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Abstract 

The problem of fault detection, isolation and identification are for the case of 

faulty output growth models describing biregional and multisectoral economies. 

The model is in discrete time descriptor form including non measurable total 

outputs and uncertain final demands. For this model the problems of fault 

detection, isolation and identification are solved on the basis of the design of a 

bank of unknown input discrete time observers provide a residual index. The 

present results are successfully applied to a biregional 12 sector economy where 4 

different fault scenarios including single and multi faults are considered.  
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1  Introduction  

Multiregional dynamic input output models reveal that significant changes in 

the growth process of economies have to be addressed to local agglomerate 

processes [1]. The early multiregional, multisectoral models were static [2]. In [3], 

[4], [5] and in order to develop tools facilitating the analysis of the interregional 

linkages between spatially defined economies subdivided into productive sectors, 

modifications of static models have been proposed. In [6] the theoretical 

difficulties concerning the forward in time projection of the growth path have been 

proposed. The positiveness of the dynamic trajectory as well as the causal 

indeterminacy problem, have attracted considerable attention. In [7], [8] and [9] 

the relative stability of the balanced growth has been studied for non singular 

models while in [6] and [10] singular models have been studied. For continuous 

time models, some first results regarding fault detection in single region models 

have been derived in [11] and [12].  

In this paper, the case of a bioregional multisector model input output model 

in discrete time descriptor form is considered. The vector of the total outputs 

corresponding to intermediate total outputs is considered to be partially known or 

measurable. Furthermore, the final demand vector is considered to be partially 

uncertain. To study the fault detection problem a bank of unknown input discrete 

time descriptor observers has been designed. Based on the outputs of this bank the 

nonmeasurable part of the total output vector is estimated accurately. The 

observers are of reduced order. They are causal and have arbitrary poles. Using 

the outputs of the observer bank a residual index is composed. Based on this index 

the problems fault detection, fault isolation and fault identification are solved. The 

results are successfully applied to the twelve sector biregional model in [6] and 

[13], and four fault scenarios are considered. 
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2  A biregional and multisectoral Input Output Model 

Consider a biregional and n - sector economy ([6], [13]). According to the 

input output theory, for every region  1,2r  there exist a 1n  total output 

vector  rx k  and a 1n  vector of final demands  rf k . The  n n  matrix 

rA  is direct consumption coefficient matrix of the r  region and rB  is the 

respective  n n  capital coefficient matrix. According to [6] and [13] the 

dynamic model of the biregional economy is given by the following discrete time 

vector equation: 

 ( ) ( ) ( 1) ( ) ( )x k TAx k TB x k x k Tf k                 (1) 

where   1

2

( )

( )

x k
x k

x k

 
  
 
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2

( )

( )

f k
f k

f k

 
  
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the final demands in both regions and where 1 2

1 2
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n
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. T  is the interregional trade coefficient 

matrix where 1 2,T T  are appropriate n n  positive diagonal matrices and nI  is 

the n n  identity matrix. A  is the total direct consumption coefficient matrix 

and B  is the total capital coefficient matrix. According to [6] and [13] many 

sectors do not capitalize goods and thus the rows of 1B  and 2B , corresponding to 

these sectors, are equal to zero. The matrix TB  is singular. Hence, after a row 

rearrangement the matrix TB  can be expressed as 
ˆ ˆ

0

TB TB

TB

   
   

     where T̂  is 

the matrix including the rows of T  corresponding to the no zero rows of B  and 

T  is the matrix including the rows of T  corresponding to the zero rows of B . 

