, one may assume that ℋ ≡ ℂ𝒏. 

Definition 2.1 Let| �𝜑〉� = (𝜑1,𝜑2, … ,𝜑𝑛)𝑇 ∈ ℋ. 

i. If | �𝜓〉� = (𝜓1,𝜓2, … ,𝜓𝑛)𝑇 ∈ ℋ, then the inner product of | �𝜑〉� and| �𝜓〉� is defined 

by  

〈𝜑|𝜓�〉 = | �𝜑〉�𝑇| �𝜓〉����� = ∑ 𝜑𝑗𝜓𝚥���𝑛
𝑗=1 . 
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ii. 〈�𝜑| � is the linear functional ℋ → ℂ that maps every | �𝜓〉� ∈ ℋ to the inner 

product of | �𝜑〉� and| �𝜓〉�: 

〈�𝜑| �:ℋ → ℂ: | �𝜓〉� ⟼ 〈𝜑|𝜓�〉.  

It follows that 〈�𝜑| � can be thought as the transpose complex-conjugate row vector  

〈�𝜑| � = | �𝜑〉�����𝑇 = (𝜑1����,𝜑2����, … ,𝜑𝑛����).) 

iii .If | �𝜓〉� = (𝜓1,𝜓2, … ,𝜓𝑛)𝑇 ∈ ℋ, then the outer product of | �𝜑〉� and| �𝜓〉� is 

defined by  

 

| �𝜑〉�〈�𝜓| � ≡ | �𝜑〉�| �𝜓〉�����𝑇 =

⎝

⎛
𝜑1𝜓1���� 𝜑1𝜓2����
𝜑2𝜓1���� 𝜑2𝜓2����

⋯ 𝜑1𝜓𝑛����
⋯ 𝜑2𝜓𝑛����

⋮ ⋮
𝜑𝑛𝜓1���� 𝜑𝑛𝜓2����

⋱ ⋮
⋯ 𝜑𝑛𝜓𝑛����⎠

⎞

�������������������
𝑛×𝑛𝑚𝑎𝑡𝑟𝑖𝑥

, 

iv. We also write | �𝜑𝜓〉� as a short hand for the tensor product of | �𝜑〉� and| �𝜓〉�. In 

other words, we have  

| �𝜑〉�⨂| �𝜓〉� ≡ | �𝜑𝜓〉� ≔ 

(𝜑1𝜓1,𝜑1𝜓2, … ,𝜑1𝜓𝑛, … ,𝜑𝑛𝜓1,𝜑𝑛𝜓2, … ,𝜑𝑛𝜓𝑛)𝑇 ∈ ℋ𝑛�≡ ℂ𝑛2�.  

 

 

2.2. The state vector of a quantum system 

In quantum mechanics, a quantum system (: a theoretical or actual system 

based on quantum physics, as a supercomputer) is represented by a state 

vector| �𝜑〉� in the state space  ℋ. A quantum system with a state vector | �𝜑〉� is called 

a pure state. However, it is also possible for a system to be in a statistical 

ensemble of different state vectors. For example, there may be a 50% probability 

that the state vector is | �𝜑1〉� and a 50% chance that the state vector| �𝜑2〉�. This 

system would be in a mixed state. To distinguish pure and/or mixed states, one 

often uses the expressions 'coherent' and/or 'incoherent superposition' of quantum 

states. 
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States are "really" in the projective space associated with ℋ. More 

precisely, the space of pure states of a quantum system is given by the one-

dimensional subspaces of the corresponding Hilbert space (or the "points" of the 

projective Hilbert space). In a two-dimensional Hilbert space this is simply the 

complex projective line, which is a geometrical sphere.  

Given basis kets ��𝑒𝑗〉�, any ket | �𝜑〉� can be written  

| �𝜑〉� = ∑ 𝑐𝑗��𝑒𝑗〉�𝑛
𝑗=1   

where 𝑐𝑗 are complex numbers. In physical terms, this is described by saying that 

| �𝜑〉� has been expressed as a quantum superposition of the states  ��𝑒𝑗〉�. Recall that a 

quantum superposition of the states ��𝜑𝑗〉� means that if a quantum system 

has𝑘distinct states | �𝜑1〉�,| �𝜑2〉�,   ,| �𝜑𝑘〉�, then it has infinitely many states of the form 

𝑎1| �𝜑1〉�+ 𝑎2| �𝜑2〉� + ⋯+ 𝑎𝑘| �𝜑𝑘〉� 

where𝑎1, 𝑎2,…,𝑎𝑘 are complex numbers taken up to a common multiple.  

Remark 2.2 If the basis kets are chosen to be orthonormal (as is often the case), 

then  

𝑐𝑗 = 〈𝑒𝑗|𝜑�〉 (𝑗 = 1,2, … ,𝑛). 

One property worth noting is that the normalized states| �𝜑〉�are characterized by 

∑ �𝑐𝑗�
2

=𝑛
𝑗=1 1. 

If, in particular, ��𝑒𝑗〉�are eigenstates (with eigenvalues 𝑒𝑗) of an observable, and that 

observable is measured on the normalized state| �𝜑〉�, then the probability that the 

result of the measurement is ��𝑒𝑗〉� equals  �𝑐𝑗�
2
. Recall that an observable is given 

by a finite collection �𝛱𝑗: 𝑗 ∈ 𝐽 = 1,2, … ,𝑛� of orthogonal projections (:𝛱𝑗2 = 𝛱𝑗) 

𝛱𝑗 ∈ ℰ𝓃𝒹(ℋ) that satisfy the condition  ∑ 𝛱𝑗 =𝑛
𝑗=1 𝕀, where 𝕀 denotes the identity 

inℰ𝓃𝒹(ℋ).  □ 

Remark 2.3 (http://en.wikipedia.org/wiki/Density_matrix) A mixed state is 

different from a quantum superposition. An example of pure and mixed state is 

light polarization. Photons can have two helicities, corresponding to two 

http://en.wikipedia.org/wiki/Riemann_sphere
http://en.wikipedia.org/wiki/Density_matrix
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orthogonal quantum states, | �𝑅〉� (right circular polarization) and | �𝐿〉� (left circular 

polarization). A photon can also be in a superposition state, such as 

(| �𝑅〉�+ | �𝐿〉�) √2⁄  (vertical polarization) or (| �𝑅〉� − | �𝐿〉�) √2⁄  (horizontal 

polarization). More generally, it can be in any state𝑎| �𝑅〉�+ 𝑏| �𝐿〉�, corresponding to 

linear, circular, or elliptical polarization. However, unpolarized light (such as the 

light from an incandescent light bulb) is different from any of these. Unlike 

linearly or elliptically polarized light, it passes through a polarizer with 50% 

intensity loss whatever the orientation of the polarizer; and unlike circularly 

polarized light, it cannot be made linearly polarized with any wave plate. Indeed, 

unpolarized light cannot be described as any state of the form𝑎| �𝑅〉� + 𝑏| �𝐿〉�. 

However, unpolarized light can be described perfectly by assuming that each 

photon is either | �𝑅〉�with 50% probability or | �𝐿〉� with 50% probability. The same 

behavior would occur if each photon was either vertically polarized with 50% 

probability or horizontally polarized with 50% probability. Therefore, unpolarized 

light cannot be described by any pure state, but can be described as a statistical 

ensemble of pure states in at least two ways (the ensemble of half left and half 

right circularly polarized, or the ensemble of half vertically and half horizontally 

linearly polarized). These two ensembles are completely indistinguishable 

experimentally, and therefore they are considered the same mixed state. One of the 

advantages of the density matrix is that there is just one density matrix for each 

mixed state, whereas there are many statistical ensembles of pure states for each 

mixed state. Nevertheless, the density matrix contains all the information 

necessary to calculate any measurable property of the mixed state.  

Where do mixed states come from? To answer that, consider how to 

generate unpolarized light. One way is to use a system in thermal equilibrium, a 

statistical mixture of enormous numbers of microstates, each with a certain 

probability (the Boltzmann factor), switching rapidly from one to the next due to 

thermal fluctuations. Thermal randomness explains why an incandescent light 

bulb, for example, emits unpolarized light. A second way to generate unpolarized 
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light is to introduce uncertainty in the preparation of the system, for example, 

passing it through a birefringent crystal with a rough surface, so that slightly 

different parts of the beam acquire different polarizations. A third way to generate 

unpolarized light uses an EPR setup: A radioactive decay can emit two photons 

traveling in opposite directions, in the quantum state(| �𝑅, 𝐿〉� + | �𝐿,𝑅〉�) √2⁄ . The two 

photons together are in a pure state, but if you only look at one of the photons and 

ignore the other, the photon behaves just like unpolarized light. More generally, 

mixed states commonly arise from a statistical mixture of the starting state (such 

as in thermal equilibrium), from uncertainty in the preparation procedure (such as 

slightly different paths that a photon can travel), or from looking at a subsystem 

entangled with something else. □ 

 

 

2.3. The density matrix of a quantum system 

The density matrix (see below) is especially useful for mixed states, 

because any state, pure or mixed, can be characterized by a single density matrix.  

Definition 2.4 A state vector| �𝜑〉� of  ℋ can also be represented by a self-adjoint 

(or Hermitian) positive-semi definite (: 𝑅𝑒(𝑧𝑇𝜌𝑧) > 0, whenever 𝑧 ∈ ℋ ≡ ℂ𝑛) 

matrix  

𝜌 = �
𝜌1,1 ⋯ 𝜌1,𝑛
⋮ ⋮ ⋮

𝜌𝑛,1 ⋯ 𝜌𝑛,𝑛

� ∈ ℰ𝓃𝒹(ℋ) 

of trace one (⟺ 𝑡𝑟(𝜌) ≔ ∑ 𝜌𝑗,𝑗
𝑛
𝑗=1 = 1), that describes the statistical state of a 

quantum state. Such an operator is called a density matrix (or density operator). 

We denote by 𝒟(ℋ) the set of all density matrices  𝜌 ∈ ℰ𝓃𝒹(ℋ), and we 

write  𝜌 ≥ 0 to express that the operator𝜌 is positive semi-definite. 

Remark 2.5 Any density matrix can be written as  

𝜌 = ∑ 𝑝𝑗𝑗 ��𝜑𝑗〉�〈�𝜑𝑗��  
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where 𝑝𝑗 is the fraction of the ensemble in each pure state ��𝜑𝑗〉�. In particular, a 

state vector is pure if and only if there exists| �𝜑〉� ∈ ℋsuch that  

𝜌 = | �𝜑〉�〈�𝜑| �,  

where the trace condition on𝜌 implies that | �𝜑〉� is normalized, i.e. ‖𝜑‖2 = 〈𝜑|𝜑�〉 =

1. Equivalently, a state vector is pure if its density matrix𝜌 ∈ 𝒟(ℋ)has rank  1, 

which is equivalent to saying that 𝜌 ∈ 𝒟(ℋ)satisfies 

𝜌2 = 𝜌,  

i.e. the state is idempotent. □ 

Remark 2.6 From a geometric point of view, the pure states are given by the 

extremal points of the convex set  𝒟(ℋ), in particular, any𝜌 ∈ 𝒟(ℋ)can be 

written as a convex linear combination 

𝜌 = ∑ 𝑝𝑗��𝜑𝑗〉�〈�𝜑𝑗��𝐾
𝑗=1  (𝑝1,  𝑝2, … , 𝑝𝐾 ≥ 0 and   ∑ 𝑝𝑗𝐾

𝑗=1 = 1) 

of pure states. Such a system can alternatively be understood to be in pure 

state  ��𝜑𝑗〉� with probability 𝑝𝑗.  □ 

To simplify the language, we will sometimes be somewhat sloppy in 

distinguishing between a quantum system, its state, and the density matrix or state 

vector describing the state. 

 

 

2.4. Measuring a quantum system  

The only way to gain information on the state of a quantum system is by 

means of a measurement. Given ay state | �𝜑〉� = ∑ 𝑎𝑘| �𝜑𝑘〉�𝑘  in  ℋ, a measurement 

returns | �𝜑𝑘〉� with probability |〈𝜑|𝜑𝑘�〉|2 〈𝜑𝑘|𝜑𝑘�〉⁄ . This model of measurement is a 

simple instance of the situation with a quantum mechanical system that is in a 

mixed state until it is observed. The result of observation is to put the system into 

one of the basis states.  
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A measurement is described by an observable, which is given by a finite 

collection {𝛱𝑖: 𝑖 ∈ 𝐼 = 1,2, … ,𝑚} of orthogonal projections (:𝛱𝑖2 = 𝛱𝑖) 𝛱𝑖 ∈

ℰ𝓃𝒹(ℋ) that satisfy the condition  ∑ 𝛱𝑖 =𝑚
𝑖=1  𝕀, where 𝕀 denotes the identity 

in  ℰ𝓃𝒹(ℋ). For a quantum system represented by a state vector | �𝜑〉� ∈ ℋ and a 

density matrix𝜌, measuring the system with respect to the observable {𝛱𝑖: 𝑖 ∈ 𝐼} 

has the following two effects.  

1) An outcome  𝑖 ∈  𝐼 is observed, with the probability that a specific 𝑖 ∈  𝐼 is 

observed given by  𝑝𝑖 =  𝑡𝑟(𝛱𝑖𝜌).  

2) After the measurement, the state with density matrix 𝜌 has collapsed to a 

state with density matrix 𝜌′ = 𝛱𝑖𝜌𝛱𝑖∗ 𝑝𝑖⁄ where the outcome observed is𝑖 

and 𝛱𝑖∗ is the adjoint (conjugate transpose) matrix (𝛱𝚤���)𝑇 of 𝛱𝑖.  

We often consider measurements where the  𝛱𝑗’s are projections onto a basis 

���𝑒𝑗〉�: 𝑗 ∈ 𝐽 = 1,2, … , 𝑛� of  ℋ. In this case, we say that the state (vector) | �𝜑〉� is 

measured in basis  ���𝑒𝑗〉�: 𝑗 ∈ 𝐽�. Measurement in basis returns basis elements ��𝑒𝑗〉� 

of  ℋ with probability �〈𝜑�𝑒𝑗�〉�
2 〈𝑒𝑗�𝑒𝑗 �〉� . If, in particular, ��𝑒𝑗〉� lies in an 

orthonormal basis of ℋ, then the observable becomes 𝛱𝑗 = ��𝑒𝑗〉〈�𝑒𝑗��� and the 

measurement of | �𝜑〉� in basis ���𝑒𝑗〉�: 𝑗 ∈ 𝐽� returns coordinates of  | �𝜑〉� with 

corresponding probabilities �〈𝜑�𝑒𝑗 �〉�
2
.  

 

2.4.1. Quantum computers  

As is common in quantum information processing, we consider the 

quantum state of a system to be static, meaning that it does not change over time, 

unless it is actively operated on.  

Definition 2.7.i A quantum system | �𝜑〉� in the state space  ℋ can be operated on 

by means of applying a unitary transformation  𝑈 ∈ ℰ𝓃𝒹(ℋ) 

(ℰ𝓃𝒹(ℋ)  represents the set of ℋ‘s endomorphisms). As a result, the density 

matrix 𝜌 ∈ 𝒟(ℋ) describing | �𝜑〉� evolves to a new density matrix 𝜌′ = 𝑈𝜌𝑈† 
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representing the new state. In case of a pure state described by its state 

vector | �𝜑〉 ∈�ℋ, the state evolves as 

| �𝜑′〉 = �𝑈| �𝜑〉� = |𝑈�𝜑〉�. 

ii. A quantum process(or even more a physical process) occurs in 𝑘 steps 

𝑈𝑗:𝒟(ℋ) ⟶𝒟(ℋ):𝜌 ⟼ 𝑈𝑗𝜌𝑈𝑗† (𝑗 = 1,2, … ,𝑘), 

where 𝑈𝑗 is a unitary linear transformation. Note that since 𝑈𝑗 is unitary, it 

follows that probability is preserved in the course of a quantum process.  

iii. According to the Kraus quantum process representation, the most general 

quantum evolution process of a single-qubit density matrix is given by 

𝜌′ = ∑ 𝑈𝑗𝜌𝑈𝑗
†

𝑘 , with ∑ 𝑈𝑗
†

𝑘 𝑈𝑗 = 𝕀 (: the identity matrix). 

iv. The initial state of a quantum process is a vector | �𝜑0〉� in the complex vector 

space ℋ. 

v. A quantum computer is, abstractly, a composition of unitary transformations, 

together with an initial state and a choice of measurement basis. One runs the 

computer by repeatedly initializing it, and then measuring the result of applying 

the unitary transformation 𝑈 to the initial state. The results of these measurements 

are then analyzed for the desired information that the computer was set to 

determine. The key to using the computer is the design of the initial state and the 

design of the composition of unitary transformations. For more specific examples 

of quantum algorithms, the reader should consult the reference book “Quantum 

Computation and Quantum Information" by M. A. Nielsen and I. L. Chuang ([39]. 

Remark 2.8 One of the details required for any specific quantum problem is the 

nature of the unitary evolution. This is specified by knowing appropriate 

information about the classical physics that supports the phenomena. This 

information is used to choose an appropriate Hamiltonian through which the 

unitary operator is constructed via a correspondence principle that replaces 

classical variables with appropriate quantum operators. □ 
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2.4.2. The two-dimensional case: qubits and Bloch sphere  

Definition 2.9 A qubit (or quantum bit) is a quantum system with state 

space  ℋ = ℂ2. 

Notation 2.10 {| �0〉�, | �1〉�} denotes the (orthonormal) computational basis: 

| �0〉� = (1, 0)𝑇 ∈ ℋ = ℂ2and | �1〉� = (0, 1)𝑇 ∈ ℋ = ℂ2 

and {| �+〉�, | �−〉�} the Hadamard basis 

| �+〉� = 1
√2
�1

1� = 1
√2

(| �0〉�+ | �1〉�) ∈ ℋ = ℂ2and 

| �−〉� = 1
√2
� 1
−1� = 1

√2
(| �0〉� − | �1〉�) ∈ ℋ = ℂ2. □ 

Remark 2.11 Note that  

| �+〉� = 𝐻| �0〉� and | �−〉� = 𝐻| �1〉� 

where 𝐻 is the Hadamard transform 

𝐻: = 1
√2
�1 1

1 −1�.  

Thus, 𝐻𝑏{| �0〉�, | �1〉�} = {𝐻𝑏| �0〉�,𝐻𝑏| �1〉�} denotes the computational basis if 𝑏 = 0 and 

the Hadamard basis if  𝑏 = 1. □ 

 

Obviously, every qubit can be written as a unique linear combination of 

the computational basis elements. In particular, the physical state of a qubit | �𝜑〉� is 

the superposition | �𝜑〉� = 𝑎| �0〉� + 𝑏| �1〉� (𝑎 ∈ ℂ,𝑏 ∈ ℂ). According to the Remark 1, 

when we try to measure the qubit in this basis in order to determine its state, we 

get either | �0〉� with probability |𝑎|2 or | �1〉� with probability|𝑏|2. Since|𝑎|2 + |𝑏|2 =

1, the qubit is a unit vector in the aforementioned two-dimensional Hilbert space.  

Definition 2.12 The Bloch sphere is the 2-sphere, with each pair of antipodal 

points corresponding to mutually orthogonal state vectors. The north and south 

poles of the Bloch sphere are typically chosen to correspond to the standard 

computational basis vectors {| �0〉�, | �1〉�}, respectively, which in turn might 
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correspond e.g. to the spin-up and spin-down states of an electron. (This choice is 

arbitrary, however.)  

Given an orthonormal basis, any pure state | �𝜑〉� of a two-level quantum 

system can be written as a complex superposition of the computational basis 

vectors| �0〉� and  | �1〉�. Since global phase factors do not have any physical meaning, 

we can take the coefficient of  | �0〉� to be real and non-negative. 

 
Figure 1: The Bloch sphere 

Thus| �𝜑〉� has the normalized representation 

| �𝜑〉� = 𝑐𝑜𝑠(𝜃 2⁄ )| �0〉� + 𝑒𝑖𝜔 𝑠𝑖𝑛(𝜃 2⁄ )| �1〉� 

with 0 ≤ 𝜃 ≤ 𝜋 and 0 ≤ 𝜔 ≤ 2𝜋. Except in the case where  | �𝜑〉� is one of the ket 

vectors | �0〉� or| �1〉� the representation is unique. The parameters 𝜃 and 𝜔, re- 

interpreted as spherical coordinates, specify a point 

𝑎 = �⃗� = �
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜔
𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜔
𝑐𝑜𝑠𝜃

� 

on the unit sphere in   ℝ3 (:the three-dimensional space embedding the Bloch 

sphere). 

