Theoretical Mathematics & Applications, vol.3, no.4, 2013, 41-45

ISSN: 1792-9687 (print), 1792-9709 (online)

Scienpress Ltd, 2013

On the absolute continuity of vector measures

Yaovi M. Awussi¹

Abstract

In this short paper we use the notion of multiplier to obtain a characterization of the absolute continuity of a vector measure on a compact group.

Mathematics Subject Classification: 43A30; 43A77 Keywords: vector measure; convolution; multipliers

1 Introduction

Let A be a Banach algebra over the field \mathbb{K} which can be \mathbb{R} or \mathbb{C} . Let G a locally compact group and $\mathcal{K}(G,S)$ the space of S-valued continuous on G with compact support. An A-valued measure is a linear map $m: \mathcal{K}(G,\mathbb{K}) \to A$, continuous in the following sense: for every compact subset K of G, there exists a positive real constant α_K

$$||m(f)|| \le \alpha_K \sup \{|f(t)| : t \in K\} \text{ for all } f \in \mathcal{K}(G, \mathbb{K}).$$
 (1)

Article Info: Received: September 24, 2013. Revised: November 10, 2013.

Published online: December 16, 2013.

Department of Mathematics, Faculty of Sciences, University of Lomé, Togo. E-mail: jawussi@yahoo.fr

We may extend it to $\mathcal{K}(G,A)$ by the identity :

$$\tilde{m}(x\varphi) = xm(\varphi), \ x \in A, \ \varphi \in \mathcal{K}(G, \mathbb{K})$$
 (2)

and continue to write m for \tilde{m} . A measure so defined is called a vector measure.

2 Preliminary Notes

A vector measure m is said to be *dominated* if there exists a real positive measure μ such that :

$$||m(f)|| \le \int_G ||f(t)|| d\mu(t) \text{ for all } f \in \mathcal{K}(G, A).$$
(3)

The value m(f) is rather written $m(f) := \int_G f(t) dm(t)$. If m is dominated, there exists a smallest such positive measure denoted by |m| and called the modulus or the variation of m. A bounded vector measure is a vector measure dominated by a bounded real measure. A function $f: G \to A$ is m-integrable means that the function $t \mapsto ||f(t)||$ is |m|-integrable. Measurability and negligibility of f are defined in the same way. Accordingly the space $L_p(G, m, A)$ is defined to be $L_p(G, |m|, A)$, $1 \le p < \infty$ and is the completion of $\mathcal{K}(G, A)$ in the p-norm. In the other hand, the space $L_{\infty}(G, m, A)$ is the Banach space of the classes of essentially bounded functions with respect to |m|. A certain number of facts will be useful in the sequel. The following theorem can be found in [1, section 18.14].

Theorem 2.1. A dominated vector measure m is absolutely continuous with respect to a positive measure μ if and only if its modulus |m| is absolutely continuous with respect to μ .

The next theorem due to Lebesgue can be found in [1, section 18.28].

Theorem 2.2. Let μ be a positive measure. Every positive measure ν can be written uniquely in the form

$$\nu = \omega + \pi \tag{4}$$

Yaovi M. Awussi 43

where ω is positive and absolutely continuous with respect to μ and π is positive and singular with respect to μ .

Now let f * g of $f : G \to A$ and $g : G \to A$ be vector valued functions. If the function $y \mapsto f(y)g(y^{-1}x)$ is integrable with respect to the normalized Haar measure of G then the equality

$$f * g(x) = \int_{G} f(y)g(y^{-1}x) d\lambda(y)$$
 (5)

defines the convolution f by g. The convolution of a vector measure m with a vector valued function f is defined by

$$m * f(x) = \int_{G} f(y^{-1}x)dm(y).$$
 (6)

Let C(G, A) the space of A-valued continuous functions on G. Then we have the following theorem [1, section 24.44].

Theorem 2.3. Assume $f \in L_p(G, A)$ and $g \in L_q(G, A)$, $1 < p, q, < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$ or p = 1 and $q = \infty$. Then the function $f * g \in C(G, A)$ and $||f * g||_{\infty} \le ||f||_p ||g||_q$.