To produce a solution forward in time and similar to that in [14], it is assumed that 
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(see [6] and [13]) the non zero rows of B  are linearly independent among 

themselves. Thus T̂B  is of full row rank. Let C I TA TB   . Due to the 

diagonal structure of 1T  and 2T , equation (1) can be expressed as follows 

ˆˆ ˆ
( 1) ( ) ( )

0

TB TC
x k x k f k

TC

    
      

                    (2) 

where Ĉ  includes the rows of C  corresponding to the non zero rows of B  

and C  includes the rows of C  corresponding to the zero rows of B . Similarly 

to [6] and [13], it is assumed that 
T̂B

C

 
 
 

 is invertible. Thus, the following forward 

in time solution of equation (2) can be derived: 

( 1) ( ) ( ) ( 1)x k x k f k f k                    (3) 

where 

1 ˆˆ

0

TB C

C


  

    
    , 

1ˆ ˆ

0

TB T

C


   

      
     and 

1ˆ 0TB

TC


   

     
    . For (3) to be 

equivalent to (2) the initial total output has to be consistent to the initial demand 

vector, i.e. (0) (0)Cx Tf  .  

 

 

3  A faulty biregional and multisectoral Input Output Model 

with measured and non measured variables 

3.1 Measured and non measured variables 

As already mentioned in [11], the total outputs of some sectors can not be 

considered to be known or measured accurately. Let ( ) ( )m k Mx k  be the  

1p  vector including the measured total outputs. Clearly, rankM p . In most 

cases, M  is of the form 0pI J  
  where pI  is the ( )p p  identity matrix 

and J  is a column rearrangement matrix. Writing first the measured total outputs, 
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the state vector is transformed to  

( )
( )

( ) T
O

Mm k
x k

Mw k

  
   

   
                       (4) 

where ( )w k denotes the (2 ) 1n p   vector including the total outputs that are 

not considered to be known or measured. Let OM  be the (2 )n p n   

orthogonal of M . In the case 0pM I J   
  it holds that 20 n pO IM J     . 

 

 

3.2 Faults in the final demand 

Let ( )f k  denotes the known part of the final demand vector, the difference 

between the nominal and the real demand is an uncertainty vector. According to 

[11], the real final demand vector is of the form ( ) ( )f k N k  where the 1q  

vector ( )k  corresponds to the unknown part of some of the demands and N  

denotes the uncertainty distribution matrix. Clearly, rankN q . 

 

 

3.3 The faulty model 

As a result of Subsections 3.1 and 3.2, system (3) can be written as follows: 

 

1,1 1,2 1 1

2,1 2,2 2 2

1 1

2 2

( 1) ( )
( ) ( 1)

( 1) ( )

( ) ( 1)

m k m k
f k f k

w k w k

k k 

            
                       

    
         

 (5) 

where  

1,1 1,2 1 1 1 1

2,1 2,2 2 2 2 2

, , , ,TJ J J J J N J N
              

                               
      . 
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4  A Fault Detection Scheme 

4.1 Unknown input observer design 

The design goal is to estimate ( )w k  accurately enough despite the presence 

of the fault ( )k . Assume that the following conditions are satisfied: 

 1 1
1 1

2 2

rank rank
  

     
              (6a) 

 2 2,2 2 2
1 1

1,2 1 1

rank 2 rank ,n pzI
n p z    

         
  (6b) 

Let L  satisfies the equation    2 2 1 1L    . Let P  the special solution 

of (7). Let ON  be  1 1( rank )p p    full row rank matrix being orthogonal 

to  1 1  , i.e.  1 1 0ON   . The general solution of L  is: 

OL P N                            (7) 

where   is a  1 1(2 ) ( rank )n p p      arbitrary matrix. If (6a and b) are 

satisfied then there exists an unknown input observer [15] of the form: 

( 1) ( ) ( ) ( ) ( 1)z k Fz k Gm k Hf k Kf k                (8a) 
ˆ ( ) ( ) ( )w k z k Lm k                        (8b) 

where ˆ ( )w k  is the estimation of the vector ( )w k  and  

2,2 1,2( )OF P N     , 2,1 1,1( ) ( )O OG F P N P N         (9a) 

 2 1( )OH P N     , 2 1( )OK P N          (9b) 

F : arbitrary (or stable) eigenvalues via appropriate choice of      (9c) 

Let ˆ( ) ( ) ( )we k w k w k   be the estimation error. The error is governed by the 

equation ( 1) ( )w we k Fe k   and lim ( ) 0wk
e k


 . 