As we shall see below, a simple general criterion for checking whether a 

quantum state is pure or mixed is that the von Neumann quantum state entropy 

is  0  for a pure state, and strictly positive for a mixed state. When  ℋ = ℂ2, 

another, equivalent, criterion for checking whether a two-dimensional density 

matrix 𝜌 is describing a pure or mixed state is that the trace 𝑡𝑟(𝜌) of  𝜌2is equal 

http://en.wikipedia.org/wiki/Trace_(linear_algebra)
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to  1 if the state is pure, and less than  1 if the state is mixed. Indeed, we have the 

following ‘‘strong’’ geometrical representations for two-dimensional density 

matrices.  

Theorem 2.13.i Any two-dimensional density matrix 𝜌 can be written as follows: 

𝜌 = 1
2
� 1 + 𝑥3 𝑥1 − 𝑖𝑥2
𝑥1 + 𝑖𝑥2 1 − 𝑥3

� ( 𝑥1, 𝑥2, 𝑥3 ∈ ℝ). 

ii. As density operators must be positive semidefinite, we have 

𝑥12 + 𝑥22 + 𝑥32 ≤ 1. 

iii. Equivalently, any two-dimensional density 𝜌 can be expanded using the 

identity 

𝜌 = 1
2
�𝕀 + �⃗�𝜎� = 1

2
�𝕀 + (𝑥1, 𝑥2, 𝑥3)�

𝜎1
𝜎2
𝜎3
��. 

Here, we have used the notation �⃗� = (𝑥1, 𝑥2, 𝑥3) and  𝜎 = (𝜎1,𝜎2,𝜎3)𝑇, 

where  𝜎1, 𝜎2 and 𝜎3 are the following three 2 × 2 Hermitian, unitary Pauli 

matrices: 

𝜎1 = �0 1
1 0�, 𝜎2 = �0 −𝑖

𝑖 0 �, 𝜎3 = �1 0
0 −1�. 

iv. The eigenvalues of the density matrix 𝜌 are given by 

𝜆 = 𝜆1,2 = 1
2
�1 ± �𝑥12 + 𝑥22 + 𝑥32� . 

v. For pure states, we must have 

𝑡𝑟(𝜌2) = 1
2
�1 + ��⃗��� ⟺ ��⃗��: = �𝑥12 + 𝑥22 + 𝑥32 = 1.  

As a corollary, the points on the surface of the Bloch sphere correspond to the 

pure states of the system, whereas the interior points correspond to the mixed 

states.  

 

2.4.3. The n-qubit systems 

As it is already pointed out, for any two qubits  

| �𝜑〉� = (𝜑1,𝜑2)𝑇 ∈ ℂ2 and  | �𝜓〉� = (𝜓1,𝜓2)𝑇 ∈ ℂ2. 
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the tensor product of | �𝜑〉� and  | �𝜓〉� is given by  

| �𝜑〉�⨂| �𝜓〉� ≡ | �𝜑𝜓〉� ≔ (𝜑1𝜓1,𝜑1𝜓2,𝜑2𝜓1,𝜑2𝜓2)𝑇 ∈ ℂ4. 

We say that | �𝜑〉�⨂| �𝜓〉� ≡ | �𝜑𝜓〉� is a 2 −qubit.  

Example 2.14 In particular, if | �0〉� = (1,0)𝑇 ∈ ℂ2and | �1〉� = (0,1)𝑇 ∈ ℂ2, we have 

| �00〉� = (1,0,0,0)𝑇 ∈ ℂ4, | �01〉� = (0,1,0,0)𝑇 ∈ ℂ4, 

| �10〉� = (0,0,1,0)𝑇 ∈ ℂ4, | �11〉� = (0,0,0,1)𝑇 ∈ ℂ4. □ 

More generally, we have the following.  

Definition 2.15 A  𝑛 −qubit system consists of 𝑛 qubits, i.e., is a quantum system 

whose state space is the 𝑛-fold tensor product 

(ℂ2)⨂𝑛 = ℂ2⨂⋯⨂ℂ2���������
𝑛−𝑡𝑖𝑚𝑒𝑠

.  

Formally, we can write 

(ℂ2)⨂𝑛 = �| �𝜑〉�⨂| �𝜓〉⨂⋯⨂| �𝜒〉�� ≡ | �𝜑𝜓⋯𝜒〉� ∈ ℂ2𝑛:�. 

| �𝜑〉� = (𝜑1,𝜑2)𝑇 ∈ ℂ2, | �𝜓〉� = (𝜓1,𝜓2)𝑇 ∈ ℂ2, … 
�… , | �𝜒〉� = (𝜒1,𝜒2)𝑇 ∈ ℂ2}. 

Example 2.16 It is easily seen  

ℂ2⨂ℂ2 = {| �𝜑〉�⨂| �𝜓〉� ≡ | �𝜑𝜓〉� ≔ (𝜑1𝜓1,𝜑1𝜓2,𝜑2𝜓1,𝜑2𝜓2)𝑇 ∈ ℂ4:� 
�| �𝜑〉� = (𝜑1,𝜑2)𝑇 ∈ ℂ2𝑎𝑛𝑑 | �𝜓〉� = (𝜓1,𝜓2)𝑇 ∈ ℂ2} 

and  

ℂ2⨂ℂ2⨂ℂ2 = 

{| �𝜑〉�⨂| �𝜓〉�⨂| �𝜒〉� ≡ | �𝜑𝜓𝜒〉� ≔�.  

(𝜑1𝜓1𝜒1,𝜑1𝜓1𝜒2,𝜑1𝜓2𝜒1,𝜑1𝜓2𝜒2,𝜑2𝜓1𝜒1,𝜑2𝜓1𝜒2,𝜑2𝜓2𝜒1,𝜑2𝜓2𝜒2)𝑇 ∈ ℂ8: 
�| �𝜑〉� = (𝜑1,𝜑2)𝑇 ∈ ℂ2, | �𝜓〉� = (𝜓1,𝜓2)𝑇 ∈ ℂ2𝑎𝑛𝑑 | �𝜒〉� = (𝜒1,𝜒2)𝑇 ∈ ℂ2}. 

In particular, we have 

|�000〉� = (1,0,0,0,0,0,0,0)𝑇 ∈ ℂ8, |�001〉� = (0,1,0,0,0,0,0,0)𝑇 ∈ ℂ8, 

|�010〉� = (0,0,1,0,0,0,0,0)𝑇 ∈ ℂ8, |�011〉� = (0,0,0,1,0,0,0,0)𝑇 ∈ ℂ8, 

|�100〉� = (0,0,0,0,1,0,0,0)𝑇 ∈ ℂ8, |�101〉� = (0,0,0,0,0,1,0,0)𝑇 ∈ ℂ8,  

|�110〉� = (0,0,0,0,0,0,1,0)𝑇 ∈ ℂ8,|�111〉� = (0,0,0,0,0,0,0,1)𝑇 ∈ ℂ8. □ 
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2.4.4. Entanglement 

The true separation from the classical regime is most apparent when we 

analyse multiple qubits. Classically, the state of a non-random system of 𝑛 bits can 

be expressed in entirety by specifying the individual states of the component bits. 

A quantum system of 𝑛 qubits can be expressed as a vector in a 2𝑛-dimensional 

Hilbert space. As we will see shortly, it will not always be possible to fully specify 

the individual qubits.  

Assume that we have two qubits with pure states | �𝜑1〉� = 𝑎1| �0〉� + 𝑏1| �1〉� and 

| �𝜑2〉� = 𝑎2| �0〉� + 𝑏2| �1〉� respectively. The vector representing the total system, or 

joint state, is given by the tensor product of the individual qubits. The tensor 

product of the given qubits is 

| �𝜑1〉�⨂| �𝜑2〉� = (𝑎1| �0〉�+ 𝑏1| �1〉�)⨂(𝑎2| �0〉� + 𝑏2| �1〉�) = 

= 𝑎1𝑎2| �0〉�⨂| �0〉� + 𝑎1𝑏2| �0〉�⨂| �1〉� + 𝑏1𝑎2| �1〉�⨂| �0〉�+ 𝑏1𝑏2| �1〉�⨂| �1〉� 

= 𝑎1𝑎2| �00〉� + 𝑎1𝑏2| �01〉� + 𝑏1𝑎2| �10〉� + 𝑏1𝑏2| �11〉�. 

Conversely, assume that we have a two-qubit system in the state  

�1 √2⁄ �| �00〉� + �1 √2⁄ �| �11〉�. 

Correspondence with the last equation above implies that 

𝑎1𝑎2 = 1 √2⁄ , 𝑎1𝑏2 = 𝑏1𝑎2 = 0, and 𝑏1𝑏2 = 1 √2⁄ . 

However, there exists no assignment to these parameters satisfying all conditions. 

From this we conclude that the two qubits sharing this state are entangled, 

meaning they cannot be expressed individually. If there exists a valid 

decomposition into individual qubits, we call the joint state a product state. 

Entangled quantum states provide possibilities unavailable to classical 

computers. Specifically, using the Bell inequalities, we can verify that 

entanglement provides higher levels of correlation than anything possible in the 

classical regime. Subsequently, it is a feature that manifests in virtually all 

important quantum algorithms. 
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Entanglement can exist in varying degrees. States with the maximum 

amount of entanglement are called maximally entangled. Perhaps the most 

common maximally entangled two-qubit states are the four Bell states: 

| �Φ−〉� = �1 √2⁄ �| �00〉� − �1 √2⁄ �| �11〉� 

| �Ψ+〉� = �1 √2⁄ �| �01〉� + �1 √2⁄ �| �10〉� 

| �Ψ−〉� = −�1 √2⁄ �| �01〉� + �1 √2⁄ �| �10〉� 

| �Φ+〉� = �1 √2⁄ �| �00〉� + �1 √2⁄ �| �11〉�. 

The Bell states are mutually orthogonal, forming a basis for the 4 −dimensional 

Hilbert space. 

Remark 2.17 A two-qubit pure state | �𝜑〉� = 𝑎| �00〉� + 𝑏| �01〉� + 𝑐| �10〉� + 𝑑| �11〉� is 

entangled exactly when (𝑎𝑑 −  𝑏𝑐)  ≠  0. It is easy to use this fact to check when 

a specific matrix is, or is not, entangling. □ 

 

2.4.5. Quantum gates  

Definition 2.18 A quantum gate (or quantum logic gate) is a basic model for 

quantum computation (: quantum circuit) operating on a small number of qubits. 

A quantum circuit is a model for quantum computation in which a computation is 

a sequence of quantum gates, which are reversible transformations on a quantum 

mechanical analog of an 𝑛-bit register. This analogous structure is referred to as 

an 𝑛-qubit register. 

Remark 2.19 They are the building blocks of quantum circuits, like classical logic 

gates are for conventional digital circuits. □ 

Unlike many classical logic gates, quantum logic gates are reversible. 

Reversible computing is a model of computing where the computational process to 

some extent is reversible, i.e., time-invertible. A necessary condition for 

reversibility of a computational model is that the transition function mapping 

states to their successors at a given later time should be one-to-one. Reversible 
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computing is generally considered an unconventional form of computing. There 

are two major, closely related, types of reversibility that are of particular interest 

for this purpose: physical reversibility and logical reversibility.  

However, classical computing can be performed using only reversible 

gates. For example, the reversible Toffoli gate can implement all Boolean 

functions. This gate has a direct quantum equivalent, showing that quantum 

circuits can perform all operations performed by classical circuits. 

Quantum logic gates are represented by unitary matrices. A unitary matrix 

is a (square) 𝑛 × 𝑛 complex matrix  𝑈 satisfying the condition 𝑈†𝑈 = 𝑈𝑈† = 𝕀𝑛 

where 𝕀𝑛 is the identity matrix in 𝑛 dimensions and 𝑈† is the conjugate transpose 

(also called the Hermitian adjoint) of 𝑈. 

The most common quantum gates operate on spaces of one or two qubits, 

just like the common classical logic gates operate on one or two bits. This means 

that as matrices, quantum gates can be described by 2 ×  2 or 4 ×  4 unitary 

matrices. 

 

2.4.5.i. Commonly used gates 

Quantum gates are usually represented as matrices. A gate which acts on 𝑘 

qubits is represented by a 2𝑘  ×  2𝑘 unitary matrix. The number of qubits in the 

input and output of the gate have to be equal. The action of the quantum gate is 

found by multiplying the matrix representing the gate with the vector which 

represents the quantum state. 

• Hadamard gate 

The Hadamard gate acts on a single qubit and represents a rotation of 𝜋 about 

the 𝑥 − and 𝑧 −axes. It is represented by the Hadamard matrix (Hadamard 

transform): 

𝐻: = 1
√2
�1 1

1 −1�.  
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Since the rows of the matrix are orthogonal, 𝐻 is indeed a unitary matrix. The 

Hadamard gate maps the basis state | �0〉� to | �+〉� and | �1〉� to | �−〉�, where {| �+〉�, | �−〉�} is 

the Hadamard basis of ℂ2:  

| �+〉� = �1 √2⁄ �(1,1)𝑇 = �1 √2⁄ �(| �0〉� + | �1〉�) ∈ ℋ = ℂ2and 

| �−〉� = �1 √2⁄ �(1,−1) = �1 √2⁄ �(| �0〉� − | �1〉�) ∈ ℋ = ℂ2. 

Recall that | �+〉� = 𝐻| �0〉� and | �−〉� = 𝐻| �1〉�.  

• Pauli-X gate 

The Pauli-𝑋 gate acts on a single qubit. It is the quantum equivalent of a NOT 

gate. It equates to a rotation of the Bloch Sphere around the 𝑥 −axis by 𝜋 radians. 

It maps | �0〉� to | �1〉� and | �1〉� to| �0〉�. It is represented by the Pauli 𝒳 matrix: 

𝜎1 = 𝜎𝑥: = �0 1
1 0�.  

• Pauli-Y gate 

The Pauli-𝑌 gate acts on a single qubit. It equates to a rotation around the 

𝑦 −axis of the Bloch Sphere by 𝜋 radians. It maps | �0〉� to 𝑖| �1〉� and | �1〉� to −𝑖| �0〉�. It 

is represented by the Pauli 𝒴 matrix:  

𝜎2 = 𝜎𝑦: = �0 −𝑖
𝑖 0 �.  

• Pauli-Z gate 

The Pauli-𝑍 gate acts on a single qubit. It equates to a rotation around the 

𝑧 −axis of the Bloch Sphere by 𝜋 radians. Thus, it is a special case of a phase shift 

gate (see below) with  𝜃 = 𝜋. It leaves the basis state | �0〉� unchanged and maps | �1〉� 

to  −| �1〉�. It is represented by the Pauli 𝒵 matrix:  

𝜎3 = 𝜎𝑧: = �1 0
0 −1�. 

• Phase shift gates 

This is a family of single-qubit gates that leave the basis state | �0〉� unchanged 

and maps | �1〉� to  𝑒𝑖𝜃| �1〉�. The probability of measuring a | �0〉�or | �1〉� is unchanged 

after applying this gate; however it modifies the phase of the quantum state. This 
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is equivalent to tracing a horizontal circle (a line of latitude) on the Bloch Sphere 

by 𝜃 radians: 

𝑅𝜃: = �1 0
0 𝑒𝑖𝜃� 

where 𝜃 is the phase shift. Some common examples are the  (𝜋 8⁄ ) gate 

where  𝜃 = (𝜋 4⁄ ), the phase gate where 𝜃 = (𝜋 2⁄ ) and the Pauli-𝑍 gate 

where𝜃 =  𝜋. 

• Swap gate 

The swap gate swaps two qubits. It is represented by the matrix: 

𝑆𝑊𝐴𝑃 = �
1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

�.   

• Controlled gates 

Controlled gates act on 2 or more qubits, where one or more qubits act as a 

control for some operation. For example, the controlled NOT gate (or CNOT) acts 

on 2 qubits, and performs the NOT operation on the second qubit only when the 

first qubit is| �1〉�, and otherwise leaves it unchanged. It is represented by the matrix 

𝐶𝑁𝑂𝑇 = �
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

�.   

On the standard basis  {| �0〉, �| �1〉�}, 𝐶𝑁𝑂𝑇 is the identity when the first qubit is 

| �0〉�, and it flips  the second qubit, leaving the first alone, when the first qubit is 

| �1〉�. 

More generally if 𝑈 is a gate that operates on single qubits with matrix 

representation 

𝑈: = �
𝑥0,0 𝑥0,1
𝑥1,0 𝑥1,1

�, 

then the controlled−𝑈 gate is a gate that operates on two (2) qubits in such a way 

that the first qubit serves as a control. It maps the basis states as follows.  

| �00〉� ⟼ | �00〉�,  
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| �01〉� ⟼ | �01〉�,  

| �10〉� ⟼ | �1〉�𝑈| �0〉� = | �1〉��𝑥0,0| �0〉� + 𝑥1,0| �1〉�� and  

| �11〉� ⟼ | �1〉�𝑈| �1〉� = | �1〉��𝑥0,1| �0〉� + 𝑥1,1| �1〉��.  

The matrix representing the controlled−𝑈gate is  

𝐶(𝑈) = �

1 0
0 1

0 0
0 0

0 0
0 0

𝑥0,0 𝑥0,1
𝑥1,0 𝑥1,1

�.   

When 𝑈 is one of the Pauli matrices 𝜎𝑥, 𝜎𝑦, or 𝜎𝑧, the respective terms 

"controlled-𝑋", "controlled-𝑌", or "controlled-𝑍" are sometimes used. 

 

• Toffoli gate 

The Toffoli gate, also CCNOT gate, is a 3-bit gate, which is universal for 

classical computation. The quantum Toffoli gate is the same gate, defined for 3 

qubits. If the first two bits are in the state| �1〉�, it applies a Pauli- 𝒳 on the third bit, 

else it does nothing. It is an example of a controlled gate. Since it is the quantum 

analog of a classical gate, it is completely specified by its truth table. 

INPUT OUTPUT INPUT OUTPUT 

0 0 0 0 0 0 1 0 0 1 0 0 

0 0 1 0 0 1 1 0 1 1 0 1 

0 1 0 0 1 0 1 1 0 1 1 1 

0 1 1 0 1 1 1 1 1 1 1 0 

It can be also described as the gate which maps | �𝑎, 𝑏, 𝑐〉� to| �𝑎, 𝑏, 𝑐⨁𝑎𝑏〉�.  

• Fredkin gate 

The Fredkin gate (also CSWAP gate) is a 3-bit gate that performs a controlled 

swap. It is universal for classical computation (see below section I.1.h.ii). It has 

the useful property that the numbers of 0s and 1s are conserved throughout, which 

in the billiard ball model means the same number of balls are output as input. This 
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corresponds nicely to the conservation of mass in physics, and helps to show that 

the model is not wasteful. 

INPUT OUTPUT INPUT OUTPUT 

C I1 I2 C O1 O2 C I1 I2 C O1 O2 

0 0 0 0 0 0 1 0 0 1 0 0 

0 0 1 0 0 1 1 0 1 1 1 0 

0 1 0 0 1 0 1 1 0 1 0 1 

0 1 1 0 1 1 1 1 1 1 1 1 

 

It can be also described as the gate which maps | �𝑎, 𝑏, 𝑐〉� to| �𝑎,𝑎�𝑏 + 𝑎𝑐, 𝑎�𝑐 + 𝑎𝑏〉�. 

 

2.4.5.ii. Universal quantum gates 

Informally, 

Definition 2.20 Let 𝑉 be a two complex dimensional vector space. 

i. We say that the gate 𝐺: 𝑉⨂𝑉 ⟶ 𝑉⨂𝑉 is universal for quantum computation 

(or just universal) if 𝐺 together with local unitary transformations (unitary 

transformations from 𝑉 to  𝑉) generates all unitary transformations of the 

complex vector space 𝑉⨂𝑉 of dimension 2𝑛to itself. 

ii. A set of universal quantum gates is any set of gates to which any operation 

possible on a quantum computer can be reduced, that is, any other unitary 

operation can be expressed as a finite sequence of gates from the set. 

