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Abstract 

This work studies the Cauchy problem of the sixth-order Boussinesq equation 

with a damping term. By using generalized concavity method, it is proven blow up 

of the solution. 
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1 Introduction  

    In this work, we study the Cauchy problem of the sixth-order Boussinesq 

equation with a damping term 

            ( ) ,tt xx xxtt xxxxxx xxt xxu u u u ku f u      R,x   0,t >         (1) 
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                   0,0 ,u x u x     1,0 ,tu x u x  R,x               (2) 

where  ,u x t  denotes the unknown function,  f s  is the given nonlinear 

function,  0u x  and  1u x  are the given initial value functions, k  is a 

constant.  

Scott Russell's study [1] of solitary water waves motivated the development 

of nonlinear partial differential equations for the modeling wave phenomena in 

fluids, plasmas, elastic bodies, etc. It is well known that Boussinesq equation can 

be written in two basic forms 

                        2( ) ,tt xx xxxx xxu u u u                      (3) 

                      2( ) ,tt xx xxtt xxu u u u                       (4) 

Equation (4) is an important model that approximately describes the 

propagation of long waves on shallow water like the other Boussinesq equations 

(with ,xxxxu  instead of xxttu ). In the case 0  Equation (3) is linearly stable 

and governs small nonlinear transverse oscillations of an elastic beam (see [2] and 

references therein). It is called the "good" Boussinesq equation, while this 

equation with 0  received the name of the "bad" Boussinesq equation since it 

possesses the linear instability. 

    In the Boussinesq equations, the effects of small nonlinearity and dispersion 

are taken into consideration, but in many real situations, damping effects are 

compared in strength to the nonlinear and dispersive one. Therefore the damped 

Boussinesq equations is considered as well 

                     22 ( ) ,tt xxt xxxx xx xxu bu u u u                 (5) 

where xxtu  is the damping term and , 0,a b const const R    (see [3] and 

references therein). 

Varlamov [2] investigated the long-time behavior of solutions to initial 

value, spatially periodic, and initial-boundary value problems for equation (5) in 
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two space dimensions. Polat et al. [4] established the blow up of the solutions for 

the initial boundary value problem of the damped Boussinesq equation 

( ) .tt xx xxxx xxt xxu bu u ru f u     

    The asymptotic behavior and the blow up of solution for a nonlinear 

evolution equation of four order 

1 2 3 ( )tt xx xxt xxtt x xu a u a u a u u     

were established in [5]. 

    Polat and Kaya [6] studied the existence, both locally and globally in time, 

the asymptotic behavior, and the blow up of solution for the class of nonlinear 

wave equations with dissipative and dispersive terms 

( ) .tt xx xxtt xxt x xu u u u u u       

    Wang and Chen [7] studied the existence and blow up of the solution for the 

Cauchy problem of the generalized double dispersion equation 

                  ( ) .tt xx xxtt xxxx xxt xxu u u u u g u                    (6) 

     Polat and Ertaş [3] extended the result of [7] to the multidimensional 

version of the problem (6). Also, Polat and Pişkin [8] studied asymptotic behavior 

of the solution multidimensional version of the problem (6). 

     Recently, higher order Boussinesq equations have been investigated by 

authors. Schneider and Eugene [9] considered a class of Boussinesq equation 

which models the water wave problem with surface tension as follows 

                 2( ) ,tt xx xxtt xxxx xxxxtt xxu u u u u u                    (7) 

where R  and  , .u x t R  Daripa [10] derived the higher-order Boussinesq 

equation 

                  2 2( ) ,tt xx xxxx xxxxxx xxu u u u u                     (8) 
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for two-way propagation of shallow water waves. Various generalizations of 

Equations (7) and (8) have been proposed and stuied from many aspects (see 

[11-16]). 

     Throughout this work, we use the notation:  1 .pL p
u u p    In 

particular 2L
u u . 

    Now, we state the local existence theorem (see [16] for the proof). 

 

Theorem 1. Suppose that 1 ,
2

s 0 ,su H  2
1

su H   and    1 ,sf C R  then 

the problem (1)-(2) admits a unique local solution  ,u x t  defined on a maximal 

time interval  00,T  with        1 2
0 0, 0, ; 0, ; .s su x t C T H C T H    

 

 

2  Blow up of solutions 

    In this section, we are going to consider the blow up of the solution for 

problem (1)-(2) by the concavity method. For this purpose, we give the following 

lemma [17] which is a generalization of Levine's result [18]. 

 

Lemma 2 [17]. Suppose that a positive, twice differentiable function  F t  

satisfies on 0t   the inequality 

               2 2
1 2'' 1 ' 2 ' ,F t F t F t M F t F t M F t     

where 0  and 1,M 2 0M   are constants. 

(i) If 1 2 0,M M    0 0F   and  ' 0 0F   then there is a 

 
 1 2

0
' 0

F
t t

F
   such that  F t   as 1.t t  
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(ii) If 1 2 0,M M    0 0F   and    1
2' 0 0 ,F F   then there is a 

1 2t t  such that  F t   as 1,t t  where 2 2
1,2 1 1 2M M M     

and 

   
   

1
2 2

21 2

0 ' 01 ln .
0 ' 02

F F
t

F FM M

 
 





 

 

Theorem 3. Assume that 0,k      ,f u C R  2
0 ,u H  1

1 ,u L  and 

1 1 2
0 1, ,u u L        

0
,

u
F u f s ds    1

0 ,F u L  and there exists a constant 

0  such that 

                      22 ,
2

uf u k F u u
     .u R               (9) 

Then the solution  ,u x t  of problem (1)-(2) blows up in finite time if one of the 

following conditions is valid: 