 

 

4.2 Design of a bank of unknown input observers 

If the conditions described above are satisfied, then a bank of 1q   
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observers, let 1{ , , , }qO O O  will be designed. The observer O  is the one 

designed in Section 3.1. To design the rest observers, consider the “minus one 

fault” models 

1,1 1,2 1 1

2,1 2,2 2 2

( ) ( )
( ) ( )1 1

( ) ( )
2 2

( 1) ( )
( ) ( 1)

( 1) ( )

( ) ( 1) , 1,...,
i i

i i

i i

m k m k
f k f k

w k w k

k k i q 

            
                       
    

          

     (10) 

where  

( )
1 1 1( ) ( ) ( ) ( )( )

Ti
i i qk k k kk                    (11a) 

( )
1 1 1 1 1 1 11 ( ) ( ) ( ) ( )i

i i q                          (11b) 
( )

2 1 2 1 2 1 22 ( ) ( ) ( ) ( )i
i i q                         (11c) 

        ( )
1 1 1 1 1 1 11 ( ) ( ) ( ) ( )i

i i q                         (11d) 
( )

2 1 2 1 2 1 22 ( ) ( ) ( ) ( )i
i i q                        (11e) 

and where ( )i k  is the i  th element of ( )k , 1( ) j is the j  th column of 

1 , 2( )  is the   th column of 2 , 1( ) j is the j  th column of 1  and 

2( )  is the   th column of 2 . From (6) it is observed that  

( ) ( )
1 1 ( ) ( )

1 1( ) ( )
2 2

rank rank
i i

i i
i i

  
        

               (12a) 

( ) ( )
2 2,2 2 2 ( ) ( )

( ) ( ) 1 1
1,2 1 1

rank 2 rank ,
i i

n p i i
i i

zI
n p z   

            
  (12b) 

Let ( )iP  the special solution of ( ) ( ) ( ) ( )i i i i
OL P N  . Let ( )i

ON  be the orthogonal 

of ( ) ( )
1 1
i i    . Then the general solution of ( )iL  is: 

( ) ( ) ( ) ( )i i i i
OL P N                        (13) 

where ( )i  is a ( ) ( )
1 1

(2 ) ( rank )i in p p        arbitrary matrix. The observer 

( 1, , )iO i q   being the unknown input observer of model (10), is of the form 
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( ) ( ) ( ) ( ) ( ) ( )( 1) ( ) ( ) ( ) ( 1)i i i i i iz k F z k G m k H f k K f k         (14a) 

( ) ( ) ( )ˆ ( ) ( ) ( )i i iw k z k L m k                   (14b) 

where 

( ) ( ) ( )( )
1,22,2 1,2

i i ii
OF NP                   (15a)  

( ) ( ) ( ) ( )
2 1( )i i i i

OH P N     , ( ) ( ) ( ) ( )
2 1( )i i i i

OK P N         (15b)  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2,1 1,1( ) ( )i i i i i i i i
O OG F P N P N           (15c) 

( )iF : arbitrary eigenvalues via appropriate ( )i          (15e) 

Typically, the estimation error of the observer iO  is given by the relation 

( ) ( )ˆ( ) ( ) ( )i i
we k w k w k   and is governed by the equation 

( ) ( ) ( ) ( ) ( )
2 1 2 1( 1) ( ) [ ( ) ( ) ] ( ) [ ( ) ( ) ] ( 1)i i i i i

w w i i i i i ie k F e k L k L k                 (16) 

and tends to zero as fast is allowed by the arbitrary eigenvalues of ( )iF .  