Technically, this is impossible since the number of possible quantum gates is 

uncountable, whereas the number of finite sequences from a finite set is countable. 

To solve this problem, we only require that any quantum operation can be 

approximated by a sequence of gates from this finite set. Moreover, for the 

specific case of single qubit unitaries the Solovay-Kitaev theorem guarantees that 

this can be done efficiently. 
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Remark 2.21 It is well known ([39]) that 𝐶𝑁𝑂𝑇is a universal gate. □ 

Theorem 2.22 One simple set of two-qubit universal quantum gates is  

i. the Hadamard gate 𝐻, 

ii. the (𝜋 8⁄ ) gate withphase shift 𝜃 = (𝜋 4⁄ ),  

iii. the controlled NOT gate. 

Proposition 2.23 A single-gate set of universal quantum gates can also be 

formulated using the three-qubit Deutsch gate  𝐷(𝜃), which performs the 

transformation  

| �𝑎, 𝑏, 𝑐〉� ↦ �𝑖 𝑐𝑜𝑠
(𝜃)| �𝑎, 𝑏, 𝑐〉� + 𝑠𝑖𝑛(𝜃)|�𝑎, 𝑏, 1 − 𝑐〉�, 𝑓𝑜𝑟 𝑎 = 𝑏 = 1 

| �𝑎, 𝑏, 𝑐〉� , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.    
� 

The universal classical logic gate, the Toffoli gate, is reducible to the Deutsch 

gate  𝐷(𝜋 2⁄ ), thus showing that all classical logic operations can be performed 

on a universal quantum computer. 

 

2.4.6. Quantum computations 

So far we have not shown how quantum circuits are used to perform 

computations. Since many important numerical problems reduce to computing a 

unitary transformation 𝑼 on a finite dimensional space (the celebrated discrete 

Fourier transform being a prime example) one might expect that some quantum 

circuit could be designed to carry out the transformation  𝑈.  

The sequence of 𝑁complex numbers𝑥0, ..., 𝑥𝑁−1 is transformed into another 

sequence of 𝑁 complex numbers according to the DFT formula 

𝑋𝑘 = ∑ 𝑥𝑛𝑒−𝑖 2𝜋(𝑘 𝑁⁄ )𝑛𝑁−1
𝑛=0 . 

The transform is sometimes denoted by the symbol  ℱ, as in 𝑋 = ℱ{𝑥} or ℱ(𝑥) or 

ℱ𝑥. As a linear transformation on a finite-dimensional vector space, the DFT 

expression can also be written in terms of a DFT matrix; when scaled 

appropriately it becomes a unitary matrix and the 𝑋𝑘 can thus be viewed as 

http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Linear_transformation
http://en.wikipedia.org/wiki/Dimension_%28vector_space%29
http://en.wikipedia.org/wiki/DFT_matrix
http://en.wikipedia.org/wiki/Unitary_matrix
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coefficients of 𝑥 in an orthonormal basis. The inverse discrete Fourier transform 

(IDFT) is given by 

𝑥𝑛 = (1 𝑁⁄ )∑ 𝑋𝑘𝑒𝑖 2𝜋(𝑘 𝑁⁄ )𝑛𝑁−1
𝑘=0 . 

These formulas can be interpreted or derived in various ways; for example, they 

can be interpreted as arising from the discrete-time Fourier transform (DTFT) and 

its inverse when applied to a periodic sequence. (Given a discrete set of real or 

complex numbers  𝑥[𝑛], 𝑛 ∈ ℤ (integers), the discrete-time Fourier transform (or 

DTFT) of 𝑥[𝑛] is usually written 

𝑋(𝜔) = ∑ 𝑥[𝑛]𝑒−𝑖 𝜔𝑛∞
𝑛=−∞ .) 

In principle, one needs only to prepare a 𝑛 qubit state 𝜓 as an appropriate 

superposition of computational basis states for the input and measure the 

output  𝑈𝜓. Unfortunately, there are two problems with this: 

• One cannot measure the phase of 𝜓 at any computational basis state so 

there is no way of reading out the complete answer. This is in the nature of 

measurement in quantum mechanics. 

• There is no way to efficiently prepare the input state𝜓. 

This does not prevent quantum circuits for the discrete Fourier transform from 

being used as intermediate steps in other quantum circuits, but the use is more 

subtle. In fact quantum computations are probabilistic. 

We now provide a mathematical model for how quantum circuits can simulate 

probabilistic but classical computations.  

a) Consider an  𝑟 −qubit circuit 𝑈 with register space 𝐻𝑄𝐵(𝑟). 

b) 𝑈 is thus a unitary map 𝐻𝑄𝐵(𝑟) → 𝐻𝑄𝐵(𝑟). 

c) In order to associate this circuit to a classical mapping on bitstrings, we 

specify  

• an input register  𝑋 =  {0,1}𝑚 of 𝑚 (classical) bits 

• an output register𝑌 =  {0,1}𝑛 of 𝑛 (classical) bits. 

d) The contents 𝑥 =  𝑥1, . . . , 𝑥𝑚 of the classical input register are used to 

initialize the qubit register in some way. Ideally, this would be done with the 

http://en.wikipedia.org/wiki/Orthonormal_basis
http://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
http://en.wikipedia.org/wiki/Number%23Integers
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computational basis state | �𝑥, 0〉� = | �𝑥1, . . . , 𝑥𝑚, 0, … ,0〉� where there are (𝑟 −𝑚) 

zeroed inputs.  

Nevertheless, this perfect initialization is completely unrealistic. Let us assume 

therefore that the initialization is a mixed state given by some density operator 

S which is near the idealized input in some appropriate metric, e.g. 

𝑡𝑟(| �𝑥, 0〉�〈�𝑥, 0| �−𝑆| �) ≤ 𝛿. 

e) Similarly, the output register space is related to the qubit register, by a 𝑌 

valued observable  𝐴. Note that observables in quantum mechanics are usually 

defined in terms of projection valued measures on ℝ; if the variable happens 

to be discrete, the projection valued measure reduces to a family {𝐸𝜆} indexed 

on some parameter 𝜆 ranging over a countable set. Similarly, a 𝑌 valued 

observable, can be associated with a family of pairwise orthogonal projections 

{𝐸𝑦} indexed by elements of 𝑌 such that  

Ι = ∑ 𝐸𝑦𝑦∈𝑌 . 

Given a mixed state 𝑆, there corresponds a probability measure on 𝑌 given by 

𝑃𝑟(𝑦) = 𝑡𝑟�𝑆𝐸𝑦�. 

f) The function 𝐹:𝑋 →  𝑌 is computed by a circuit 𝑈: 𝐻𝑄𝐵(𝑟) → 𝐻𝑄𝐵(𝑟) to within 

𝜀 if and only if for all bitstrings 𝑥 of length 𝑚 

〈�𝑥, 0| �𝑈∗𝐸𝐹(𝑥)𝑈���𝑥, 0〉 = 〈�𝐸𝐹(𝑥),𝑈(| �𝑥, 0〉�)���𝑈(| �𝑥, 0〉�)〉 ≥ 1 − 𝜀. 

g) Now  

�𝑡𝑟�𝑆𝑈∗𝐸𝐹(𝑥)𝑈� − 〈�𝑥, 0| �𝑈∗𝐸𝐹(𝑥)𝑈���𝑥, 0〉� ≤  

𝑡𝑟��| �𝑥, 0〉��〈�𝑥, 0| �−𝑆| ���𝑈∗𝐸𝐹(𝑥)𝑈� ≤ 𝛿 

so that 

𝑡𝑟�𝑆𝑈∗𝐸𝐹(𝑥)𝑈� ≥ 1 − 𝜀 − 𝛿. 

Theorem 2.24 If  𝜀 +  𝛿 < 1/2, then the probability distribution 𝑃𝑟(𝑦) = 

𝑡𝑟�𝑆𝐸𝑦� on 𝑌 can be used to determine 𝐹(𝑥) with an arbitrarily small probability 

of error by majority sampling, for a sufficiently large sample size. Specifically, 

take 𝑘 independent samples from the probability distribution 𝑃𝑟 on 𝑌 and choose 
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a value on which more than half of the samples agree. The probability that the 

value 𝐹(𝑥) is sampled more than 𝑘/2 times is at least 

1 − 𝑒𝑥𝑝(−2𝛾2𝑘) where 𝛾 =  (1/2 ) − 𝜀 −  𝛿. 

(This follows by applying the Chernoff bound. In probability theory, the Chernoff 

bound, named after Herman Chernoff, gives exponentially decreasing bounds on 

tail distributions of sums of independent random variables. It is better than the first 

or second moment based tail bounds such as Markov’s inequality or Chebyshev 

inequality, which only yield power-law bounds on tail decay. It is related to the 

(historically earliest) Bernstein inequalities, and to Hoeffding’s inequality. Let 

𝑋1, . . . ,𝑋𝑛 be independent Bernoulli random variables, each having probability 

𝑝 >  1/2. Then the probability of simultaneous occurrence of more than 𝑛/2 of 

the events {𝑋𝑘  =  1} has an exact value  𝑃, where 

𝑃 = ∑ �𝑛𝑖 �
𝑛
𝑖=[𝑛 2⁄ ]+1 𝑝𝑖(1 − 𝑝)𝑛−𝑖. 

The Chernoff bound shows that 𝑃 has the following lower bound: 

𝑃 ≥ 1 − 𝑒−2𝑛�𝑝−
1
2�
2

. 

This result admits various generalizations as outlined below. One can encounter 

many flavours of Chernoff bounds: the original additive form (which gives a 

bound on the absolute error) or the more practical multiplicative form (which 

bounds the error relative to the mean).) 

 

 

3  Basic Concepts from Quantum Mechanics 

Let us first give the topological interpretation of interchanging two identical 

particles in 2 and 3 spatial dimensions. We need the following definition.  

Definition 3.1 If the exchange of two identical particles leaves the state 

unchanged the particles are termed bosons, and if the state gains a negative sign 

the particles are termed fermions. 
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In 1 spatial dimension and 1 time dimension, quantum statistics is not well-

defined and bosons are equivalent to fermions. In 3 spatial dimensions and 1 time 

dimension, there are only two possible symmetries — the wave function of bosons 

is symmetric under exchange while that of fermions is anti-symmetric. However, 

in 2 spatial dimensions and 1 time dimension, the following proposition holds. 

 

Proposition 2.1 When one particle is exchanged in a counterclockwise manner 

with the other, the wave function can change by an arbitrary phase 

𝜓(𝕣1, 𝕣2) ↦ 𝑒𝑖𝜃𝜓(𝕣1, 𝕣2). 

The phase need not be merely a ±sign 

because a second counter-clockwise 

exchange need not lead back to the 

initial state but can result in a non-

trivial phase: 

𝜓(𝕣1, 𝕣2) ↦ 𝑒2𝑖𝜃𝜓(𝕣1, 𝕣2). 

 

‘statistical 

angle’ 𝜃 

(identical) 

particles 

𝜃 =  0 bosons 

𝜽 =  𝝅 fermions 

𝜃 ≠  0,𝜋 anyons 
 

 

Topological interpretations in 2 and 3 spatial dimensions 

In 2 spatial dimensions and one time 

dimension  

(2 + 1𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠) 

In 3 spatial dimensions and one time 

dimension  

(3 + 1𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠) 

  

  

or  
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Exchanging two identical particles 

(:anyons) twice is topologically 

equivalent to bringing one particle in a 

closed circle enclosing the other 

particle. 

Exchanging two identical particles (:bosons 

or fermions) twice is topologically 

equivalent to not moving either particle. 

 

 

Let us now give the topological interpretation of interchanging several identical 

particles in 2 and 3 spatial dimensions. To do so, we make use of the following 

assumption. 

The world lines of 𝑛 particles are being interchanged, so that  

− the set of final coordinates of the particles is the same as the initial set of 

coordinates, while  

− not requiring each one is returned to its initial position. 

Under this condition, we can detail the aimed topological interpretation.  

 

Topological interpretations in 2 and 3 spatial dimensions 

In 2 spatial dimensions and one time 

dimension  

(2 + 1𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠) 

In 3 spatial dimensions and one time 

dimension  

(3 + 1𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠) 

The group formed by the homotopy classes 

is the braid group 

𝐵𝑛 

on 𝑛 anyons.  

The braid group is generated by clockwise 

switches of adjacent particles. That is the 

set of all 𝑠𝑖 where 𝑠𝑖 is the clockwise 

exchange of particles 𝑖 and 𝑖 + 1 generate 

the braid group. 

The set of all homotopy classes of world 

lines has the group structure of 

𝑆𝑛, 

the permutation group on 𝑛 letters.  
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Keeping in mind the above considerations, we are in position to describe 

how topological quantum computing works.  

General framework for topological quantum computations 

− 1stFirst, pairs of anyons are created and lined up 

in a row to represent the qubits, or quantum bits, 

of the computation.  

− 2ndSecond, the anyons are moved around by 

swapping the positions of adjacent anyons in a 

particular sequence. These moves correspond to 

operations performed on the qubits.  

− 3rdFinally, pairs of adjacent anyons are brought 

together and measured to produce the output of the 

computation.  
 

The output depends on the topology of the particular braiding produced by 

those manipulations. Small disturbances of the anyons do not change that 

topology, which makes the computation impervious to normal sources of errors. 

 

 

4  Diagrammatic theories of braids and knots 

4.1. Braids, knots and links 

The purpose of this section is to give a quick introduction to the diagrammatic 

theory of braids and knots. But, why are knots of importance in braid theory? As 

we shall see in the next section, knot theory can be used to produce unitary 

representations of the braid group. Such representations can play a fundamental 

role in quantum computing. 

Definition 4.1 

i. A braid is an embedding of a collection of 𝑛 strands in the three dimensional 

space that have their ends in two rows of points that are set one above the other 

Time 
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with respect to a choice of vertical. The 𝑛 strands are not individually knotted and 

they are disjoint from one another. The braid set on 𝑛 strands is denoted by 𝐵𝑛. 

ii. A knot is an embedding of a circle in the three dimensional space, taken up to 

ambient isotopy. More precisely, let 𝑁 and 𝑀 be manifolds and 𝑔 and ℎ be 

embeddings of 𝑁in 𝑀. A continuous map 𝐹:𝑀 × [0,1] → 𝑀 is defined to be an 

ambient isotopy taking g to ℎ if 𝐹0 is the identity map, each map 𝐹𝑡 is a 

homeomorphism from 𝑀 to itself, and 𝐹1 ∘ 𝑔 =  ℎ. This implies that the 

orientation must be preserved by ambient isotopies. For example, two knots which 

are mirror images of each other are in general not equivalent. 

iii. A link is an embedding of a disjoint collection of circles in the three 

dimensional space, taken up to ambient isotopy.  

 

Figure 2 illustrates some indicative knot diagrams. These diagrams are 

regarded both as schematic pictures of knots, and as plane graphs with extra 

structures at the nodes (indicating how the curve of the knots pass over or under 

itself by standard pictorial conventions). 
 

   
Figure 2: Knot diagrams 

 

It is clear that every braidcan be converted into a knot (or link) by forming the 

closure. The knot or link type resulting from performing this operation on a braid 

𝑋is known as the closure of 𝑋and will be denoted by 𝑏(𝑋). Figure 3 illustrates 

how to close a braid by attaching the top strands to the bottom strands by a 

collection of parallel arcs. 

Theorem4.2 ([1], [2], [49[, [52]) Every knot or link can be represented as a 

closed braid. 
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Hopf link Trefoil knot  Figure eight knot 

Figure 3: Closing braids to form knots and links 

               Alexander’s theorem provides the converse statement.  

 

Remark 4.3 The problem of deciding whether two knots are isotopic is an 

example of a placement problem, a problem of studying the topological forms that 

can be made by placing one space inside another. In the case of knot theory we 

consider the placements of a circle inside the three dimensional space.  

Open Question 4.4 The braid index of a knot or link 𝐾is the minimum number 

𝑛such that there exists a braid 𝑋 ∈ 𝐵𝑛 whose closure 𝑏(𝑋) represents 𝐾. It is an 

open problem to determine the braid index of a knot algorithmically. 

Ambient isotopy is mathematically the same as the equivalence relation 

generated on diagrams by the Reidemeister moves. These moves are illustrated in 

Figure 4 bellow. Each move is performed on a local part of the diagram that is 

topologically identical to the part of the diagram illustrated in this Figure (these 

figures are representative examples of the types of Reidemeister moves) without 

changing the rest of the diagram. The Reidemeister moves are useful in doing 

combinatorial topology with knots and links, notably in working out the behavior 

of knot invariants. Furthermore, the Reidemeister moves are of great use for 

analyzing the structure of knot invariants and they are closely related to the Artin 

braid group, which we discuss below. 

Successive application of Reidmeister moves gives equivalent 

knotdiagrams. A formal mathematical definition is that two knots are equivalent 
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if one can be transformed into the other via a type of deformation of ℝ𝟑 upon 

itself, known as an ambient isotopy.  

 

 

Figure 4: The Reidmeister moves 

 

Conversely, we have the following. 

Theorem 4.5([43])Two diagrams in the three dimensional space represent the 

same knot if and only if the diagrams are ambient isotopic through a sequence of 

Reidmeister moves.  

Reidmeister’s theorem reduces the problem of distinguish two knot 

diagrams into the problem of relating conceptual objects to knot diagrams in a 

manner that is invariant under Reidmeister’s moves. The relating machine can be 

formalized as follows. 

Theorem 4.6 ([43]) A knot invariant with values in a set 𝐸 is a function  

𝑓: {𝑘𝑛𝑜𝑡𝑠𝑑𝑖𝑎𝑔𝑟𝑎𝑚𝑠}  →  𝐸 

such that if the knot diagrams 𝐷 and 𝐷’ are ambient isotopic through a sequence 

of Reidmeister moves then 𝑓(𝐷) = 𝑓(𝐷′). In other words, a knot invariant is a 

"quantity" that is the same for equivalent knots. In particular, a knot polynomial is 

a knot invariant that is a polynomial. 

A general pattern to produce knot invariants is to take any function 

𝑔 ∶  {𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑜𝑓𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑘𝑛𝑜𝑡𝑠 𝑑𝑖𝑎𝑟𝑔𝑎𝑚𝑠}  →  𝐸 

and, then, consider the functional composition 𝑓 =  𝑔 ∘  𝜌 where  

𝜌: {𝑘𝑛𝑜𝑡𝑑𝑖𝑎𝑔𝑟𝑎𝑚𝑠}  →  {𝑐𝑙𝑎𝑠𝑠𝑒𝑠𝑜𝑓𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑘𝑛𝑜𝑡𝑠 𝑑𝑖𝑎𝑔𝑟𝑎𝑚𝑠} 

↔ 
 
↔ 
 
↔ 
 
 
 

Type III Reidmeister move 

Type II Reidmeister move 

Type I Reidmeister move 
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is the function associating to each knot diagram the equivalence class of this knot. 

Due to Reidmeister’s theorem, any invariant can be obtained following this 

general pattern.  

Of course, the main problem for such a technical construction is to 

formulate (and understand!)  𝜌. To be more specific, let us choose  

𝐸 = {𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑜𝑓𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑘𝑛𝑜𝑡𝑠 𝑑𝑖𝑎𝑔𝑟𝑎𝑚𝑠} and𝑓(𝐷) = 𝜌(𝐷).  

For this choice, the knowledge of 𝜌 would render the corresponding knot invariant 

a very precious topological tool, since it would be equivalent to the knowledge of 

an efficient answer to the equivalent knot representation problem of two diagrams. 

Instead, we may simplify by taking relevant functions 𝑓 that lose enough of 

information on knots represented by diagrams. In this direction, let us give some 

classic examples of knot invariants. 