(i)  0 0,E   

(ii)  0 0E   and    1 1
0 1 0 1, , 0,u u u u      

(iii)  0 0E   and     

      2 21 1 1
0 1 0 1 0 0

4 2, , 2 0 .
2

ku u u u E u u


   
     


 

Proof. Suppose that the maximal time of existence of the solution for problem 

(1)-(2) is infinite. A contradiction will be obtained by Lemma 2. Multiplying both 

sides of (1) by 2 ,tu  integrating over ,R  we arrive at 

  0,d E t
dt

  0,t   

where 
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     
2 2 2 2 21

0
2 2 0 .

t

t t xx R
E t u u u u k u d F u dx E           

Let 

                       
2 2 21F t u u t                     (10) 

where   and   are nonnegative constants to be specified later. Obviously we 

have 

                      1 1' 2 , , .t tF t u u u u t                       (11) 

Using the Schwartz inequality and the inequality 

    2 2 2 2 2 2 2
1 1 2 2 1 2 1 2... ... ... ,n n n na b a b a b a a a b b b           

where , 0,i ia b   1, 2,..., ,i n  we have 

    
2 22 2 2 21 1' 4 t tF t u u t u u                   

 

                 
2 214 .t tF t u u       

                      (12)   

We get from equation (1) 

     

 
  

   

2 21 1 1

2 21 2

2 21

2 2 2 21

'' 2 2 2 , 2 , 2

2 2 2 2 ,

2 2 2 2 ,

2 2 2 2 2 2 , 2 .

t t tt tt

t t tt tt

t t xxxx t

t t xx t R

F t u u u u u u

u u u u u

u u u u u ku f u

u u u u k u u uf u dx









  

 





       

     

       

        

  

(13)

  

By the aid of the Cauchy inequality and energy equality  ,E t  we have 

         2 22 , t tk u u k u u   

                
2 2 21

0
0 2 2 .

t

t xx R
k E u u k u d F u dx  

           (14) 

From (10)-(14) we obtain that 
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              
22 21'' 1 ' '' 4

4 t tF t F t F t F t F t F t u u
                 

 

                              
2 212 2t tF t k u u         

                             2 22

0
2 2 2

t

xxk u k u d          

                                22 2 2 0 .
R

kF u uf u u dx kE        (15) 

From energy equality  ,E t  we have 

     
2 2 212 2 2t t xxk u u k u          

              2 2 212 t t xxu u u        

                 2 2

0
2 2 2 0 .

t

R
u k u d F u dx E            

Thus, from the above inequality and inequalities (15) and (9), we get 

         2
'' 1 '

4
F t F t F t     

 

                           2 2 0F t k E         

                     
  

      

22

0

2

2 2 2

2 2 2

t

R

k k u d

k F u u uf u dx

 

 

  

     




 

                           2 2 0 .k E F t                    (16) 

(1) If  0 0,E   taking  
 

2
0 0,

2
k

E





 
 


 then 

      2
'' 1 ' 0.

4
F t F t F t     

 

We may now choose   so large that  ' 0 0.F   From Lemma 2 we know that 

 F t  becomes infinite at a time 1T  at most equal to 
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 
 2

4 0
.

' 0
F

T
F

   

(2) If  0 0,E   taking 0,   then we get from (16) that 

      2
'' 1 ' 0.

4
F t F t F t     

 

Also  ' 0 0F   by assumption (ii). Thus, we obtain from Lemma 2 that  F t  

becomes infinite at a time 1T  at most equal to 

 
 2

4 0
.

' 0
F

T
F

   

(3) If  0 0,E   then taking 0,   inequality (16) becomes 

                       
2

'' 1 ' 2 0 .
4

F t F t F t k E F t


       
       (17) 

  Define      ,J t F t


  where .
4


   Then 

                  
1

' ' ,J t F t F t



 

  

             2 2
'' '' 1 'J t F t F t F t F t


 

       
 

                        1
2 4 0E F t


  

 
                       (18) 

where inequality (17) is used. Assumption (iii) implies  ' 0 0.J   Let 

                        * sup : ' 0, 0, .t t J t                    (19) 

By the continuity of  ' ,J t  *t  is positive. Multiplying (18) by  2 'J t  yields 

           
'2 2 22' 2 2 4 0 'J t E F t F t


  

       
 

                     
    

'2 12 2 4
2 0 ,

2 1
E F t

 



       

 *0, .t t    (20) 
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Integrating (20) with respect to t  over  0, t  gives 

       
    2 2 2 12 2 4

' ' 0 2 0
2 1

J t J E F t
 




  
 


 

                    
     2 12 2 4

2 0 0
2 1

E F
 




  



 

                      
    2 2 12 2 4

' 0 2 0 0 .
2 1

J E F
 




  
 


 

By assumption (iii) 

    
    2 2 12 2 4

' 0 2 0 0 0.
2 1

J E F
 




  
 


 

Hence by continuity of  ' ,J t  we obtain 

                 
    

1
22 2 12 2 4

' ' 0 2 0 0
2 1

J t J E F
 




       
      (21) 

for *0 .t t   By the definition of *,t  it follows that inequality (21) holds for 

all 0.t   Therefore, 

        
    

1
22 2 12 2 4

0 ' 0 2 0 0 ,
2 1

J t J J E F t
 




        
 0.t   

So,  1 0J T   for some 1T  and 

 

         
1 2 1

2 22 2 2

0
0 .

2
' 0 2 0

4 8

J
T T

k
J E F t

k







  
     

 

Thus,  F t  becomes infinite at a time 1.T  

Therefore,  F t  becomes infinite at a time 1T  under either assumptions (i), 

(ii), or (iii). We have a contradiction with the fact that the maximal time of 

existence is infinite. Hence the maximal time of existence is finite. This completes 

the proof.                                                          
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