 

 

4.3 Fault detection index 

If the observer is applied to the original model (2) the error tends to zero only 

if the fault ( )i k  is equal to zero. All observers 1{ , , , }qO O O  have the same 

initial conditions at 0k k  0 1 0 0ˆ ˆ ˆ( ) ( ) ( )qw k w k w k   . Thus, the fault detection 

index ( ) ( )( ) ( ) ( )i i
w wr k e k e k   can be defined. It is important to mention that the 

fault detection index is equal to ( )ˆ ˆ( ) ( )iw k w k  and thus it can directly be 

computed by the outputs of the bank of the observer. Then the fault detection 

index will be governed by the equation: 

( ) ( ) ( ) ( ) ( )
1 1

( )
1,2

( 1) ( ) ( )( ) ( ) ( )( ) ( 1)

( ) ( )

i i i i i
i i i i

i
w

r k F r k L L k L L k

L L e k

          

  
  (17) 

If the poles of F  and  ( ) , 1, ,iF i q    are chosen to be equal to zero. Then 

for  0 2k k n p    it holds that ( ) 0we k  . Thus for 0 2k k n p    the 
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equation (17) becomes  

( ) ( ) ( ) ( ) ( )
1 1( 1) ( ) ( )( ) ( ) ( )( ) ( 1)i i i i i

i i i ir k F r k L L k L L k            (18) 

If the faults are considered to be applied for 0 2 1k k n p     then it holds that  

( )
0( 2 1) 0ir k n p     and 0( 2 1) 0i k n p     . Thus, for 0 2 1k k n p     

The fault’s value could be calculated through the difference equation (18). In (18) 

the fault i  has been calculated by using the residual. From the proposed 

algorithm we derive that a fault could be detected when one from the q  residuals 

becomes different than zero. In fact we define a threshold, namely a small 

nonnegative number i  ( e.g. 0i  ), 

where: 

( )

( )

( ) , no fault case

( ) , faulty case

i
i

i
i

r k

r k





 



 

Also after the fault detection we could locate the fault’s source. Thus an 

isolation of the faulty element could be performed just by isolating the residual 

that exceed the predefined threshold. Finally the value of the fault could be 

identified by using (18). Hence the faulty element of the systems has been 

detected, isolated and identified by using the proposed bank of observers and the 

proposed faulty index. 

 

 

5  Application to a 12 sector and 2 region economy 

The fault detection method analyzed in the previous section will be applied to 

a 12-sector bioregional economy given in [6] and [13). The first region is the 

North, while the second is the South. In Table 1 the 12 sectors of the economy are 

given.  
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Table 1: Sectors of the economy 

No. Sector 
1 Agriculture, forestry and fishing 
2 Energy 
3 Ferrous and non-ferrous metals 
4 Non-metallic minerals 
5 Food, beverages and tobacco 
6 Chemical and pharmaceutical products 
7 Mechanical, autovehicles, textiles and other manufacturing 
8 Construction 
9 Trade, hotels, restaurants, scrap 
10 Transportation and communication 
11 Credit, finance and insurance 
12 Retail and non-retail services 

 

 

The 24 24  matrices A , B  and T  can be found in [6] and [13]. The 

final demands, used here, are given in Table 2. The initial values of the total 

outputs are: 

1

55585.5

108200.5

45763.9

23664.3

76850.5

64158.7

260078.9

80034.6

184417.7

72448.6

46085.1

224788.

(0)

7

x

 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
  

  and  2

26205.3

91314.8

8811.3

7502.1

27976.2

16257.7
(0)

62429.4

25433.4

63367.8

21352.3

9138.8

83650.2

x

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 

The initial values of the total outputs as well as the values in Table 2 are in 

thousand million of Italian lires. The unknown (non measured) total outputs are 

considered to be the 7th and the 12th sectors (see Table 1) for both the North and 
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the South. Thus, 20p  . The uncertain final demands are assumed to be the 1st, 

3rd, 5th, 8th and 9th  sectors for both the North and the South. Thus, 10q  . All of 

the 11 observers of the bank start with the same initial vector coming from the 

static model of the economy, i.e., 

 ( ) 1
20 24(0) (0) 0 ( ) (0) (0)iz z I J I TA Tf Lm    , 

where (0)m and (0)f  are consistent. The poles of all the observers are chosen to 

be equal to zero. From (18) it is concluded that the bank needs four time instants 

to perfectly follow the model. The residuals are equal to zero, ( ) (5) 0ir  . This 

can also be observed from the simulation plots. Four faults have been introduced 

to the system in different time instants. Firstly a fault in the final demand of the 

first sector, which corresponds to the Agriculture of the North, is introduced at 

6k  . In Figure 1, we observe that for 6k   only the residual 1( )r k  is different 

than zero. Thus the fault has not only been detected but also it has been isolated. 