 

4.1.1. The crossing number  

Of course, the most plausibly defined invariant would be the number of 

crossings in a knot diagram. But, such a number depends strongly on the diagram 

chosen to represent the knot and, therefore, is not an invariant. This requires 

considering the minimum number of crossings in a diagram of knot. This 

minimum number equals 0 for the single knot and 3 for the trefoil knots. This is 

exactly the complexity used for ordering the table of knots. The raised problem of 

this invariant is that theoretical calculation for knots represented by a given 

diagram would generate all equivalent diagrams and then take the minimum 

number of crossings. Since the number of these diagrams is infinite this is not 

feasible. However, we can immediately obtain an estimate from the top of this 

invariant: the number of crossings of any knot diagram is greater than or equal to 

the number of crossings of the knot. 
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4.1.2. The gordian number 

Another classical invariant is the gordian number. Given a knot, it is possible 

to transform it into a single knot in the moving in space and allowing the segments 

that make up the cut to a finite number of times. The gordian number is the 

minimum number of such sections necessary to transform the knot to a single 

knot. Following this definition, the gordian number of a single knot is 0. Again, it 

is not generally easy to calculate that number, but it is not difficult to estimate it: 

given a diagram of knot, it is easily seen that changes of the data above / down 

around some crossings lead to a single knot diagram. So the gordian number is 

always less than or equal to the number of crossings in any knot diagram (and 

therefore the crossing number of the knot).  

 

4.1.3. The “three-color” invariant 

This invariant is a first example of completely computable invariant. Note that 

any diagram with 𝑛(>  0) knot crossings is formed by 𝑛 arcs whose ends are 

exactly the intersections. Around each intersection there are exactly three arcs: one 

who goes above and two pieces of that which passes underneath. Fix now three 

colors such as red, blue, and green.  

Definition 4.7(three-color)  

i. A three-color in a diagram 𝐷 is the choice of three colors for each arc of the 

diagram, so that around each crossing of the diagram appear either three times 

on the same color or three different colors. 

ii. A knot is said to be tricolor if it admits a diagram with a three-color at least 

once using each color. 

What is most remarkable in this definition is that a priori the knot depends on 

the diagram of the knot chosen for the test, but in fact we can see that if 𝐷 is a 

diagram tricolorable and 𝐷′ is obtained by applying a Reidemeister move to 𝐷, 
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then 𝐷′ is also tricolorable. So, thanks to the Reidemeister theorem, the 

tricolorability does not depend of the diagram but only on the knot!  

 

 

4.2 Finitely generated braid groups 

4.2.1. The Artin’s braid group on 𝒏 strands. Theoretical presentation 

The braid set on 𝑛 strands, denoted by  𝐵𝑛, is agroup which has an intuitive 

geometrical representation, and in a sense generalizes the symmetric group  𝑆𝑛. 

Here, 𝑛 is a natural number; if 𝑛 >  1, then  𝐵𝑛 is an infinite group. Braid groups 

find applications in knot theory, since any knot may be represented as the closure 

of certain braids. Τhe symmetric group  𝑆𝑛 on a finite of 𝑛 symbols is the group 

whose elements are all the permutations of the 𝑛 symbols, and whose group 

operation is the composition of such permutations, which are treated as bijective 

functions from the set of symbols to itself. Since there are 𝑛! possible 

permutations of a set of 𝑛 symbols, it follows that the order (the number of 

elements) of the symmetric group 𝑆𝑛 is  𝑛!. 

To explain how to reduce a braid group in the sense of Artin to a fundamental 

group, we consider a connected manifold 𝑀 of dimension at least  2. The 

symmetric product of 𝑛 copies of 𝑀 means the quotient of  𝑀𝑛, the 𝑛-fold 

Cartesian product of 𝑀 with itself, by the permutation action of the symmetric 

group𝑆𝑛 on 𝑛 letters operating on the indices of coordinates. That is, an ordered 𝑛-

tuple is in the same orbit as any other that is a re-ordered version of it. A path in 

the 𝑛-fold symmetric product of 𝑀 is the abstract way of discussing 𝑛 points of𝑀, 

considered as an unordered 𝑛-tuple, independently tracing out 𝑛 strings. Since we 

must require that the strings never pass through each other, it is necessary that we 

pass to the subspace 𝑌 of the symmetric product, of orbits of 𝑛-tuples of distinct 

points. That is, we remove all the subspaces of  𝑀𝑛 defined by conditions𝑥𝑖  =  𝑥𝑗. 

http://en.wikipedia.org/wiki/Natural_number
http://en.wikipedia.org/wiki/Factorial
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This is invariant under the symmetric group𝑆𝑛, and 𝑌 is the quotient by the 

symmetric group of the non-excluded 𝑛-tuples: 

𝑌 = �𝑀𝑛 ∖ {(𝑥1, . . . , 𝑥𝑛)|𝑥𝑖  =  𝑥𝑗  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 ≠ 𝑗}� 𝑆𝑛⁄ ,  

where the symmetric group 𝑆𝑛 acts freely on ℂ𝑛 ∖ Δ by permuting coordinates. 

Under the dimension condition 𝑌 will be connected. With this definition, then, we 

can call the braid group of 𝑋with𝑛strings the fundamental group of𝑌 (for any 

choice of base point – this is well-defined up to isomorphism). (For convenience 

of the reader, we will recall the definition of the fundamental group. Let 𝑋 be a 

topological space, and let 𝑥0 be a point of 𝑋. We are interested in the following set 

of continuous functions called loops with base point𝑥0: {𝑓: [0,1] → 𝑋|𝑓(0) =

𝑥0 = 𝑓(1) �}. Now, the fundamental group of 𝑋with base point𝑥0 is this set modulo 

homotopy ℎ 

{𝑓: [0,1] → 𝑋|𝑓(0) = 𝑥0 = 𝑓(1) �} ℎ⁄  

equipped with the group multiplication defined by  

(𝑓 ∗ 𝑔)(𝑡) ∶= �
𝑓(2𝑡) if 0 ≤ 𝑡 ≤  1/2 

𝑔(2𝑡 −  1) if 1/2 ≤ 𝑡 ≤  1
�. 

Thus the loop 𝑓 ∗ 𝑔 first follows the loop𝑓with "twice the speed" and then follows 

𝑔with "twice the speed". The product of two homotopy classes of loops [𝑓] and 

[𝑔] is then defined as [𝑓 ∗ 𝑔], and it can be shown that this product does not 

depend on the choice of representatives. With the above product, the set of all 

homotopy classes of loops with base point 𝑥0 forms the fundamental group of 𝑋 at 

the point 𝑥0 and is denoted 𝜋1(𝑋, 𝑥0) or simply 𝜋(𝑋, 𝑥0). The identity element is 

the constant map at the base point, and the inverse of a loop𝑓 is the loop 𝑔 defined 

by 𝑔(𝑡)  =  𝑓(1 − 𝑡). That is, 𝑔 follows 𝑓 backwards. 

Although the fundamental group in general depends on the choice of base 

point, it turns out that, up to isomorphism, this choice makes no difference as long 

as the space 𝑋 is path-connected. For path-connected spaces, therefore, we can 

write 𝜋1(𝑋) instead of 𝜋1(𝑋, 𝑥0) without ambiguity whenever we care about the 

isomorphism class only. Here are two basic examples of fundamental groups.  
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• Trivial fundamental group. In Euclidean space  ℝ𝑛, or any convex subset of 

ℝ𝑛, there is only one homotopy class of loops, and the fundamental group is 

therefore the trivial group with one element. A path-connected space with a 

trivial fundamental group is said to be simply connected. 

• Knot theory. A somewhat more sophisticated example of a space with a non-

abelian fundamental group is the complement of a trefoil knot in ℝ𝟑.) 

The case where 𝑀 is the Euclidean plane ℂ is the original one of Artin. In 

such a case, identifying the vertical axis for a braid with time and taking the 

intersection of horizontal planes with the braids shows that the elements of 𝐵𝑛 can 

be thought of as motions of 𝑛distinct points in the plane. Thus 𝐵𝑛 = 

𝜋1([ℂ𝑛 ∖ Δ] 𝑆𝑛⁄ ) when Δ is the set {(𝑧1, . . . , 𝑧𝑛) ∈ ℂ𝑛|𝑧𝑖  =  𝑧𝑗  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 ≠ 𝑗}. 

But Δ is the zero-set of the frequently encountered function ∏ �𝑧𝑖 −  𝑧𝑗�𝑖<𝑗  so the 

braid group may naturally be generalized as the fundamental group of ℂ𝑛 minus 

the singular set of some algebraic function. Or, motions of points can be extended 

to motions of the whole plane and a braid defines a diffeomorphism of the plane ℂ 

minus 𝑛points. Thus the braid group may be generalized as the mapping class 

group of a surface with marked points.  

Open Question 4.8 Describe and characterize the fundamental group of  ℂ𝑛 

minus the singular set of some algebraic function. 

 

4.2.2. The Artin’s braid group intuitive presentation 

4.2.2. i. Physical Background 

• Visualization 

An element of the 𝑛 − particle braid group 𝐵𝑛 can be visualized by thinking of 

trajectories of 𝑛 anyons as worldliness (or strands) in 2 + 1 dimensional space-

time originating at initial positions and terminating at final positions. These 

trajectories are robust with respect to local perturbations (topology is preserved).  
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• Interpretation 

An element of the 𝑛-particle braid group is an equivalence class of such 

trajectories up to smooth deformations. To represent an element of a class, we 

draw the trajectories on paper with the initial and final points ordered along of 

lines at the initial and final times. Intuitively, a braid on 𝑛 strings is a collection of 

curves in ℝ3 joining 𝑛 points in a horizontal plane to the 𝑛 points directly above 

them on another horizontal plane. If, in particular, the initial and end points of the 

braid are on straights lines, the braid can be drawn as in the example below.  

 Time (here  𝑛 = 4) 

Remark 4.9 The crucial property of a braid is that the tangent vector to the curves 

can never be horizontal. Braids are considered up to isotopies which are supported 

between the top and bottom planes. 

Remark 4.10 Waves are braids where only one anyon moves around the others. 

 

4.2.2. ii. Topological Background 

When drawing the 

trajectories in 2 

spatial dimensions, 

we must be careful 

to distinguish when 

one strand passes 

over or under 

another, 

corresponding to a 

CLOCKWISE SWAP RESULTING BRAID 

  

COUNTERCLOCKWISE SWAP RESULTING BRAID 

Time 
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clockwise or a 

counter-clockwise 

exchange (swap). 

  
 

 

4.2.2. iii. Algebraic Background 

We make the following assumptions. 

− Any intermediate time slice must intersect 𝑛 strands.  

− Strands cannot ‘double back’, which would amount to particle creation/ 

annihilation at intermediate stages. We do not allow this because we 

assume that the particle number is known.  

Then, the multiplication of two elements of the braid group is simply the 

successive execution of the corresponding trajectories, i.e. the vertical stacking of 

the two drawings. Intuitively, the (not commutative) multiplication of two braids 

on 𝑛 strings is defined under concatenation (plus some isotopy) as below:  

 

 

𝛼 = 

  

 

 

 

→→ 𝛼𝛽 = 

  

 

 

(here  𝑛 = 3) 

 

 

𝛽 = 

  

With this multiplication, the set 𝐵𝑛 of braids on 𝑛 strings becomes a (non-abelian) 

group with unit element defined as follows. 

Time 
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1 = 

 

 

 

Artin’s braid group 𝐵𝑛 can now be represented algebraically in terms of 

𝑛 − 1  generators. In general, 

𝐵1 ≃ 0,𝐵2 ≃ ℤ. 

For𝑛 ≥  3, we let 𝜎1, 𝜎2, … , 𝜎𝑛−1 be the 𝑛 − 1 braids below: 

  ⋯  

𝜎𝑖 is a counter-clockwise exchange of the 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ points. 𝜎𝑖−1is, 

therefore, a clockwise exchange of the 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ points. The 𝜎𝑖s satisfy the 

defining relations 

(1) �
𝜎𝑖𝜎𝑗 = 𝜎𝑗𝜎𝑖for |𝑖 −  𝑗|  ≥  2

𝜎𝑖𝜎𝑖+1𝜎𝑖 = 𝜎𝑖+1𝜎𝑖𝜎𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛 –  1
𝜎𝑖2 ≠ 1  for 1 ≤ 𝑖 ≤ 𝑛 

.
� 

 

Example 

Constructing the braid generators of 𝐵4 

 We choose an arbitrary ordering of the particles 1, 2, 3 ,4. 

 𝜎𝑖is a counter-clockwise exchange of  

the 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ particles.  

 𝜎𝑖−1is a clockwise exchange of  

the 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ particles.  

... 

𝜎1 =  𝜎2 =  ... 𝜎𝑛−1 =  ... ... 
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 The 𝜎𝑖s satisfy the defining relations, 

𝜎𝑖𝜎𝑗 = 𝜎𝑗𝜎𝑖for |𝑖 −  𝑗|  ≥  2  

𝜎𝑖𝜎𝑖+1𝜎𝑖 = 𝜎𝑖+1𝜎𝑖𝜎𝑖+1 for 1 ≤ 𝑖 ≤ 3. 

The braid generators of 𝑩𝟒 The basic braid relations in𝑩𝟒 

  

𝝈𝟏 𝝈𝟏−𝟏 

  

𝝈𝟐 𝝈𝟐−𝟏 

  

𝝈𝟑 𝝈𝟑−𝟏 
 

 

 

 

Remark 4.9 The only difference from the symmetric (permutation) group 𝑆𝑛 is 

that 𝜎𝑖2 ≠  1, but this makes an enormous difference. While the permutation group 

is finite, the number of elements in the group |𝑆𝑛|  =  𝑛!, the braid group is 

infinite, even for just two particles. Furthermore, there are non-trivial topological 

classes of trajectories even when the particles are distinguishable, e.g. in the two-

particle case those trajectories in which one particle winds around the other an 

integer number of times. These topological classes correspond to the elements of 

the ‘‘pure’’ braid group, which is the subgroup of the braid group containing only 

elements which bring each particle back to its own initial position, not the initial 

position of one of the other particles. The richness of the braid group is the key 

fact enabling quantum computation through quasiparticle braiding. □ 
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4.3. Infinitely generated braid groups 

There are many ways to generalize the notion of braid group on 𝑛 strands to a 

braid group on an infinite number of strands. The simplest way is take the direct 

limit of braid groups, where the attaching maps 𝑓:𝐵𝑛 → 𝐵𝑛+1send the 𝑛 − 1 

generators of 𝐵𝑛to the first 𝑛 − 1generators of 𝐵𝑛+1 (i.e., by attaching a trivial 

strand). Fabel has shown that there are two topologies that can be imposed on the 

resulting group each of whose completion yields a different group. One is a very 

tame group and is isomorphic to the mapping class group of the infinitely 

punctured disk — a discrete set of punctures limiting to the boundary of the disk. 

The second group can be thought of the same as with finite braid groups.  

Place a strand at each of the points (0, 1 𝑛⁄ )and the set of all braids — where a 

braid is defined to be a collection of paths from the points (0, 1 𝑛⁄ , 0)to the points 

(0, 1 𝑛⁄ , 1)so that the function yields a permutation on endpoints — is isomorphic 

to this wilder group. An interesting fact is that the pure braid group in this group is 

isomorphic to both the inverse limit of finite pure braid groups 𝑃𝑛and to the 

fundamental group of the Hilbert cube (: the topological product of the intervals 

[0, 1/𝑛] for𝑛 = 1, 2, 3, 4,...) minus the set 

�(𝑥𝑖)𝑖∈ℕ 𝑥𝑖 = 𝑥𝑗  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 ≠ 𝑗⁄ �. 

 

 

5  Representations of braid groups and invariant of knots  

Before the discovery of Hecke algebra representations of the braid group 

(discussed in this section) very little was known about finite dimensional but 

infinite representations of 𝐵𝑛, except for the ubiquitous Burau representation. That 

matter changed dramatically in 1987 with a pioneer publication by 𝑉. Jones ([28]). 

Suddenly, we had more knot invariants and with them more braid group 

representations than anyone could deal with, and the issue became one of 

organizing them.  
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However, we shall not attempt to give a comprehensive overview of the rich 

theory of representations of braid groups in this section. Instead, we focus here on 

representations of 𝐵𝑛 which have played the greatest roles in the development of 

that theory: the Burau representation, the Hecke algebra representations, the 

Lawrence-Krammer representation and the representations of𝐵𝑛from the solutions 

of the Yang-Baxter equation. 

Let us recall the two ways to say what a representation of Artin’s braid group 

𝐵𝑛 is.  

The first uses the idea of an action, generalizing the way that matrices act on 

column vectors by matrix multiplication. A representation of the braid group 

𝐵𝑛 on a vector space 𝑉 is a map 

Φ:𝐵𝑛 × 𝑉 → 𝑉 

with two properties. First, for any 𝑔 in 𝐵𝑛, the map 

𝜌(𝑔):𝑉 → 𝑉; 𝑣 ⟼ 𝜌(𝑔)(𝑣) ≔ Φ(𝑔, 𝑣) 

is linear (over a field 𝔽), and similarly in the algebra cases. Second, if we 

introduce the notation 𝑔 ∙ 𝑣 for Φ(𝑔, 𝑣), then for any 𝑔1, 𝑔2 in 𝐵𝑛 and 𝑣 in 𝑉: 

(2)  𝑒 ∙ 𝑣 = 𝑣,  

(3)  𝑔1 ∙ (𝑔2 ∙ 𝑣) = (𝑔1 ∙  𝑔2) ∙ 𝑣 

where 𝑒 is the identity element of 𝐵𝑛 and 𝑔1 ∙  𝑔2 is product in 𝐵𝑛. The 

requirement for associative algebras is analogous, except that associative 

algebras do not always have an identity element, in which case equation (2) is 

ignored. Equation (3) is an abstract expression of the associativity of matrix 

multiplication.  
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The second way to define a representation of Artin’s braid group 𝐵𝑛focuses 

on the map 𝜌 sending 𝑔 in 𝐵𝑛 to 

𝜌(𝑔): 𝑉 →  𝑉;  𝑣 ⟼ Φ(𝑔, 𝑣).  

This approach is both more concise and more abstract A representation of the 

braid group 𝐵𝑛 on a vector space 𝑉 is a group homomorphism  

𝜌: 𝐵𝑛  →  𝐺𝐿(𝑉,𝔽).  

with the following property 

𝜌(𝑔1 ∙  𝑔2) = 𝜌(𝑔1) ∘ 𝜌(𝑔2) for all 𝑔1, 𝑔2 in 𝐵𝑛. 

 

The vector space 𝑉 is called the representation space of 𝜌 and its dimension (if 

finite) is called the dimension of the representation (sometimes degree). It is also 

common practice to refer to 𝑉 itself as the representation when the 

homomorphism 𝜌 is clear from the context; otherwise the notation (𝑉,𝜌) can be 

used to denote a representation. When 𝑉 is of finite dimension 𝑛, one can choose a 

basis for 𝑉 to identify 𝑉 with 𝔽𝑛 and hence recover a matrix representation with 

entries in the field 𝔽. 

A faithful or effective representation is a representation (𝑉,𝜌) for which the 

homomorphism 𝜌 is injective. 

In what follows we will only be concerned with representations of the second 

type.  

 

 

5.1. The Burau representation 

Burau first introduced his representation of the braid group in 1936 ([14]). 

Much later, it was realized that it could be thought of as a deformation of the 

standard representation of the symmetric group 𝑆𝑛 corresponding to the partition 

𝑛 =  (𝑛 −  1)  +  1. For many years it was the focus of the representation theory 

of braid groups.  
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Note that, by (1), to find linear representations of 𝐵𝑛 (𝑛 ≥  3), it suffices 

to find matrices𝜌1, 𝜌2,..., 𝜌𝑛−1 satisfying (1) (with 𝜎replaced by 𝜌). One such 

representation (of dimension𝑛) called the unreduced Burau representation is 

given by the row-stochastic matrices  

𝜌1 =

⎝

⎜
⎛

1 − 𝑡 𝑡
1 0

0 0 ⋯
0 0 ⋯

   0    0
⋮ ⋮

   0    0

1 0 ⋯
⋮ ⋮ ⋮
0 0 1⎠

⎟
⎞

 𝜌2 =

⎝

⎜
⎛

      1 0
      0 1 − 𝑡

0 0 ⋯
𝑡 0 ⋯

 0  1
⋮ ⋮

   0  0

0 0 ⋯
⋮ ⋮ ⋮
0 0 1⎠

⎟
⎞

 

… 

𝜌𝑛−1 =

⎝

⎜
⎛

1 0
0 1

0 0       ⋯
0 0       ⋯

⋮ ⋮
⋮ ⋮
0 0

⋮ ⋮ ⋯
⋮ 1 − 𝑡 𝑡
0 1 1⎠

⎟
⎞

. 