Here we assume that the group G is compact and we denote by Σ its unitary dual. For $\sigma \in \Sigma$, we chose once and for all $(\xi_1^{\sigma}, \ldots, \xi_{d_{\sigma}}^{\sigma})$ as a canonical basis of the representation Hilbert space H_{σ} of σ where $d_{\sigma} = \dim H_{\sigma}$. We denote by $\mathcal{T}(G)$ the linear space spanned by the coefficients $u_{ij}^{\sigma}: t \mapsto \langle U_t^{\sigma} \xi_j^{\sigma}, \xi_i^{\sigma} \rangle$ where U^{σ} is an element from σ .

For the proof of the following theorem, see [2, section 35.11].

Theorem 2.4. Suppose G is compact, $\mu \in M(G)$, the space of bounded complex measure on G, $1 and <math>\sup\{\|\mu * h\|_p : h \in \mathcal{T}(G), \|h\|_1 \le 1\} < \infty$. Then there exists $\nu \in L_p(G)$ such that $\mu = \nu \lambda$, where λ is the normalized Haar measure of G.

3 Main Results

In this paper p and q are called *conjugate* if $\frac{1}{p} + \frac{1}{q} = 1$, $1 < p, q < \infty$ or p = 1 and $q = \infty$. We prove the following theorem.

Theorem 3.1. Let G be a compact group, m be a bounded vector measure on G, p, q conjugate with $p \ge 1$.

The two assertions are equivalent.

- 1. For each $h \in L^p(G, A), m * h \in C(G, A)$
- 2. There exists $u \in L^q(G, A)$ such that $m = u\lambda$.

Proof The implication $2 \Longrightarrow 1$ is obvious because of the Theorem 2.2. Case p > 1.

Consider a bounded vector measure m such that $m * h \in \mathcal{C}(G, A)$ whenever $h \in L_p(G, A)$. The mapping $T : L_p(G, A) \to \mathcal{C}(G, A)$, $h \mapsto Th = |m| * h$ is a multiplier (a continuous linear map which commutes with convolution and multiplication by elements of A). The mapping T may be seen as the restriction to $L_p(G, A)$ of the multiplier $L_1(G, A) \to L_1(G, A)$, $h \mapsto m * h$ such that $m * h \in \mathcal{C}(G, A)$. The group G being compact, $\mathcal{C}(G, A) \subset L_r(G, A)$, $1 \le r \le \infty$. Thus $\sup\{\||m| * h\|_q : h \in \mathcal{T}(G), \||h\|_1 < 1\} < \infty$, using inclusions of various spaces in another and comparing their norms. From the Theorem 2.4 we conclude that there exists $v \in L_q(G, \mathbb{C})$ such that $|m| = v\lambda$. Hence due to the Theorem 2.1 there exists $u \in L_q(G, A)$ such that $m = u\lambda$.

Case p=1.

An $(L_{\infty}(G, A), \mathcal{C}(G, A))$ -multiplier T is an $(L_{\infty}(G, A), L_{\infty}(G, A))$ -multiplier. So there exists a bounded vector measure m such that for every $h \in L_{\infty}(G, A)$, Th = m * h. Following the theorem 2.2 the modulus |m| of m may be written $|m| = \mu + \nu$ where μ is positive and absolutely continuous and ν is singular and positive with respect to λ . We can show that $\nu = 0$ as done in the proof of [2, 35.13]. Therefore m is absolutely continuous with respect to λ , say $m = u\lambda$, $u \in L_1(G, A)$. Yaovi M. Awussi 45

References

[1] N. Dinculeanu, *Integration on Locally Compact Spaces*, Noorhoff International Publishing, Leyden 1974.

[2] E. Hewitt, K.A. Ross, *Abstract Harmonic Analysis; Vol I and II*, Springer-Verlag, New York- Berlin-Heidelberg, 1970.