Next a fault in the final demand of the fifth sector, which corresponds to the Food 

beverage and tobacco of the North, and in the thirteenth sector, which corresponds 

to the Agriculture of the South, have been introduced at 7k  . Finally a fault in 

the final demand of the eighteenth sector, which corresponds to the Food beverage 

and tobacco of the South, has been introduced at 8k  . The faults are considered 

to be 

1 1 1 1 1 1(0) (1) (2) (3) (4) (5) 0           , 1(6) 193.873  , 1(7) 196.227  , 

1(8) 198.545  , 1(9) 200.865   and 1(10) 203.07  . 

3 3 3 3 3 3 3(0) (1) (2) (3) (4) (5) (6) 0             , 3 (7) 1680.409  , 

3 (8) 1676.013  , 3 (9) 1735.964   and 3(10) 1726.854  . 

6 6 6 6 6 6 6(0) (1) (2) (3) (4) (5) (6) 0             , 6 (7) 194.865  , 

6 (8) 197.996  , 6 (9) 201.066   and 6 (10) 204.043  . 

8 8 8 8 8 8 8 8(0) (1) (2) (3) (4) (5) (6) (7) 0               , 8 (8) 1605.056  , 

8 (9) 1002.867   and 8 (10) 1151.195  . 
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To study fault detection for the present fault scenarios, only five of the 11 

observers are used. To evaluate (18) the following quantities are computed  

(1)

7.002 0.07 73.498 3.513

0.347 0.049 0.299 0.0001

0.661 0.006 6.944 0.331

0.013 0.0001 0.163 0.007

F

  
   
  
   





, (3)

6.975 0.074 72.626 3.473

0.166 0.028 0.298 0.0001

0.666 0.007 6.939 0.331

0.015 0.0001 0.163 0.007

F

  
   
  
   





 

(6)

11.609 0.141 199.808 20.813

0.166 0.028 0.292 0.001

0.671 0.008 11.58 1.207

0.015 0.0001 0.123 0.0003

F

  
  
  
   

 , 

(8)

6.974 0.079 72.345 3.457

0.166 0.028 0.298 0.0001

0.668 0.007 6.938 0.331

0.015 0.0001 0.163 0.007

F

  
   
  
   





 

(1)
1 1

7.127

15.862

0.681

0.

( )(

1

)

14

L L 

 
 
  
 
 
 

, (3)
1 3

0

0
( )( )

0

0

L L 

 
 
  
 
 
 

, (6)
1 6

11193.425

0.863

65
( )(

0.045

5.531

)L L 



 
 
  
 
 
 

, 

(8)
1 8

0

0
( )( )

0

0

L L 

 
 
  
 
 
 

, (1)
1 1

0

0
( )( )

0

0

L L 

 
 
  
 
 
 

, (3)
1 3

5784.321

0.0
(

02

0.161

0.001

)( )L L 






 
 
  
 
 
 

, 

(6)
1 6

0

0
( )( )

0

0

L L 

 
 
  
 
 
 

, (8)
1 8

449.628

0.0006

0.147

0.00

( )(

2

)L L 

 
 
  





 

 


 

 

The two residuals 3 ( )r k  and 6 ( )r k  leave zero at 7k  . Thus two 

simultaneous faults have detected and isolated by the method. At 8k   the 

residual 8 ( )r k  leaves zero. 
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Figure 1: Residual of the observer 1O  
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Figure 2: Residual of the observer 3O  
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Figure 3: Residual of the observer 6O  
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Figure 4: Residual of the observer 8O  