Thus, we define the unreduced Burau representation of dimension𝑛 

𝜌: 𝐵𝑛 → 𝑉 = 𝐺𝐿𝑛(ℤ[𝑡, 𝑡−1]) 

as follows: 

𝜎𝑖 ⟼ 𝜌(𝜎𝑖) = 𝜌𝑖  ≡ 𝕀𝑖−1 ⊕  �1 − 𝑡 𝑡
1 0�⊕  𝕀𝑛−𝑖−1 for 1 ≤ 𝑖 ≤ 𝑛 –  1 

where 𝕀𝑘 denotes the 𝑘 × 𝑘identity matrix. 

Substituting 𝑡 =  1 gives back the representation (of 𝐵𝑛 factoring 

through𝑆𝑛), and this is why we say that it is a deformation of the standard 

representation of 𝑆𝑛. Like the representation of 𝑆𝑛, the Burau representation splits 

into a 1 −dimensional representation and an (𝑛 −  1)-dimensional irreducible 

representation known as the reduced Burau representation which we denote by   

𝜌�:  𝐵𝑛 → 𝐺𝐿𝑛(ℤ[𝑡, 𝑡−1]) 

as follows: 

𝜎𝑖 ⟼ 𝜌�(𝜎𝑖) = 𝜌�𝑖  ≡ 𝕀𝑖−2 ⊕  �
0 −𝑡 0
0 −𝑡 0
0 −1 1

�⊕  𝕀𝑛−𝑖−2 

for 1 ≤ 𝑖 ≤ 𝑛 –  2 

where the −𝑡in the middle of the 3 ×  3 matrix is always in the (𝑖, 𝑖)𝑡ℎ spot.  

Remark 5.1 Let us see how Burau’s representation can be defined in a more 

rigorous manner. To do so, consider the braid group 𝐵𝑛 to be the mapping class 

group of a disc (: the group of isotopy-classes of automorphisms of a disc) with 𝑛 

marked points 𝑃𝑛. The homology group 𝐻1𝑃𝑛 is free abelian of rank𝑛. Moreover, 

the invariant subspace of 𝐻1𝑃𝑛 (under the action of 𝐵𝑛) is primitive and infinite 
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cyclic. Let 𝜋:𝐻1𝑝𝑛 → ℤ be the projection onto this invariant subspace. Then there 

is a covering space 𝑃�𝑛 corresponding to this projection map. Much like in the 

construction of the Alexander polynomial (Remark 4.3), consider 𝐻1𝑃�𝑛 as a 

module over the group-ring of covering transformations [ℤ] ≡ ℤ[𝑡±] (a Laurent 

polynomial ring). As such a  ℤ[𝑡±] module, 𝐻1𝑃�𝑛is free of rank 𝑛 −  1. By the 

basic theory of covering spaces, 𝐵𝑛 acts on𝐻1𝑃�𝑛, and this representation is called 

the reduced Burau representation. The unreduced Burau representation has a 

similar definition, namely one replaces 𝑃𝑛 with its (real, oriented) blow-up at the 

marked points. Then instead of considering 𝐻1𝑃�𝑛 one considers the relative 

homology 𝐻1�𝑃�𝑛,𝜕�� where 𝜕 ⊂ 𝑃𝑛 is the part of the boundary of 𝑃𝑛 corresponding 

to the blow-up operation together with one point on the disc's boundary. 𝜕� denotes 

the lift of 𝜕 to 𝑃�𝑛. As a ℤ[𝑡±] module this is free of rank 𝑛. Note that, by the 

homology long exact sequence of a pair, the Burau representations fit into a short 

exact sequence 

0 → 𝑉𝑟 → 𝑉𝑢 → 𝐷⨁ℤ[𝑡±] → 0, 

where 𝑉𝑟 and 𝑉𝑢 are reduced and unreduced Burau 𝐵𝑛-modules respectively and 

𝐷 ⊂ ℤ𝑛 is the complement to the diagonal subspace (i.e., 

𝐷 = {(𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℤ𝑛: 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛 = 0}, 

and 𝐵𝑛acts on ℤ𝑛 by the permutation representation. Reduced Burau 

representation is related with Alexander polynomial, as follows. If a knot 𝐾is the 

closure of a braid 𝑓, then the Alexander polynomial ∆𝐾(𝑡) is given by 

∆𝐾(𝑡) = 𝑑𝑒𝑡(𝐼 − 𝑓∗) 

where 𝑓∗ is the reduced Burau representation of the braid𝑓 .  

The first nonfaithful Burau representations are found without the use of 

computer, using a notion of winding number or contour integration ([37]). Now, 

Burau’s representation is known not to be faithful for 𝑛 ≥  5 but faithful for 

𝑛 ≤  3 ([5], [34], [36], [41], [46] and [48]). At this time, the case 𝑛 =  4 remains 

open.  
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Open Question5.2 Investigate the faithfulness of the Burau representation 

when  𝑛 =  4. 

Remark 5.3 More generally, it was a major open problem whether braid groups 

were linear. In 1990, Ruth Lawrence described a family of more general 

"Lawrence representations" depending on several parameters. Around 2001 

Stephen Bigelow and Daan Krammer independently proved that all braid groups 

are linear. Their work used the Lawrence-Krammer representation of dimension 

𝑛(𝑛 − 1)/2 depending on two variables 𝑞 and𝑡. By suitably specialising these 

variables, the braid group 𝐵𝑛 may be realized as a subgroup of the general linear 

group over the complex numbers. Remind that the general linear group of degree 

𝑛 is the set of 𝑛 × 𝑛 invertible matrices, together with the operation of ordinary 

matrix multiplication. □ 

 

 

5.2. Representations of 𝑩𝒏 from 𝑹 −matrices 

5.2.1. Notation 

Let 𝑉 and 𝑊 be two vector spaces of dimensions 𝑛 and 𝑚, respectively. Given 

two bases 

{𝑣(𝑖) = �𝑣1
(𝑖), … , 𝑣𝑛

(𝑖)�
𝑇
∈ 𝑉; 𝑖 = 1, … , 𝑛} 

and 

 {𝑤(𝑗) = �𝑤1
(𝑗), … ,𝑤𝑛

(𝑗)�
𝑇
∈ 𝑊; 𝑗 = 1, … ,𝑚} 

for𝑉 and 𝑊, respectively, the tensors  

{𝑣(𝑖) ⊗𝑤(𝑗) = �𝑣1
(𝑖)𝑤1

(𝑗), … , 𝑣1
(𝑖)𝑤𝑛

(𝑗), … , 𝑣𝑛
(𝑖)𝑤1

(𝑗), … , 𝑣𝑛
(𝑖)𝑤𝑛

(𝑗)�
𝑇

; 𝑖 = 1,2. . ,𝑛, 𝑗

= 1,2, … ,𝑚} 

form a basis for 𝑉 ⊗𝑊 (generally ordered so that 𝑣(𝑖) ⊗𝑤(𝑗+1) comes before 

𝑣(𝑖+1) ⊗𝑤(𝑗)).  
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The dimension 𝑑𝑖𝑚(𝑉 ⊗𝑊) of the tensor product 𝑉 ⊗𝑊 therefore is the 

product of dimensions of the original spaces; for instance ℝ𝑚 ⊗ℝ𝑛 will have 

dimension 𝑚𝑛. The 𝑘𝑡ℎ tensor power of the vector space 𝑉 is the 𝑘 −fold tensor 

product of 𝑉 with itself. That is 

𝑉⨂𝑘 = 𝑉 ⊗ …⊗𝑉�������
𝑘−𝑡𝑖𝑚𝑒𝑠

 

A tensor on 𝑉 is an element of a vector space of the form 

𝑇𝑟𝑠(𝑉) = 𝑉⨂𝑟⨂𝑉∗ ⨂𝑠, for non-negative integers 𝑟 and 𝑠. 

The tensor product of the 𝑛 −matrix 

𝐴 = �𝑎𝑖,𝑗�𝑖,𝑗=1,2,…,𝑛
 

by the 𝑚 −matrix  

𝐵 = �𝑏𝑖,𝑗�𝑖,𝑗=1,2,…,𝑚
 

is the 𝑚 × 𝑛 −matrix given by  

𝐴⨂𝐵 = �

𝑎1,1𝐵 𝑎1,2𝐵
𝑎2,1𝐵 𝑎2,2𝐵

… 𝑎1,𝑛𝐵
… 𝑎2,𝑛𝐵

⋮ ⋮
𝑎𝑛,1𝐵 𝑎𝑛,2𝐵

⋮ ⋮
… 𝑎𝑛,𝑛𝐵

�. 

If, for instance,  

𝐴 = �
𝑎1,1 𝑎1,2
𝑎2,1 𝑎2,2

� and 𝐵 = �
𝑏1,1 𝑏1,2 𝑏1,3
𝑏2,1 𝑏2,2 𝑏2,3
𝑏3,1 𝑏3,2 𝑏3,3

�,  

then  

𝐴⨂𝐵 =

⎝

⎜
⎜
⎜
⎛

𝑎1,1𝑏1,1 𝑎1,1𝑏1,2 𝑎1,1𝑏1,3
𝑎1,1𝑏2,1 𝑎1,1𝑏2,2 𝑎1,1𝑏2,3
𝑎1,1𝑏3,1 𝑎1,1𝑏3,2 𝑎1,1𝑏3,3

𝑎1,2𝑏1,1 𝑎1,2𝑏1,2 𝑎1,2𝑏1,3
𝑎1,2𝑏2,1 𝑎1,2𝑏2,2 𝑎1,2𝑏2,3
𝑎1,2𝑏3,1 𝑎1,2𝑏3,2 𝑎1,2𝑏3,3

𝑎2,1𝑏1,1 𝑎2,1𝑏1,2 𝑎2,1𝑏1,3
𝑎2,1𝑏2,1 𝑎2,1𝑏2,2 𝑎2,1𝑏2,3
𝑎2,1𝑏3,1 𝑎2,1𝑏3,2 𝑎2,1𝑏3,3

𝑎2,2𝑏1,1 𝑎2,2𝑏1,2 𝑎2,2𝑏1,3
𝑎2,2𝑏2,1 𝑎2,2𝑏2,2 𝑎2,2𝑏2,3
𝑎2,2𝑏3,1 𝑎2,2𝑏3,2 𝑎2,2𝑏3,3⎠

⎟
⎟
⎟
⎞

. 

In particular, for 𝐵 = 𝐼𝑑ℝ3, we have  
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𝐴⨂𝐼𝑑ℝ3 =

⎝

⎜
⎜
⎜
⎛

𝑎1,1 0 0
0 𝑎1,1 0
0 0 𝑎1,1

𝑎1,2 0 0
0 𝑎1,2 0
0 0 𝑎1,2

𝑎2,1 0 0
0 𝑎2,1 0
0 0 𝑎2,1

𝑎2,2 0 0
0 𝑎2,2 0
0 0 𝑎2,2⎠

⎟
⎟
⎟
⎞

; 

and, for 𝐴 = 𝐼𝑑ℝ2, we have 

𝐼𝑑ℝ2⨂𝐵 =

⎝

⎜
⎜
⎜
⎛

𝑏1,1 𝑏1,2 𝑏1,3
𝑏2,1 𝑏2,2 𝑏2,3
𝑏3,1 𝑏3,2 𝑏3,3

0    0     0     
0    0     0     
0    0     0     

0    0     0     
0    0     0     
0    0     0     

𝑏1,1 𝑏1,2 𝑏1,3
𝑏2,1 𝑏2,2 𝑏2,3
𝑏3,1 𝑏3,2 𝑏3,3⎠

⎟
⎟
⎟
⎞

. 

Finally, the tensor product of two multilinear maps 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) and 

𝑔(𝑥1, 𝑥2, … , 𝑥𝑚) is the multilinear function given by  

(𝑓⨂𝑔)(𝑦1, … ,𝑦𝑛,𝑦𝑛+1, … ,𝑦𝑛+𝑚) = 
�𝑓(𝑦1, … ,𝑦𝑛)|𝑦1=𝑥1,,…,𝑦𝑛=𝑥𝑛

�𝑔(𝑦𝑛+1, … , 𝑦𝑛+𝑚)|𝑦𝑛+1=𝑥1,…,𝑦𝑛+𝑚=𝑥𝑚.  

 

5.2.2. Representations of the braid group and solution of the Yang-Baxter 

equation 

Let 𝑉 be a vector space over a field 𝔽.  

We want to get a representation of 𝐵𝑛on the 𝑛 −fold tensor product 𝑉⨂𝑛 

(:𝑛𝑡ℎ tensor power of 𝑉 with itself). Here's a simple way. Just map the 

𝑖𝑡ℎelementary braid generator 𝜎𝑖to the linear map taking  

𝑣(1)⨂𝑣(2)⨂…⨂𝑣(𝑛) 

to  

𝑣(1)⨂𝑣(2)⨂…⨂𝑅�𝑣(𝑖)⨂𝑣(𝑖+1)�⨂. . .⨂𝑣(𝑛) 

where 𝑅 ∈ 𝐴𝑢𝑡𝔽(𝑉⨂𝑉)is an invertible linear transformation of 𝑉⨂2. In other 

words, we use 𝑅to ''switch '' the 𝑖𝑡ℎand (𝑖 + 1)𝑠𝑡 factors, and leave the rest alone.  
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It's easy to see that this mapping defines a representation of the braid group 

𝐵𝑛 as long as we can get the following equation to hold, and this is equivalent to 

having  

(𝑅⨂𝐼𝑑𝑉)(𝐼𝑑𝑉⨂𝑅)(𝑅⨂𝐼𝑑𝑉) = (𝐼𝑑𝑉⨂𝑅)(𝑅⨂𝐼𝑑𝑉)(𝐼𝑑𝑉⨂𝑅) 

where 𝐼𝑑𝑉 is the identity on  𝑉. We are thus  

Definition 5.4 ([39], [50]) Let𝑅 ∈ 𝐴𝑢𝑡𝔽(𝑉⨂𝑉). The Yang-Baxter equation is the 

following equation in the group 𝐴𝑢𝑡𝔽(𝑉⨂𝑉⨂𝑉) 

(𝑅⨂𝐼𝑑𝑉)(𝐼𝑑𝑉⨂𝑅)(𝑅⨂𝐼𝑑𝑉) = (𝐼𝑑𝑉⨂𝑅)(𝑅⨂𝐼𝑑𝑉)(𝐼𝑑𝑉⨂𝑐).  

Solutions of this equation are called 𝑅 −matrices.  

More rigorously, the same representation procedure can be described as 

follows. Let 𝑉be a vector space. Let 𝑅 ∈ 𝐴𝑢𝑡𝔽(𝑉⨂𝑉). Let also 𝑛 > 1 be an 

integer. For  1 ≤ 𝑖 ≤ 𝑛 − 1, define a 𝑅𝑖 ∈ 𝐴𝑢𝑡𝔽(𝑉⨂𝑛) by 

𝑅𝑖  =  𝐼𝑑𝑉⨂(𝑖−1)⨂  𝑅 ⨂𝐼𝑑𝑉⨂(𝑛−𝑖−1). 

Clearly, if|𝑖 − 𝑗| > 1, then 𝑅𝑖𝑅𝑗 = 𝑅𝑗𝑅𝑖. It is easy to prove the following. 

Lemma 5.5 ([39], [50]) Under the above assumptions, we have in the group 

𝐴𝑢𝑡𝔽(𝑉⨂𝑛) 

𝑅𝑖𝑅𝑖+1𝑅𝑖 = 𝑅𝑖+1𝑅𝑖𝑅𝑖+1 

for all 𝑖if and only if 𝑅is a solution of the Yang-Baxter equation. 

Thus, we have 

Corollary 5.6 ([39], [50]) Let 𝑅 ∈ 𝐴𝑢𝑡𝔽(𝑉⨂𝑉) be a solution of the Yang-Baxter 

equation. Then, for all𝑛 > 1, there exists a unique group homomorphism 

𝜌𝑛𝑐 ∶  𝐵𝑛 →  𝐴𝑢𝑡𝔽(𝑉⨂𝑛) 

given by 

𝜌𝑛𝑐(𝜎𝑖) = 𝑅𝑖 for any  1 ≤ 𝑖 ≤ 𝑛 − 1. 

In other words, the 𝑅 −matrices give Braid group representations. 

Remark 5.7 From the point of view of topology, the matrix 𝑅 is regarded as 

representing an elementary bit of braiding represented by one string crossing over 
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another. In Figure 5 we have illustrated the braiding identity that corresponds to 

the Yang-Baxter equation. Each braiding picture with its three input lines (below) 

and output lines (above) corresponds to a mapping of the three fold tensor product 

of the vector space 𝑉 to itself, as required by the algebraic equation quoted above. 

The pattern of placement of the crossings in the diagram corresponds to the factors 

𝑅⨂𝐼𝑑𝑉 and𝐼𝑑𝑉⨂𝑅: This crucial topological move has an algebraic expression in 

terms of such a matrix 𝑅: Our approach in this section to relate topology, quantum 

computing, and quantum entanglement is through the use of the Yang-Baxter 

equation. In order to accomplish this aim, we need to study solutions of the Yang-

Baxter equation that are unitary. Then the 𝑅 matrix can be seen either as a 

braiding matrix or as a quantum gate in a quantum computer. 
   

𝑅⨂𝐼𝑑𝑉 𝐼𝑑𝑉⨂𝑅  

  𝐼𝑑𝑉⨂𝑅 

  𝑅⨂𝐼𝑑𝑉 

  𝐼𝑑𝑉⨂𝑅 

Figure 5: The Yang-Baxter equation 

 

... 
𝑅⨂𝐼𝑑𝑉 =
  

𝐼𝑑𝑉⨂𝑅 =
   

𝑅⨂𝐼𝑑𝑉 =
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(𝑅⨂𝐼𝑑𝑉)(𝐼𝑑𝑉⨂𝑅)(𝑅⨂𝐼𝑑𝑉) = (𝐼𝑑𝑉⨂𝑅)(𝑅⨂𝐼𝑑𝑉)(𝐼𝑑𝑉⨂𝑅) 

The solutions of the Yang-Baxter equation are usually very hard to find. 

But once found, they provide interesting representations of the braid group 𝐵𝑛. 

Here is given a solution of the Yang-Baxter equations for 𝑛 = 2. 

Lemma 5.8 (A solution of the Yang-Baxter equation) Let 𝑉be spanned by two 

vectors 𝑋 and 𝑌, and define  𝑅 by 

𝑅(𝑋⨂𝑋) = 𝑋⨂𝑋 

𝑅(𝑌⨂𝑌) = 𝑌⨂𝑌 

𝑅(𝑋⨂𝑌) = 𝑞(𝑌⨂𝑋) 

𝑅(𝑌⨂𝑋) = 𝑞(𝑋⨂𝑋) + (1 − 𝑞2)(𝑌⨂𝑋) 

Then,𝑅 satisfies the Yang-Baxter equation and 

  𝑅2 = (1 − 𝑞2)𝑅 + 𝑞2. 

This quadratic equation is called a Hecke relation. 

 

4.2.3. Relating Yang-Baxter equation with unitary R-matrices and universal 

gates 

Relating topology, quantum computing (and quantum entanglement) is 

through the use of the Yang-Baxter equation. In order to accomplish this aim, we 

need to study solutions of the Yang-Baxter equation that are unitary. Then the 𝑅 

matrix can be seen either as a braiding matrix or as a quantum gate in a quantum 

computer. 

The problem of finding solutions to the Yang-Baxter equation that are 

unitary turns out to be surprisingly difficult. In 2003, Dye has classified all such 

4 × 4matrices. 

Theorem 5.9 ([24]) All 4 × 4 unitary solutions to the Yang-Baxter equation are 

similar to one of the following types  
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i. 𝑅 =

⎝

⎜
⎛

1 √2⁄ 0
0 1 √2⁄

0 1 √2⁄
−1 √2⁄ 0

0 1 √2⁄
−1 √2⁄ 0

1 √2⁄ 0
0 1 √2⁄ ⎠

⎟
⎞

   

ii. 𝑅′ = �
𝑎 0
0 0

0 0
𝑏 0

0 𝑐
0 0

0 0
0 𝑑

� 

iii. 𝑅′′ = �
0 0
0 𝑏

0 𝑎
0 0

0 0
𝑑 0

𝑐 0
0 0

� 

where 𝑎, 𝑏, 𝑐, 𝑑 are unit complex numbers. 

There is a remarkable correlation between unitary solutions to the Yang-

Baxter and universality of (quantum) gates. Let 𝑉 be a two complex dimensional 

vector space. Let also 𝐺 ∶ 𝑉 ⨂𝑉 → 𝑉 ⨂𝑉 be any unitary linear mapping. Recall 

that the mapping 𝐺 is said to be a two-qubit gate and that the gate  𝐺 is universal 

for quantum computation (or just universal) if 𝐺 together with local unitary 

transformations (unitary transformations from 𝑉 to 𝑉) generates all unitary 

transformations of the complex vector space of dimension 2𝑛 to itself. 

Definition 5.10The gate 𝐺 is said to be entangling if there is a vector 

| �𝜑〉�⨂| �𝜓〉� ∈ 𝑉 ⨂𝑉 

such that  

𝐺(| �𝜑〉�⨂|�𝜓〉�) 

is not decomposable as a tensor product of two qubits. Under these circumstances, 

one says that 𝐺(| �𝜑〉�⨂| �𝜓〉�) is entangled.  

Remark 5.11([30]) A two-qubit pure state  

| �𝜑〉� = 𝑎| �00〉� + 𝑏| �01〉� + 𝑐| �10〉� + 𝑑| �11〉� 

is entangled exactly when (𝑎𝑑 −  𝑏𝑐) ≠  0. It is easy to use this fact to check 

when a specific matrix is, or is not, entangling. □ 
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In 2002, J. L. Brylinski and R. Brylinski gave a general criterion of 𝐺 to be 

universal. 

Theorem 5.12 ([13]) A two-qubit gate 𝐺 is universal if and only if it is entangling. 

Let us give an indicant example. 

Example 5.13([30]) 

i. Let 𝒟denote the phase gate shown below.𝒟 is a solution to the algebraic Yang-

Baxter equation Then  𝒟 is a universal gate. 

𝒟 = �
1 0
0 1

0    0
0    0

0 0
0 0

1    0
0 −1

�. 

ii. The matrix solution 

𝑅 =

⎝

⎜
⎛

1 √2⁄ 0
0 1 √2⁄

0 1 √2⁄
−1 √2⁄ 0

0 1 √2⁄
−1 √2⁄ 0

1 √2⁄    0
0 1 √2⁄ ⎠

⎟
⎞

 

to the Yang-Baxter equation is a universal gate. 

iii. The matrix solutions 

𝑅′ = �
𝑎 0
0 0

0 0
𝑏 0

0 𝑐
0 0

0 0
0 𝑑

�    and     𝑅′′ = �
0 0
0 𝑏

0 𝑎
0 0

0 0
𝑑 0

𝑐 0
0 0

� 

to the Yang-Baxter equation are universal gates exactly when 𝑎𝑑 − 𝑏𝑐 ≠  0. □ 

 

 

5.3. Hecke algebras representations of braid groups and 

polynomial invariants of knots 

A simple calculation, together with the Cayley-Hamilton theorem, shows that 

the image of each of our braid group generators under the Burau representation, 

𝜌(𝜎𝑖), satisfies the characteristic equation  
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𝑥2  =  (1 −  𝑡)𝑥 +  𝑡 

and thus has two distinct eigenvalues (compare with Hecke relation, above). This 

prompted Jones to study all representations  

𝜌: 𝐵𝑛 →  𝐺𝐿𝑛(ℂ) 

which have at most two distinct eigenvalues ([28]).  

Let 𝑥𝑖 =  𝜌(𝜎𝑖). Then for all 𝑖, 𝑥𝑖must satisfy a quadratic equation of the 

form  

𝑥𝑖2 +  𝑎𝑥𝑖 +  𝑏 =  0. 

By rescaling, we may assume that one of the eigenvalues is 1 and eliminate one of 

the variables, e.g.,  

𝑎 =  −(1 +  𝑏). 

Note that by rewriting our quadratic equation and making the substitution  

𝑏 =  −𝑡 

we regain the characteristic equation from the Burau representation. However, the 

convention in the literature seems to be to rescale our representation by (−1) so 

that the equation takes the form  

𝑥𝑖2 =  (𝑡 −  1)𝑥𝑖 +  𝑡. 

With this motivation, we define the Hecke algebra𝐻𝑛(𝑡) to be the algebra with 

generators 1,𝑥1,...,𝑥𝑛−1 and defining relations as follows: 

(4) �
𝑥𝑖𝑥𝑗 = 𝑥𝑗𝑥𝑖for |𝑖 − 𝑗|  ≥ 2

𝑥𝑖𝑥𝑖+1𝑥𝑖 =  𝑥𝑖+1𝑥𝑖𝑥𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛– 1
𝑥𝑖2 =  (𝑡 − 1)𝑥𝑖 +  𝑡for 1 ≤ 𝑖 ≤ 𝑛

�.  

Comparing the relations in (1) and (4), we see that 𝐻𝑛(1) ≅  ℂ𝑆𝑛, the group 

algebra of the symmetric group. Hence we can think of 𝐻𝑛(𝑡) as a ‘‘deformation’’ 

of ℂ𝑆𝑛. 

The connection between 𝐻𝑛(𝑡)  and ℂ𝑆𝑛is made even more transparent by 

noting that the vector space 𝐻𝑛(𝑡)  is spanned by 𝑛! lifts of a system of reduced 

words in the transpositions 𝑠𝑖 ∈ 𝑆𝑛. For example, we can take as a spanning set 
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{(𝑥𝑖1𝑥𝑖1−1 . . . 𝑥𝑖1−𝑗1)(𝑥𝑖2𝑥𝑖2−1 . . . 𝑥𝑖2−𝑗2)  · · ·  (𝑥𝑖𝑟𝑥𝑖𝑟−1 . . . 𝑥𝑖𝑟−𝑗𝑟  )} 

where 1 ≤ 𝑖1 < 𝑖2 <· · · < 𝑖𝑟 ≤  𝑛 − 1 and  𝑖𝑘 −  𝑗𝑘 ≥  1 ([12], [28]). 

Our main purpose in this section is to outline Jones’ development in [28] 

of a two-variable polynomial knot invariant arising from representations of the 

Hecke algebras 𝐻𝑛(𝑡). This polynomial is essentially the well-known HOMFLY 

polynomial, and includes the Jones polynomial as a specialization.  

We begin by defining a function 𝑓: 𝐵𝑛 →  𝐻𝑛(𝑡) by 𝑓(𝜎𝑖)  =  𝑥𝑖. The 

function 𝑓 is well defined on reduced words in the generators 𝜎𝑖and commutes 

with the natural inclusions 𝐵𝑛−1 ⊂ 𝐵𝑛 and 𝐻𝑛−1(𝑡) ⊂  𝐻𝑛(𝑡), although in general 

𝑓 fails to be a homomorphism. We can then apply the following result due to 

Adrian Ocneanu which appeared in [24] and was proved inductively in [28] using 

the 𝑛!-element basis given above. 

Theorem 5.14 ([24], [28])For each 𝑧 ∈ ℂ∗(and each 𝑡 ∈ ℂ∗), there exists a unique 

trace function 𝑡𝑟:⋃ 𝐻𝑛(𝑡)∞
𝑛=1 → ℂ such that 

1. 𝑡𝑟(1) = 1 

2. 𝑡𝑟(𝑎𝑏)  =  𝑡𝑟(𝑏𝑎) 

3. 𝑡𝑟is ℂ-linear 

4. 𝑡𝑟(𝑢𝑥𝑛−1𝑣)  =  𝑧 𝑡𝑟(𝑢𝑣)for all𝑢, 𝑣 ∈ 𝐻𝑛−1(𝑡).  

Theorem 5.14 gives us a one-parameter family of trace functions on a one-

parameter family of algebras. In fact, using the properties of the trace function 

given in theorem it is possible to compute 𝑡𝑟(𝑓(𝑋)) for all 𝑋 ∈ 𝐵𝑛. (We note the 

fact that for any 𝑤 ∈ 𝐻𝑛(𝑡) such that 𝑤 ∉ 𝐻𝑛−1(𝑡), there is a unique reduced 

word 𝑤 =  𝑥𝑖1  . . . 𝑥𝑖𝑟  in which 𝑥𝑛−1 appears exactly once [28].) In practice, the 

third relation of 𝐻𝑛(𝑡) is quite useful for computing the trace function 𝑡𝑟, both in 

its original form and in the following: 

𝑥𝑖−1 =  𝑡−1𝑥𝑖 +  (𝑡−1 − 1). 

Example 5.15 Let 𝑥1 = 𝜎13 ∈ 𝐵2, and let 𝑥2 = 𝜎1𝜎2−1𝜎1𝜎2−1 ∈ 𝐵3. Then 
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𝑡𝑟(𝑓(𝑥1))  =  (𝑡2 −  𝑡 +  1)𝑧 +  𝑡(𝑡 −  1) 

and  

𝑡𝑟�𝑓(𝑥2)� =  (3 − 𝑡−1 − 𝑡)𝑡−1𝑧2  + (3 – 𝑡−1 −  𝑡)(𝑡−1 −  1)𝑧 

− (2 −  𝑡−1 −  𝑡). □ 

We also note that the second property of the trace function given in 

Theorem 5.14 implies that 𝑡𝑟 ∘ 𝑓 is invariant on conjugacy classes in 𝐵𝑛. It 

remains to tweak the function a bit in order to obtain from a given braid a two-

variable polynomial which is also invariant under stabilization and destabilization 

moves as defined below, such a polynomial will be an invariant of the knot type of 

the closed braid.  

Algebraically, stabilization and destabilization each take the form 

𝑋 →  𝑋𝜎𝑛±1, 

the only difference being appropriate conditions on the braid 𝑋. We would like to 

rescale our representation 𝑓 in such a way that both versions of stabilization (resp. 

destabilization) have the same effect on the trace function. Suppose there exists a 

complex number 𝑘 such that  

𝑡𝑟(𝑘𝑥𝑖)  =  𝑡𝑟((𝑘𝑥𝑖)−1)). 

Then we can find a ‘formula’ for 𝑘 as follows: 

𝑘2𝑡𝑟(𝑥𝑖)  =  𝑡𝑟(𝑥𝑖−1) ⟹ 𝑘2𝑧 =  𝑡𝑟(𝑡−1𝑥𝑖 +  𝑡−1 − 1) ⇒ 𝑘2  

= [{𝑡−1𝑧 +  𝑡−1 −  1𝑧} 𝑧⁄ ] ⇒ 𝑘2  = {1 +  𝑧 −  𝑡} 𝑡𝑧⁄  

Solving this for 𝑧, we obtain 

𝑧 =  − (1 −  𝑡) (1 −  𝑘2𝑡)⁄ . 

We set 𝜅 = 𝑘2, and define 𝑓𝜅:𝐵𝑛 → 𝐻𝑛(𝑡) by 𝑓𝜅(𝜎𝑖)  =  √𝜅𝜎𝑖. Now we have  

𝑡𝑟�𝑓𝜅(𝜎𝑛)� =  √𝜅 𝑧 =  −√𝜅[(1 −  𝑡) (1 −  𝜅𝑡)⁄ ]. 

and 

𝑡𝑟(𝑓(𝑤 √𝜅  𝜎𝑛))  =  −√𝜅[(1 −  𝑡) (1 −  𝜅𝑡)⁄ ] 𝑡𝑟(𝑓(𝑤))  

=  𝑡𝑟(𝑓(𝑤 · �1 √𝜅⁄ �𝜎𝑛−1)) 

for any 𝑤 ∈ 𝐵𝑛.  
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Now we simply define 

𝐹(𝑋) ≡  𝐹𝑋(𝑡, 𝜅) =  �−
1
√𝜅

1 –  𝜅𝑡
1 –  𝑡

�
𝑛−1

𝑡𝑟�𝑓𝜅(𝑋)�

=  �−
1
√𝜅

1 –  𝜅𝑡
1 –  𝑡

�
𝑛−1

�√𝜅�
𝐸

 𝑡𝑟(𝑓(𝑋)) 

for 𝑋 ∈  𝐵𝑛, where 𝐸 is the exponent sum of 𝑋 as a word in 𝜎1, . . . ,𝜎𝑛−1. It is clear 

that 𝐹(𝑋) depends only on the knot type of 𝑏(𝑋). 

We now reparametrize one last time, setting 

𝑙 =  √𝜅√𝑡 and 𝑚 =  √𝑡 − 1
√𝑡

. 

With this substitution, we obtain a Laurent polynomial in two variables 𝑙 and 𝑚, 

which we denote  

𝑃𝑏(𝑋)(𝑙,𝑚) = 𝑃𝐾(𝑙,𝑚) ,  

where 𝐾 is the (oriented) knot or link type of 𝑏(𝑋). Furthermore, 𝑃𝐾(𝑙,𝑚)  

satisfies the skein relation 

𝑚𝑃𝐾0  =  𝑙−1𝑃𝐾+ −  𝑙𝑃𝐾−    

where 𝐾0,𝐾+, and 𝐾−are oriented knots with identical diagrams except in a 

neighborhood of one crossing. Thus by beginning with 𝑃𝑈 = 1, where 𝑈 denotes 

the unknot, it is possible to calculate 𝑃𝐾 for any knot or link 𝐾 using only the 

skein relation, which is often simpler than using the trace function. 

Definition 5.16The polynomial  

𝑃𝐾(𝑙,𝑚) 

obtained in this way is essentially the same as the two-variable polynomial known 

as the HOMFLY polynomial ([24]) which is usually reparametrized as 

𝑃𝐾(𝑖𝑙−1, 𝑖 𝑚). 

Example 5.17 Let 𝑋1,𝑋2 be the braids defined in Example 4.2 whose respective 

closures are  
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 𝐾1 =

𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 −

ℎ𝑎𝑛𝑑𝑒𝑑 𝑡𝑟𝑒𝑓𝑜𝑖𝑙 𝑘𝑛𝑜𝑡2 

: 

 

 𝐾2 =  𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝐹𝑖𝑔𝑢𝑟𝑒 𝑘𝑛𝑜𝑡 

: 

 

It is easy to check that 

  𝐹𝑋1(𝑡, 𝜅) = 𝜅(1 +  𝑡2 − 𝜅𝑡2) = 𝜅𝑡(𝑡 +  𝑡−1 −  𝜅𝑡) 

= 𝜅𝑡(2 − 𝜅𝑡 + 𝑡 +  𝑡−1 −  2) 

 = 𝜅𝑡 �2 −  𝜅𝑡 +  (√𝑡 − 1
√𝑡

)2�  

and hence we have 

𝑃𝐾1(𝑙,𝑚)  =  2𝑙2 −  𝑙 4 + 𝑙2𝑚2. 

Similarly, one can check that 

𝐹𝑋2(𝑡, 𝜅) =
1 –  𝜅(1 –  𝑡 +  𝑡2) + 𝜅2𝑡2

𝑡 𝜅
 

𝑃𝐾2(𝑙,𝑚)  = 𝑙−2 −  𝑚2 −  1 + 𝑙2. 

For explicit calculations of 𝐹𝑋2 and 𝑃𝐾2 using the trace function, see p. 350 of [28]. 

□ 

There is also a 1-variable knot polynomial, the Jones polynomial, associated to 

the algebra  

𝐽𝑛(𝑡) 

generated by 1,𝑔1,...,𝑔𝑛−1 with defining relations  

𝑔𝑖𝑔𝑘  =  𝑔𝑘𝑔𝑖 if |𝑖 − 𝑘| ≥ 2,  

𝑔𝑖𝑔𝑖+1𝑔𝑖 =  𝑔𝑖+1𝑔𝑖𝑔𝑖+1,  

𝑔𝑖2 =  (𝑡 − 1)𝑔𝑖  +  𝑡,  

2The left-handed trefoil knot is  

 

                                                           

http://upload.wikimedia.org/wikipedia/commons/0/04/TrefoilKnot_01.svg
http://upload.wikimedia.org/wikipedia/commons/5/5c/Trefoil_knot_left.svg
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1 + 𝑔𝑖 + 𝑔𝑖+1 + 𝑔𝑖𝑔𝑖+1 + 𝑔𝑖+1𝑔𝑖 + 𝑔𝑖𝑔𝑖+1𝑔𝑖 =  0.  

In the situation of the Jones algebra the trace is unique, whereas in the situation of 

the Hecke algebra, as we presented it here, there is a 1-parameter family of traces. 

The 1-variable Jones polynomial was discovered before the 2-variable HOMFLY 

polynomial.  

This two-variable knot polynomial has been much studied and reviewed in 

the literature. For the sake of completeness we list here a few of its noteworthy 

properties and applications. 

1. Connect sums   𝑃𝐾1#𝐾2  =  𝑃𝐾1 · 𝑃𝐾2. 

2. Disjoint unions   𝑃𝐾1⨆𝐾2  = �𝑙
−1−𝑙
𝑚

�𝑃𝐾1 · 𝑃𝐾2.  

3. Orientation   𝑃𝐾� = 𝑃𝐾,  

where 𝐾� denotes the link obtained by reversing the orientation of 

every component of the link 𝐾. 

4. Chirality    𝑃𝐾�(𝑙,𝑚)  =  𝑃𝐾(𝑙 − 1,−𝑚),  

where 𝐾� denotes the mirror image of the link 𝐾. 

5. Alexander polynomial: Note that 𝐹𝑋(1, 𝜅) is not defined. It comes as 

something of surprise, then, that the specialization 𝑙 = 1,𝑚 = 

√𝑡 −  �1 √𝑡⁄ � gives the Alexander polynomial 

Δ𝐾(𝑡) = 𝑃𝐾(1,√𝑡 −  1
√𝑡

). 

Jones shows how to avoid the singularity by exploiting an 

alternate method of calculating the trace function using weighted 

sums of traces (see [51] as well as [24] and [28]). A by-product 

of this alternate method is another derivation of the Equation   

Δ𝑏(𝑋)(𝑡) =  
𝑑𝑒𝑡(𝜌�(𝑋)  −  𝕀𝑛−1)
1 + 𝑡 + · · ·  + 𝑡𝑛−1

 

showing how to calculate Δ𝐾(𝑡) from the Burau representation. 

Here 𝜌� denotes the reduced Bureau representation and 𝕀𝑛−1 is 

the (𝑛 − 1)  × (𝑛 − 1) identity matrix. Thus the Alexander 
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polynomial of the closed braid associated to the open braid 𝑋, 

i.e. Δ𝑏(𝑋)(𝑡), is a rescaling of the characteristic polynomial of 

the image of 𝑋in the reduced representation.  

6. Jones polynomial: The famous Jones polynomial can be obtained from the 

two-variable polynomial by setting 

𝑉𝐾(𝑡)  =  𝑃𝐾(𝑡,√𝑡 −  1
√𝑡

). 

Note that we are abusing notation by reusing the variable 𝑡 here 

and above in Δ𝐾(𝑡). 

7. Bracket polynomial. A totally different way of defining Jones’ polynomial can 

be derived from the bracket polynomial derived from any non-

oriented knot diagram. The bracket polynomial, < 𝐾 >= 

< 𝐾 > (𝐴) , assigns to each unoriented link diagram 𝐾 a 

Laurent polynomial in the variable 𝐴, such that 

1. If 𝐾 and 𝐾′ are regularly isotopic diagrams, then 

< 𝐾 >=< 𝐾′ >. 

2. If 𝐾⨆𝑂 denotes the disjoint union of 𝐾 with an extra 

unknotted and unlinked component 𝑂, then 

<  𝐾⨆𝑂 >=  (−𝐴2 − 𝐴−2) <  𝐾 >. 