 
 

6  Conclusion 

In this paper a method for fault detection, fault isolation and fault 

identification for biregional and multisectoral input output and discrete time 

economic models have been proposed. The problems have been solved on the 
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basis of the design of a bank of unknown input discrete time observers providing a 

residual index. The present results have successfully applied to a biregional 

12-sector economy where 4 different fault scenarios including single and multi 

faults have been considered. 
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Table 2:  The final demand vector ( )f k  from 0k   till 10k   

Regions Sectors 0k   1k   2k   3k   4k   5k   6k   7k   8k   9k   10k   
1 21579.3 21841.4 22108.2 22377.1 22656.9 22941.5 23211. 23492.2 23777.1 24028.2 24304.8 
2 57291.5 58974.9 60562.8 62135.4 63741.9 65322.2 66963.2 68592.6 70228.2 71834.1 73480.1 
3 203.718 194.231 199.966 200.398 215.204 232.451 253.913 280.641 313.736 357.888 403.695 
4 4527.87 4663.15 4797.4 4931.11 5068.86 5205.18 5343.79 5481.34 5620.87 5758.2 5898.33 
5 43250. 44665.6 46110.6 47593.3 49028.8 50450.7 51862.2 53316.6 54714.6 56196. 57618.7 
6 19440.9 19753.8 20067.9 20402.9 20716.3 21023.7 21326.8 21642. 21944.5 22256.4 22589.3 
7 40597.3 38323.9 36025.9 33673.5 31348.9 29009.6 26808. 24622.6 22246.9 20030.5 17794.1 
8 20298.8 18993.3 18141. 16171.4 15384.5 14005.8 13583.4 12789. 11058.1 10639.5 9730.36 
9 121000. 127346. 133504. 139714. 145872. 152071. 158332. 164552. 170720. 176949. 183235. 
10 31539.5 33102.5 34705.2 36271.4 37838.4 39413.1 41012.2 42612.5 44192.4 45795.3 47387. 
11 3560.72 3749.28 3937.31 4120. 4309.59 4495.49 4681.42 4861.49 5051.83 5234.36 5416.61 

N
or

th
 

12 163036. 172639. 182341. 191990. 201893. 211719. 221608. 231319. 240970. 250796. 260438. 
13 9941.39 10118.7 10279.3 10435.5 10608.2 10767.4 10942.2 11094.9 11248. 11420.7 11583.4 
14 27584. 28186.6 28899.7 29595.2 30274.4 30942. 31566.3 32233.6 32885.3 33563.5 34166.8 
15 7456.33 7831.99 8198.38 8573.91 8938.19 9302.43 9665.69 10028.1 10389.3 10737.8 11088.7 
16 2898.97 2965.97 3031.6 3100.65 3165.37 3233.82 3300.47 3367.25 3433.96 3500.89 3566.85 
17 27024.2 27995.4 28961.8 29903.8 30865.1 31850.5 32814.4 33770.4 34778.2 35744.4 36716. 
18 8265.43 8734.61 9217.04 9682.51 10170.2 10650.4 11130.2 11602.9 12087.8 12576.1 13037.4 
19 91727.5 93698. 95686.3 97626.5 99718.2 101663. 103660. 105648. 107554. 109624. 111615. 
20 3085.84 3104.78 3081.68 2914.51 3043.44 3118.07 3138.06 3365.3 3169.58 3381.29 3251.63 
21 50955.6 53776.2 56623.7 59502.7 62385.1 65259.1 68081.1 70929.8 73784.2 76644.8 79459.8 
22 12966. 13720.3 14479.5 15245.7 16013.7 16767.8 17528.7 18271.8 19019.8 19787.3 20537.7 
23 1348.17 1442.86 1535.27 1625.12 1718.4 1809.08 1897.39 1987.98 2079. 2169.73 2260.59 

S
ou

th
 

24 69875.6 74171.3 78443.2 82735.9 87079.7 91407.3 95719.5 100027. 104262. 108549. 112807. 
 