3. <  𝐾 > satisfies the following formulas 

<   >=  𝐴 <≍>  +𝐴−1 <)(> and <   >=  𝐴−1 <≍>  +𝐴 <)(> 

where the small diagrams represent parts of larger diagrams that are 

identical except at the site indicated in the bracket. We take the 

convention that the notation      denotes a crossing where the curved 

line is crossing over the straight segment. The notation    denotes the 

switch of this crossing, where the curved line is undercrossing the 

straight segment. See Figure 6 for a graphic illustration of this relation, 

and an indication of the convention for choosing the labels 𝐴 and 𝐴−1 

at a given crossing. 

 
 

𝑨 

𝑨 
𝑨−𝟏  

𝑨 
𝑨−𝟏  
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<    >=  𝑨 <≍>  +𝑨−𝟏 <)(>and 

<    >=  𝑨−𝟏 <≍>  +𝑨 <)(> 

Figure 6: Bracket Smoothing 
 

It is easy to see that Properties 2 and 3 define the 

calculation of the bracket on arbitrary link diagrams. The 

choices of coefficients (𝐴 and 𝐴−1) and the value of (−𝐴2 −

𝐴−2) make the bracket invariant under the types II and III 

Reidemeister moves (but not invariant under a type I 

Reidmeister move). Thus Property 1 is a consequence of the 

other two properties. 

The idea behind the bracket polynomial is to break down 

a knot into a trivial link of unknots:  

 

  

 

The knot 

above is 

broken down 

𝐿 𝑅  

< 𝐾 > = 𝐴 < 𝐿 > + 𝐴−1 < 𝑅 > 

  

 
< 𝐾 > =  𝐴7  −  𝐴3  −  𝐴−5  𝐿𝐿 𝐿𝑅 

< 𝐾 > =  𝐴(𝐴 < 𝐿𝐿 > + 𝐴−1 < 𝐿𝑅 >) + 𝐴−1 < 𝑅 > 

After an exhaustive expansion, one would 

arrive at the following bracket polynomial 

for the left-handed trefoil diagram 𝐾 

 

The bracket is invariant under regular isotopy and can be 

normalized to an invariant of ambient isotopy by the definition 

𝑨−𝟏 
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(5) 𝑓𝐾(𝐴)  =  (−𝐴)−3 · 𝑤(𝐷)  · < 𝐾 > (𝐴); 

where we chose an orientation for 𝐾, and where 𝑤(𝐾) is the sum 

of the crossing signs of the oriented link 𝐾. 𝑤(𝐾) is called the 

writhe of 𝐾. The convention for crossing signs is shown in 

Figure 7. By a change of variables one obtains the original 

Jones polynomial𝑉𝐾(𝑡)for oriented knots and links from the 

normalized bracket: 

𝑉𝐾(𝑡)  =  𝑓𝐾(𝑡−1 4⁄ ). 

 

Figure 7:Crossing Signs and Curls 
 

One useful consequence of these formulas is the following 

switching formula 
𝐴 <       > − 𝐴−1 <       >= (𝐴2 − 𝐴−2) <≍>. 

Note that in these conventions the 𝐴-smoothing of      is ≍; while 

the 𝐴 smoothing of    is )(. Properly interpreted, the switching 

formula above says that you can switch a crossing and smooth it 

either way and obtain a three diagram relation. This is useful 

since some computations will simplify quite quickly with the 

proper choices of switching and smoothing. Remember that it is 

necessary to keep track of the diagrams up to regular isotopy 

(the equivalence relation generated by the second and third 

Reidemeister moves). Here is an example. Figure 8 shows a left-

handed trefoil diagram 𝐾, an unknot diagram 𝑈 and another 

unknot diagram 𝑈’:  

or  − − 

or  + 

− 

+ 

− 

+ 

+ 

− + 
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𝐾 

a left-handed 

trefoil diagram 

𝑈 

an unknotted 

diagram 

  𝑈′ 

another  

unknotted  

diagram 

Figure 8:Left-handed trefoil and two relatives 

 
Applying the switching formula, we have  

𝐴−1 < 𝐾 > −𝐴 < 𝑈 >= (𝐴−2 − 𝐴2) < 𝑈′ > 

where < 𝑈 >= −𝐴3 and < 𝑈′ >= (−𝐴−3)2 = 𝐴−6. It follows 

that  

𝐴−1 < 𝐾 > −𝐴(−𝐴3) = (𝐴−2 − 𝐴2)(𝐴−6) 

which implies 

(6) < 𝐾 >= −𝐴5 − 𝐴−3 + 𝐴−7 

This is the bracket polynomial of the trefoil diagram 𝐾. Since 

𝑤(𝐾)  =  3, substitution of (6) into equation (5) gives the 

normalized polynomial 

𝑓𝐾(𝐴) =  (−𝐴3)−3 < 𝐾 >=  −𝐴9(−𝐴5 − 𝐴−3 + 𝐴−7) =

 𝐴−4 + 𝐴−12 − 𝐴−16.  

In particular, we obtain 𝑓𝐾(𝐴) ≠ 𝑓𝐾(𝐴−1) = 𝑓−𝐾(𝐴). This shows 

that the trefoil is not ambient isotopic to its mirror image, a fact 

that is much harder to prove by classical methods. 

8. A lower bound for braid index. In §4.1 we remarked that it is an open 

problem to determine the braid index of a knot algorithmically. 

However, the HOMFLY polynomial does give a remarkably 

useful lower bound, via a famous inequality which is known as 

the Morton-Franks-Williams inequality. It was proved 
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simultaneously and independently by Hugh Morton in [38] and 

by John Franks and Robert Williams in [23]. 

 

 

5.4. The Lawrence-Krammer representation of braid groups and 

polynomial invariants of knots 

Let 𝐷be the unit disk centered at the origin in the complex plane. Fix arbitrary 

real numbers −1 < 𝑝1 < ⋯ < 𝑝𝑛 < 1. Let 

𝐷𝑛 =  𝐷\{𝑝1, … ,𝑝𝑛} 

be the 𝑛-times punctured disk. The braid group 𝐵𝑛 is the mapping class group of 

𝐷𝑛, that is, the set of homeomorphisms from 𝐷𝑛 to itself that act as the identity on 

𝜕𝐷, taken up to isotopy relative to 𝜕𝐷. Let also 

𝐶2𝐷𝑛 

be the space of all unordered pairs of distinct points in 𝐷𝑛. 

Suppose 𝑥 is a point in 𝐷𝑛, and 𝑎 is a simple closed curve in 𝐷𝑛enclosing one 

puncture point and not enclosing 𝑥. Let 

𝛾: 𝐼 → 𝐶2𝐷𝑛 

be the loop in 𝐶2𝐷𝑛given by 

𝛾(𝑠)  =  {𝑥,𝑎(𝑠)}. 

Further, suppose 𝜏1 and 𝜏2 are paths in 𝐷𝑛such that 𝜏1𝜏2 is a simple closed curve 

that does not enclose any puncture points 𝑝1, … ,𝑝𝑛. Let  

𝜏 ∶  𝐼 → 𝐶2𝐷𝑛 

be the loop in 𝐶2𝐷𝑛given by 

𝜏(𝑠)  =  {𝜏1(𝑠), 𝜏2(𝑠)}. 

Let 

Φ: 𝜋1(𝐶2𝐷𝑛)  → ℤ2[𝑞, 𝑡] = 〈𝑞〉⨁〈𝑡〉 

be the unique homomorphism such that  

Φ(𝛾)  =  𝑞and Φ(𝜏) = 𝑡 
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for any 𝛾 and 𝜏 defined as above. (For a proof of the existence and uniqueness of 

such a homomorphism see [41]). The second homology  

𝐻2(𝐶2𝐷𝑛) 

is a module over ℤ[𝑞±1, 𝑡±1], where 𝑞and 𝑡act by covering transformations. Let 

now  

𝐶2𝐷𝑛������� 

be the Lawrence–Krammer cover, that is the connected covering space of 

𝐶2𝐷𝑛whose fundamental group is the kernel of the projection map Φ. The second 

homology 

𝐻2(𝐶2𝐷𝑛�������) 

is known to be a free ℤ[𝑞±1, 𝑡±1]-module, of rank �𝑛2�. 

Definition 5.18 ([7], [8]) The Lawrence-Krammer representation of 𝐵𝑛is the 

induced action  

𝐵𝑛 × 𝐻2(𝐶2𝐷𝑛�������) → 𝐻2(𝐶2𝐷𝑛�������) 

of 𝐵𝑛on 𝐻2(𝐶2𝐷𝑛�������) by ℤ[𝑞±1, 𝑡±1]-module automorphisms. More precisely, given 

an element of 𝐵𝑛represented by a homeomorphism  

𝜎:𝐷𝑛 → 𝐷𝑛, 

consider the induced action  

𝜎:𝐶2𝐷𝑛 → 𝐶2𝐷𝑛. 

There is a unique lift 

𝜎�:𝐶2𝐷𝑛������� → 𝐶2𝐷𝑛������� 

that acts as the identity on 𝜕𝐶2𝐷𝑛�������. This induces an automorphism of 𝐻2(𝐶2𝐷𝑛�������), 

which can be shown to respect the ℤ[𝑞±1, 𝑡±1]-module structure.  

Using Bigelow's conventions for the Lawrence–Krammer representation, 

one can demonstrate the following result.  
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Theorem 5.19 ([7], [8]) Let 𝑣𝑖,𝑗 (1 ≤ 𝑖 < 𝑗 ≤ 𝑛) be the generators for 𝐻2(𝐶2𝐷𝑛�������). 

If 𝜎𝑖 denote the standard Artin generators of the braid group, then we get the 

following expression for the generator Lawrence-Krammer representation: 

𝜎𝑖 ∙ 𝑣𝑗,𝑘 =

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑣𝑗,𝑘 ,                                         𝑖𝑓 𝑖 ∉ {𝑗 − 1, 𝑗,𝑘 − 1,𝑘}
𝑞𝑣𝑖,𝑘 + (𝑞2 − 𝑞)𝑣𝑖,𝑗 + (1 − 𝑞)𝑣𝑗,𝑘 , 𝑖𝑓 𝑖 = 𝑗 − 1
𝑣𝑗,𝑘 ,                                                         𝑖𝑓 𝑖 = 𝑗 ≠ 𝑘 − 1
𝑞𝑣𝑗,𝑖 + (1 − 𝑞)𝑣𝑗,𝑘 − (𝑞2 − 𝑞)𝑡𝑣𝑖,𝑘 , 𝑖𝑓 𝑖 = 𝑗 − 1
𝑣𝑗,𝑘+1,                                                                     𝑖𝑓 𝑖 = 𝑘
−𝑡𝑞2𝑣𝑗,𝑘 ,                                                 𝑖𝑓 𝑖 = 𝑗 ≠ 𝑘 − 1

� ∙ 

Finally, Stephen Bigelow and Daan Krammer have independent proofs that  

Theorem 5.20 ([7], [8], [33]) The Lawrence–Krammer representation is faithful. 

 

 

6  Approximating Qubit Gates with Fibonacci Braiding 

Generators  

The infinite braid group can have both one-dimensional and higher-

dimensional representations. Abelian anyons correspond to the one dimensional 

case (:𝜎𝑖 =  𝑒𝑖𝑎). Non-abelian anyons correspond to higher dimensional 

representations. The non-abelian anyons are characterized by 𝐷-dimensional 

Hilbert spaces, so that every set of 𝑁 non-abelian anyons can be found in 𝐷𝑁 

orthogonal quantum states. It follows that every set of 𝑁 non-abelian anyons can 

encode  

𝑁𝑙𝑜𝑔2𝐷qubits(𝐷 > 1). 

Therefore, the non-abelian anyons are of particular interest for our purposes. Of 

these, the Fibonacci anyons satisfy the simplest rule fusion, meaning that fusion of 

two Fibonacci anyons delivers a single Fibonacci anyon together after a quantum 

state that is trivial statistical.  

Recall that fusion rules are rules that determine the exact decomposition of the 

tensor product of two representations of a group into a direct sum of irreducible 
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representations. The aim of this section is to encode quantum information using 

only Fibonacci anyons (called Fibonacci because 𝑁 anyons span a Hilbert space 

of dimension 𝐷 equal to the 𝑁 +  1 Fibonacci number).  

Firstly, in order to manage quantum information, one must define the 

operators describing the operators “sigma” describing the Fibonacci braidings 

(trajectories of Fibonacci anyons). To be more specific, we will restrict ourselves 

to the study of cases  

𝑁 = 3  and  𝑁 = 4. 

Example 6.1(: 𝑁 = 3) The Hilbert space of three Fibonacci anyons is three 

dimensional and spanned by the states  

| �𝟎〉� = ((• •)𝟎,•)𝟏,  

| �𝟏〉� = ((• •)𝟏,•)𝟏 and 

| �𝑵𝑪〉� = ((• •)𝟏,•)𝟎 (: the non-computational state). 

Figure 9 shows the elementary braid operations 𝜎1 and 𝜎2 that can be applied 

to three quasiparticles. 

Associated with each of these braid operations there is a matrix 𝑀 which acts 

on the three-dimensional Hilbert space of the three Fibonacci anyons. These 

matrices are 

𝜎1 = �
𝑒−𝑖4𝜋 5⁄ 0

0 𝑒𝑖3𝜋 5⁄

𝑒𝑖3𝜋 5⁄
� 

𝜎2 = �
𝜏𝑒−𝑖𝜋 5⁄ √𝜏𝑒−𝑖3𝜋 5⁄

√𝜏𝑒−𝑖3𝜋 5⁄ −𝜏
𝑒𝑖3𝜋 5⁄

� 

where the upper left 2 × 2 blocks of these matrices act on the computational qubit 

space (| �0〉� and | �1〉�) while the lower right matrix element is the phase factor which  
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Figure 9: Elementary braid operations acting on three quasiparticles and the 

evaluation of a general braid in terms of these elementary operations. The solid 

dots represent Fibonacci anyons and the oval enclosing these dots play the same 

role as the parenthesis in the notation �(••),•� used in the text. 

is applied to the state | �𝑁𝐶〉�. The form of these matrices is essentially fixed by 

certain consistency conditions dictated by fusion rules. To compute the unitary 

operation produced by an arbitrary braid involving three strands one then 

simplyexpresses the braid as a sequence of elementary braid operations and 

multiplies the corresponding matrices (𝜎1, 𝜎2 and their inverses) to obtain the net 

transformation as shown in Figure 9.  

Example 6.2 (The case 𝑁 = 4) Our aim now is to encode qubits with four 

Fibonacci anyons. To this end, we consider a system of four anyons whose total 

charge is trivial. There are two possible states (see Figure 10. a) and we associate 

them to the logic 0 and the logic 1. Three Fibonacci anyons with total charge 

equal to 1 are enough to encode a qubit (see Figure 10.b).  

Finally, with different total charges we obtain non computational states that 

must be avoided (see Figure 10.c). To process a single qubit we must find the 

operators 𝜎 that define the braidings. In Figure 11, we give the elementary braid  

Time Time 

𝑴 = 𝝈𝟏−𝟏𝝈𝟐−𝟏𝝈𝟐−𝟏𝝈𝟐−𝟏𝝈𝟏𝝈𝟏𝝈𝟐 

|�𝝋〉� 

𝝈𝟏 𝝈𝟐 



Nicholas J. Daras       71 
 

 
Figure 10: Coding qubits with four Fibonacci anyons 

 

operations 𝜎1, 𝜎2, 𝜎3 that can be applied to four quasiparticles. The solid dots 

represent Fibonacci anons and the ovals enclosing these dots play the same role as 

the parentheses in the notation 

�(• •), (• •)� 

used in the text.The basic braid generators of Fibonacci anyons orbits are given by 

the three tables below (Figure 11). The character 𝜑 represents the gold number 

(:𝜑 = (1 + √5)/2 = 1.6180339).  

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 11: Fibonacci braidings 

= |�𝑵𝑪〉� 

= |�𝟏𝑳〉� 

= |�𝟏𝑳〉� 

= |�𝟎𝑳〉� 

= |�𝟎𝑳〉� 

𝜎1 = 𝜎3 = �𝑒
−𝑖 4𝜋5 0

0 −𝑒−𝑖 
2𝜋
5
� 

𝜎2

= �
−𝜑𝑒−𝑖 

𝜋
5 −�𝜑𝑒−𝑖 

2𝜋
5

−�𝜑𝑒−𝑖 
2𝜋
5 −𝜑

� 

𝜎3 = 𝜎1 = �𝑒
− 𝑖 4𝜋5 0

0 −𝑒−𝑖 
2𝜋
5
� 

(a) 

(b) 

(c) 

𝟏 

 

𝟎 

 

𝟎 

 

𝟏 

 

𝟏 

 

𝟏 

 

𝟏 

 

𝟏 
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So, to compute the unitary operation produced by an arbitrary braid one then 

simply express the braid as a sequence of elementary braid operations and 

multiplies the corresponding matrices (𝜎1 = 𝜎3, 𝜎2 and their inverses) to obtain 

the net transformation.  

Figure 12 shows the manner in which the Fibonacci braiding shape is analyzed 

in such a product. Note that, for Fibonacci anyons, the elementary braidings 

generate an infinite group, dense in 𝑆𝑈(2). Specifically, Figure 12 shows the 

elementary braid operations 𝜎1, 𝜎2 and 𝜎3 that can be applied to four 

quasiparticles. Associated with each of these braid operations there is a matrix 

which acts on the four dimensional Hilbert space of the four Fibonacci anyons. 

The form of these matrices is essentially fixed by certain consistency conditions 

dictated by fusion rules. To compute the unitary operation produced by an 

arbitrary braid involving four strands one simply expresses the braid as a sequence 

of elementary braid operations and multiplies the corresponding matrices (𝜎1, 𝜎2, 

𝜎3 and their inverses) to obtain the net transformation, as shown in Figure 12. 

 

𝑀 = 𝜎1−2𝜎22𝜎1−4𝜎22𝜎1−4𝜎22𝜎1−4𝜎22𝜎1−2 

Figure 12: Elementary braid operations acting on four quasiparticles and 

evaluation of a general braid in terms of these elementary operations 

To the purpose of universal quantum computation, we want now to approximate, 

at any given accuracy, any single-qubit gate using as generators the braidings𝜎1, 

𝜎2,…,𝜎𝑁. To simplify the situation, we will restrict ourselves to the case 𝑁 = 3. 

As we envision carrying out a single-qubit operation on one of these encoded 

qubits it is convenient to consider a restricted class of braids known as weaves –

𝑀𝑇|�𝜑〉� 

| �𝜑〉� 
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braids in which only one quasiparticle moves. It is known that any operation which 

can be carried out by a braid can also be carried out by a weave. Figure 13 shows 

the rotation vectors  �⃗� corresponding to single-qubit rotations 

𝑈𝑎�⃗ = 𝑒𝑥𝑝(𝑖�⃗� ∙ �⃗� 2⁄ ) 

generated by four elementary weaving operators  

𝜎12,𝜎22,𝜎1−2, 𝜎2−2. 

These squared braid matrices describing weave operations in which the middle 

quasiparticle is woven once around either the top or bottom quasiparticle in either 

a clockwise or counterclockwise sense. Because the number of topologically 

distinct braids grows exponentially with braid length, and because the operators  

𝜎1
±2and𝜎2

±2 

generate a group which is dense in 𝑆𝑈(2), the set of distinct operations which can 

be carried out by braids rapidly fills the space of all single-qubit rotations, as is 

also shown below in Figure 13. 

 
Figure 13: Weaving Operators Representation Sphere: the vectors corresponding 

to the four elementary weaving operators σ12,σ22,σ1−2, σ2−2can be represented points 

inside a solid sphere of radius 2π 

 

So, one can now see the set of all points of the ball corresponding to 

�⃗�vectors generated by basic braiding. 

𝝅 

𝝈𝟏−𝟐  

𝝈𝟐𝟐 
𝝈𝟐−𝟐 

 

 

−𝝅 

−𝝅 

𝝅 

𝝈𝟏𝟐  
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The set of all points 

corresponding to 

vectors for braids built 

out of up to 1 

elementary weaving 

operation ([11]) 

The set of all points 

corresponding to vectors for 

braids built out of up to 2 

elementary weaving 

operation ([11]) 

The set of all points 

corresponding to vectors 

for braids built out of up 

to 3 elementary weaving 

operation ([11]) 

   

The set of all points 

corresponding to 

vectors for braids built 

out of up to 4 

elementary weaving 

operation ([11]) 

The set of all points 

corresponding to vectors for 

braids built out of up to 5 

elementary weaving 

operation ([11]) 

The set of all points 

corresponding to vectors 

for braids built out of up 

to 6 elementary weaving 

operation ([11]) 

 

𝑁 = 1 

 

 

 

 

𝑁 = 2 

 

 

 

 

𝑁 = 3 
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𝑁 = 6 

 

 

 

 

𝑁 = 7 
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The set of all points 

corresponding to 

vectors for braids built 

out of up to 7 

elementary weaving 

operation ([11]) 

The set of all points 

corresponding to vectors for 

braids built out of up to 8 

elementary weaving 

operation ([11]) 

The set of all points 

corresponding to vectors 

for braids built out of up 

to 9 elementary weaving 

operation ([11]) 

  

The set of all points corresponding to 

vectors for braids built out of up to 10 

elementary weaving operation ([11]) 

The set of all points corresponding to 

vectors for braids built out of up to 11 

elementary weaving operation ([11]) 

By carrying out Bruce Force (BF) searches over braids with up to 46 

elementary braid operations we typically find braids which approximate a desired 

target gate to a distance of ~10−3. Recall that a BF search allows to find the best 

weave (: braid in which only one quasiparticle moves) of a given length 𝐿to 

approximate every target gate. Any operation which can be carried out by a braid 

can also be carried out by a weave. The number of possible braids grows 

𝑁 = 7 

 

 

 

 

𝑁 = 8 

 

 

 

 

𝑁 = 9 

 

 

 

 

𝑁 = 10 

 

 

 

 

𝑁 = 11 
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exponentially as 3𝐿/2, while the time required is exponential in the length and 

calculations become cumbersome for 𝐿 > 40. Although the accuracy grows 

exponentially as 3−𝐿/6, the BF approach optimal solution is reached very slowly. 

Using weaves we can approximate every single-qubit gate choosing the best 

braid among the 3𝐿 2⁄  possibilities. 

Example 6.3 

i. Target Gate: 𝑍 = �1 0
0 −1� 

 
𝐿 = 8, 

𝑍�8 ≅ �0.31 + 0.95 𝑖 0
0 0.31 − 0.95 𝑖� 

ii. Target Gate: 𝑍 = �1 0
0 −1� 

 
𝐿 = 24, 

𝑍�24 ≅ �0.0234 − 0.9997 𝑖 0.0060 + 0.0020 𝑖
−0.006 + 0.002 𝑖 0.0234 + 0.9997 𝑖� 

iii. Target Gate: 𝑍 = �1 0
0 −1� 

 

 
𝐿 = 32, 
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𝑍�32 ≅ �0.004 + 0.99997 𝑖 0.004 − 0.003 𝑖
−0.004 − 0.003 𝑖 0.004 + 0.99997 𝑖� 

iv. Target Gate: 𝑍 = �1 0
0 −1� 

 
𝐿 = 44, 

𝑍�44 ≅ � − 𝑖 𝑜(10−3)
𝑜(10−3)  𝑖

� 

 

 

7  Quantum Hashing with the Icosahedral Group  

The brute force search is inefficient for long braids because it samples the 

whole 𝑆𝑈(2) space with almost equal weight. To get a faster algorithm we must 

enhance the sampling near the target gate we want to approximate In this way we 

can get a much faster algorithm that finds good approximations for arbitrary 

𝑆𝑈(2)gates (but in general not the optimal one).  

The question is thus the following. 

Open Question 7.1Can one implement a more efficient search algorithm to find 

braids for single-qubit gates? □ 

Technically, we can think of a braid as an index to the corresponding unitary 

matrix, which can be regarded as a definition, like in a dictionary. Given an index, 

it is straightforward to find its definition, but finding the index for a definition is 

exponentially hard. In computer science, the task of quickly locating a data record 

given its content (or search key) can be achieved by the introduction of hash 

functions. In the context of topological quantum computation, we thus name this 

task topological quantum hashing. In general, such a hashing function, being 
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imperfect, still maps a unitary matrix to a number of braids rather than one. But 

narrowing the search down to only a fixed (rather than exponentially large) 

number of braids is already a great achievement. 

In this Section, we explore topological quantum hashing with the finite 

icosahedral group 𝓣and its algebra. The building blocks of the algorithm are a 

preprocessorand a main processor: the aim of the preprocessor is to give an initial 

approximation 𝑻� of the target gate 𝑻, while that of the main processor is to reduce 

the discrepancy between 𝑻and 𝑻� with extremely high efficiency. We discuss the 

iteration of the algorithm in a renormalization group fashion and the results which 

follow from this approach. The algorithm is also applicable to generic quantum 

compiling and, remarkably, its efficiency can be quantified using random matrix 

theory (Figure 14). 

The icosahedral rotation group 𝒯of order 60 is the largest finite subgroup of 

𝑆𝑈(2) excluding reflection. Therefore, it has been often used to replace the full 

𝑆𝑈(2) group for practical purposes, as for example in earlier Monte Carlo 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Topological Quantum Hashing and Icosahedral Group 

topological quantum hashingwith the  

finite icosahedral group 𝓣and its algebra 

 

We will explore 

The building blocks  

of the algorithm preprocessor 
main processor 

The aim of the preprocessor is to give 
an initial approximation𝑻�of the 

target gate𝑻.  

The aim of the main processor is to reduce the 
discrepancy between𝑻and𝑻�with extremely 

high efficiency. 
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studies of 𝑆𝑈(2) lattice gauge theories, and this motivated us to apply the 

icosahedral group representation in the braid construction.The icosahedral rotation 

group 𝒯of order 60 is the largest finite subgroup of 𝑆𝑈(2) excluding reflection. 

Therefore, it has been often used to replace the full 𝑆𝑈(2) group for practical 

purposes, as for example in earlier Monte Carlo studies of 𝑆𝑈(2) lattice gauge 

theories, and this motivated us to apply the icosahedral group representation in the 

braid construction. 𝒯is composed by the 60 rotations around the axes of symmetry 

of the icosahedron (platonic solid with twenty triangular faces) or of its dual 

polyhedron, the dodecahedron (regular solid with twelve pentagonal faces); there 

are six axes of the fifth order, ten of the third and fifteen of the second.  

Let us for convenience write  

𝒯 = {𝑔0,𝑔1, . . . ,𝑔59}, 

where  

𝑔0 = 𝑒 

is the identity element. Thanks to the homomorphism between 𝑆𝑈(2) and 𝑆𝑂(3), 

we start by associating a 2 × 2 unitary matrix to each group element. In other 

words, each group element can be approximated by a braid of Fibonacci anyons of 

a certain length 𝑁 using the brute-force search and neglecting an overall phase. In 

this way, we obtain an approximate representation in 𝑆𝑈(2) of the icosahedral 

group 

𝒯�(𝑁)  = {𝑔�0(𝑁),𝑔�1(𝑁), . . . ,𝑔�59(𝑁)}. 

Choosing, for instance, a fixed braid length of 𝑁 =  24, the distance (or error) of 

each braid representation to its corresponding exact matrix representation varies 

from 0.003 to 0.094 (see Fig.15 for an example). 
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Figure 15: (color online) Approximation to the – iX gate (an element of the 

icosahedral group) in terms of braids of the Fibonacci anyons of length L =  24 in 

the graphic representation. In this example the error is 0.0031 

 

We point out that the 60 elements of 𝒯�(𝑁) (for any finite 𝑁) do not close 

any longer the composition laws of 𝒯; in fact, they form a pseudo-group, not a 

group, isomorphic to 𝒯only in the limit 𝑁 → ∞ (Figure 16). In other words, if the 

composition law 𝑔𝑖𝑔𝑗 =  𝑔𝑘 holds in the original icosahedral group, the product of 

the corresponding elements 𝑔�𝑖(𝑁) and 𝑔�𝑗(𝑁) is not 𝑔�𝑘(𝑁), although it can be 

very close to it for large enough 𝑁.  

Interestingly, the distance between the product 𝑔�𝑖(𝑁)𝑔�𝑗(𝑁) and the 

corresponding element 𝑔𝑘of 𝒯can be linked to the Wigner-Dyson distribution, 

which we will discuss later. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Icosahedral Group and Icosahedral Pseudogroup (Burrello et al.) 

𝜎1−2𝜎22𝜎1−4𝜎22𝜎1−4𝜎22𝜎1−4𝜎22𝜎1−2 

Every rotation in this subgroup can be compiled with 
a Brute Force algorithm in braids of length 𝑳 =

 𝟖,𝟐𝟒,𝟒𝟒 to obtain the pseudogroup𝓣�(𝑳) 
characterized by errors𝒈�𝒊 = 𝒈𝒊𝒆𝒊𝚫𝒊. 

The icosahedral rotation group𝓣of order 𝟔𝟎 
is the largest finite subgroup of 𝑺𝑶(𝟑) and can 
be mapped in a subgroup of 𝑺𝑼(𝟐) excluding 

reflection. 
 

𝓣 = �𝒈𝟎 = 𝒆,𝒈𝟏, … ,𝒈𝟓𝟗� 
 

𝓣� = {𝒈�𝟎,𝒈�𝟏, … ,𝒈�𝟓𝟗} 
 

𝓣
(𝑩𝑭𝑳=𝟐𝟒)
�⎯⎯⎯⎯⎯� 𝓣�(𝟐𝟒) 

𝑿 = 𝒆−𝒊𝝈𝒙𝝅 𝟐⁄ ↦ 𝑿�  

the image 𝑿� of𝑿 is the braid
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Using the pseudo-group structure of 𝒯� , we can generate a set 𝒮 made of a large 

number of braids only in the vicinity of the identity matrix: this is a simple 

consequence of the original icosahedral group algebra, in which the composition 

laws allow us to obtain the identity group element in various ways. The set 𝒮 is 

instrumental to achieve an important goal, i.e. to search among the elements of 

𝒮the best correction to apply to a first rough approximation of the target single 

qubit gate 𝑇 we want to hash.  

We can create such a set, labeled by 𝒮(𝐿,𝑛), considering all the possible 

ordered products 𝑔�𝑖1(𝐿)𝑔�𝑖2(𝐿) . . .𝑔�𝑖𝑛(𝐿) of 𝑛 ≥ 2 elements of 𝒯�(𝐿) of length 

𝐿and multiplying them by the matrix 𝑔�𝑖𝑛+1(𝐿) ∈ 𝒯�(𝐿) such that 𝑔𝑖𝑛+1 =

𝑔𝑖𝑛
−1. . .𝑔𝑖2

−1𝑔𝑖1
−1. In this way we generate all the possible combinations of 𝑛 + 1 

elements of 𝒯 whose result is the identity, but, thanks to the errors that 

characterize the braid representation 𝒯� , we obtain 60𝑛 small rotations in 𝑆𝑈(2), 

corresponding to braids of length (𝑛 +  1)𝐿. 

 

 

7.1. The hashing procedure 

The first step in the hashing procedure of the target gate is to find a rough 

braid representation of 𝑇 using a preprocessor, which associates to 𝑇 the element 

in [𝒯�(𝑙)]𝑚 (of length 𝑚 × 𝑙) that best approximates it. Thus we obtain a starting 

braid 

𝒯�0
𝑙,𝑚 = 𝑔�𝑗1(𝑙) 𝑔�𝑗2(𝑙) . . .𝑔�𝑗𝑚(𝑙) 

characterized by an initial error we want to reduce.  

The preprocessor procedure relies on the fact that choosing a small 𝑙 we 

obtain a substantial discrepancy between the elements 𝑔of the icosahedral group 

and their representatives 𝑔�. Due to these random errors the set [𝒯�(𝑙)]𝑚 of all the 

products 𝑔�𝑗1𝑔�𝑗2 . . .𝑔�𝑗𝑚  is well spread all over 𝑆𝑈(2) and can be considered as a 
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random discretization of this group. In the main processor we use the set of fine 

rotations 𝒮(𝐿,𝑛) to efficiently reduce the error in 𝒯�0
𝑙,𝑚. Multiplying 𝒯�0

𝑙,𝑚  by all 

the elements of 𝒮(𝐿,𝑛), we generate 60𝑛possible braid representations of 𝑇: 

𝒯�0
𝑙,𝑚 = 𝑔�𝑖1𝑔�𝑖2 . . .𝑔�𝑖𝑛𝑔�𝑖𝑛+1 .  

Among these braids of length (𝑛 +  1)𝐿 +  𝑚𝑙, we search the one which 

minimizes the distance with the target gate 𝑇. This braid, 𝒯�𝐿,𝑛
𝑙,𝑚, is the result of our 

algorithm.  

Figure 17 shows the distribution of final errors for 10000 randomly 

selected target gates obtained with a preprocessor of 𝑙 =  8,𝑚 =  3 and a main 

processor of 𝐿 =  24 and 𝑛 = 3. 

 

 

Figure 17: Probability distribution of d in 10000 random tests using the icosahedral 

group approach with a preprocessor of l = 8 and m = 3 and a main processor of 

L = 24 and n = 3. 

 

To illustrate our algorithm, it is useful to consider a concrete example: suppose 

we want to find the best braid representation of the target gate 

𝑇 = 𝑖𝑍 = �𝑖 0
0 −𝑖�. 

Out of all combinations in [𝒯�(8)]3, the preprocessor selects a  

𝒯�0
8,3 = 𝑔�𝑝1(8) 𝑔�𝑝2(8) 𝑔�𝑝3(8), 

𝟏𝟓𝟎𝟎 

𝟏𝟐𝟎𝟎 

𝟗𝟎𝟎 

𝟔𝟎𝟎 

𝟑𝟎𝟎 

𝟎 

𝟎      𝟎.𝟎𝟎𝟎𝟓     𝟎.𝟎𝟎𝟏     𝟎.𝟎𝟎𝟏𝟓     𝟎.𝟎𝟎𝟐       𝟎.𝟎𝟎𝟐𝟓 

𝒅 

𝑷(𝒅) 
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which minimizes the distance to 𝑇to 0.038. Applying now the main processor, the 

best rotation in 𝒮(24, 3),  that corrects 𝒯�0
8,3 is given by a  

𝑔�𝑞1(24) 𝑔�𝑞2(24)𝑔�𝑞3(24) 𝑔�𝑞4(24), 

where 𝑔𝑞4 =  𝑔𝑞3
−1𝑔𝑞2

−1𝑔𝑞1
−1. The resulting braid is then represented by 

𝒯�24,3
8,3 = 𝑔�𝑝1(8) 𝑔�𝑝2(8) 𝑔�𝑝3(8)𝑔�𝑞1(24) 𝑔�𝑞2(24)𝑔�𝑞3(24) 𝑔�𝑞4(24) 

= �−0.0004 + 1.0000𝑖 −0.0007 − 0.0005𝑖
0.0007 − 0.0005𝑖 −0.0004 − 1.0000𝑖� 𝑒

4𝜋𝑖 5⁄  

for the special set of 𝑝’s and 𝑞’s and, apart from an overall phase, the final 

distance is reduced to 0.00099 (see Figure 15). 

 

 

7.2. Relationship with random matrix theory 

The distribution of the distance between the identity and the so-obtained 

braids has an intriguing connection to the Gaussian unitary ensemble of random 

matrices, which helps us to understand how close we can approach the identity in 

this way, i.e. the efficiency of the hashing algorithm. Let us analyze the group 

property deviation for the pseudo-group 𝒯�(𝑁) for braids of length 𝑁. One can 

write 𝑔�𝑖 =  𝑔𝑖𝑒𝑖∆𝑖, where ∆𝑖 is a Hermitian matrix, indicating the small deviation 

of the finite braid representation to the corresponding 𝑆𝑈(2) representation for an 

individual element. For a product of 𝑔�𝑖that approximate 𝑔𝑖𝑔𝑗 · · ·  𝑔𝑛+1 = 𝑒, one 

has  

𝑔�𝑖𝑔�𝑗 · · ·  𝑔�𝑛+1 =  𝑔𝑖𝑒𝑖∆𝑖𝑔𝑗𝑒𝑖∆𝑗 · · ·  𝑔𝑛+1𝑒𝑖∆𝑛+1 =  𝑒𝑖𝐻𝑛 ,  

where 𝐻𝑛, related to the accumulated deviation, is 

𝐻𝑛 = 𝑔𝑖∆𝑖𝑔𝑖−1 +  𝑔𝑖𝑔𝑗∆𝑗𝑔𝑗−1𝑔𝑖−1 + · · · + 𝑔𝑖𝑔𝑗 …𝑔𝑛∆𝑛𝑔𝑛−1 …𝑔𝑗−1𝑔𝑖−1  + ∆𝑛+1 + 𝑂(∆2).  

The natural conjecture is that, for a long enough sequence of matrix product, 

the Hermitian matrix 𝐻𝑛 tends to a random matrix corresponding to the Gaussian 

unitary ensemble. This is plausible as 𝐻𝑛 is a Hermitian matrix that is the sum of 

random initial deviation matrices with random unitary transformations.  
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Figure 18: The main processor (Burrello et al.) 

 

A direct consequence is that the distribution of the eigenvalue spacing 𝑠 obeys 

the Wigner-Dyson form [35], 

𝑃(𝑠)  =  32
𝜋2𝑠0

� 𝑠
𝑠0
�
2
𝑒−(4 𝜋⁄ )(𝑠 𝑠0⁄ )2,  

where 𝑠0 is the mean level spacing. For small enough deviations, the distance of 

𝐻𝑛 to the identity 𝑑 �1, 𝑒𝑖𝐻𝑛�  = ‖𝐻𝑛‖ +  𝑂 (‖𝐻𝑛‖3), is proportional to the 

eigenvalue spacing of 𝐻and, therefore, should obey the same Wigner-Dyson 

distribution. The conjecture above is indeed well supported by our numerical 

analysis, even for 𝑛 as small as 3 or 4 (see Figure 19).  

One can show that the final error of 𝒯�𝐿,𝑛
𝑙,𝑚also follows the Wigner-Dyson 

distribution (as illustrated in Figure 17) with an average final distance 𝑓 ~60𝑛 3⁄ /

√𝑛 +  1 times smaller than the average error of 𝒯�0
𝑙,𝑚, where the factor 60 is given 

by the order of the icosahedral group. With a smaller finite subgroup of 𝑆𝑈(2), we 

would need a greater 𝑛to achieve the same reduction. 

 

 We can sample with high 
precision the vicinity  
of the identity: 

For every 𝑛 −plet of rotation in 
𝒯we can find 𝑔𝑛 + 1 such that: 

𝑔𝑖1𝑔𝑖2 …𝑔𝑖𝑛𝑔𝑖𝑛+1  =  1. 

𝑅� =  𝑔�𝑖1𝑔�𝑖2 …𝑔�𝑖𝑛𝑔�𝑖𝑛+1  =  𝑒𝑖𝐻𝑛  

Mapping it into 𝒯�(24) we obtain 
a fine rotation: 

where 𝐻𝑛is a random matrix. 

• The distances of 𝑅�from 1 are described 
according to the Wigner-Dyson (GUE) 
distribution.  

• If we have an average error 𝜀(𝐿) for 𝒯�(𝐿) 
the average distance of 𝑅�  is √𝑛 +  1 ∈ (𝐿).  

• The main processor chooses the best 𝑅�to 
correct the result of the preprocessor.  
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Figure 19: Probability distribution of the distance dto the targeted identity matrix 

in the set of nontrivial braids that one samples in different algorithms. PBF(d) of 

the brute-force search (red solid squares) roughly follows (4/π)d2/

�1 −  (d/2)2, reflecting the three-sphere nature of the unitary matrix space (three 

independent parameters apart from an unimportant phase). In the pseudo 

icosahedral group approach (n =  4), distributions for L = 8 (P8, black empty 

circles) and L =  24 (P24, blue solid trangles) agree very well with the energy-

level-spacing distribution of the unitary Wigner-Dyson ensemble of random 

matrices, PL(d) = (32/π2)(d2/dL3)exp[−(4/π)(d/dL)2].PL(d) differ only by 

their corresponding average dL (not a fitting parameter), which decays 

exponentially as L increases. Note that  P24(d) is roughly ten-times sharper and 

narrower than P8(d). 
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Figure 20: Results (maximal lenght= 120) ([15]) 
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