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Under Noncharscteristic Data 
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Abstract 

In this article, we introduce the well-posedness of N.G-KdV class (3+1) equation 

which has an important physically phenomena of the propagation of traveling wave 

with all types solitary waves. We prove, first of all, that the general class of N.G-

KdV class (3+1) equation can be reduced for certain data to a semi-linear system of 

first order partial differential equations. We find the characteristics of this system 

and show that it is equivalent to a system of ordinary differential equations in 

which differentiation is along characteristic direction. These equations can be 

integrated to give the solution of the system provided that the data is not specified 

on a characteristic. This method of solution is called the generalized characteristics 

in three dimensions. 
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1  Introduction  

We establish well- posedness for the nonsingular class by applying the well-

known theorems on uniqueness, existence and continuous dependence on the initial 

conditions for semi-linear systems. As regards the singular class, we divide it 

further according to the multiplicity of the (essential) characteristic roots of N.G-

KdV class (3+1) equation which defined as  
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We introduce reduction to a semi-linear system of first partial differential 

equations. 

 

 

1.1 Reduction to a semi-linear system of partial differential  

    equations 

Consider the initial value problem which corresponds to the equation (1.1). 

Let the initial curve which supports the data be non-characteristic, as shall be 

defined in the next section, and without loss of generality let this curve be the usual 

one 0t = , i.e.,  
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with the initial value problem 
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                                (1.1.2)  

We introduce now the following. 

Lemma 1.1.1 The initial value problem for N.G-KdV class (3+1) equation (1.1.1) 

with non -characteristic initial data may be reduced to a non-characteristic initial 

value problem for a first order system of partial differential equations. 

Proof. Re-writing equation (1.1.1) in the form  
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Where 
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(1.1.4)

  

We use the initial conditions equation (1.1.2) and differentiating (1.1.3) with 

respect to t yields, we obtain the following equation. 
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 but 
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t t t

t x t t x

t t t x

t t t z

u p h s
N v

q s
I r L

ξ
υ γ ξ ω
τ β ω υ
β γ η

= = =

= = =
= = =

= = =



               (1.1.6) 

By inserting equation (1.1.6) into equation (1.1.5), we have 
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Thus equations (1.1.6) and (1.1.5) can be combined to form the following 

system: 
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(1.1.8)

  

This is a system of first order partial differential equation in the dependent 

variable , , , , , , , , , , , , , , , , , , , , , ,u p q r s v M N I h L k E Oτ ω µ υ γ η π ξ β  and  . The 

initial conditions may be obtained from equations (1.1.2) and amount to the 

specification of , , , , , , , , , ,u p q r s vτ ω µ υ  , , , , , , , , , , , ,M N I h L k E Oγ η π ξ β  and  . 

However, η  is not known explicitly, but since the initial conditions are assumed 

specified on non-characteristic curve, then η  may always be determined. Thus 

initial condition 0t = become  
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The system (1.1.8) can be expressed in the matrix form: 

24 24 24 24 24 24 24 24 0t x y zU A U B U D U C× × × ×+ + + + =                        (1.1.10) 
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24 24
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This completes the proof of lemma.                                     □ 
 

Lemma 1.1.2 The system of equation (1.1.10) under the non singular linear 

transformation 

0
0
0

0 0 0 1

S

α β γ
δ µ ω
φ η ψ

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

 
 
 =
 
  
 

 

This reduces to the system 1 24 24 0.tU A U Cζ ×+ + =   

Proof.  Let 

,

,
,  

x x y z

y x y z
z x y z

ζ α β γ

ε δ µ ω

ξ φ η ψ

∗ ∗ ∗ ∗

∗∗ ∗ ∗

∗ ∗ ∗ ∗

→ = + +

→ = + +

→ = + +
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and t t t′→ = . Using this transformation, we have 

,

,

.

x

y

z

U U UU U U U
x x x

U U UU U U U
y y y

U U UU U U U
z z z

ζ ε ξ

ζ ε ξ

ζ ε ξ

ζ ε ξ α δ φ
ζ ε ξ

ζ ε ξ β µ η
ζ ε ξ

ζ ε ξ γ ω ψ
ζ ε ξ

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗

∂ ∂ ∂ ∂ ∂ ∂
= + + = + +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
= + + = + +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
= + + = + +
∂ ∂ ∂ ∂ ∂ ∂

 

Substituting these values in the system of equation (1.1.10) we have 

         1 2 3 24 24 0,tU AU A U A U C
ζ ε ξ∗ ∗ ∗ ×+ + + + =                    (1.1.12)  

where 1 24 24 24 24 24 24A A B Dα β γ∗ ∗ ∗
× × ×= + + , 2 24 24 24 24 24 24A A B Dδ µ ω∗ ∗ ∗

× × ×= + + and 

3 24 24 24 24 24 24.A A B Dφ η ψ∗ ∗ ∗
× × ×= + +   

Since any solution of this equation depends on the matrices, then the space of 

solution is 9-dimensional space span by the matrices 

, , , , , , , , .α β γ δ µ ω φ η ψ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗  Also the properties of eigenvalues and eigenvectors 

under linear transformations denote by [1]. So we shall study the solution on a 

subspace of the space of all solutions. This subspace satisfies the condition, 

, , Iα β γ∗ ∗ ∗ = and 2 3, 0A A = . Then the equation is reduced to 

                     1 24 24 0,tU AU C
ζ ∗ ×+ + =                      (1.1.13) 

where  1 24 24 24 24 24 24A A B D× × ×= + +  and defined the form 
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24 24 24 24 24 24
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

A B D× × ×

−
−

+ + =

2 2
13 16 1512 14

17 17 17 17 17 17 17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0

α α αα α σ σ
α α α α α α α

−
−

−

− −

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

−
−

−
−

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   (1.1.14)  

 

Definition 1.1.3 The system of equation (1.1.13) is called quasi-linear if 1A depend 

on U . If 1A  independent of U , and C  depends on U , but not linearly, the 

system is called Semi-linear. If C  is also a linear function of U , the system is 

called linear. 

 

Theorem 1.1.4 The initial value problem of equation (1.1.1) for the general class 

of N.G-KdV class (3+1) equation with non- characteristic data can be reduced to a 

non-characteristic initial value problem for a first order semi-linear system of 

partial differential equations. 

Proof . Making use of the definition (1.1.3) of the semi-linear system and the result 

of lemma (1.1.2) the theorem is proved.                                                                    □ 
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2    Characteristics of the system 

Definition 2.1 A characteristic of the system (1.1.13) is a curve along which the 

values of U , combined with the equation (1.1.13) is insufficient to determine the 

derivatives of the normal this curve.  

 

The problem of determining the derivatives of U normal to our data is easily 

resolved by considering the effect on system (1.1.13) of a change of coordinates 

                    and ( , ) constant.t t tζ ζ∗ ∗→ →Φ =             (2.1) 

Then the system (1.1.13) reduces under equation (2.1) to  

1 24 24

1 24 24

( ) 0

i.e.,   ( ) 0

U U UA C U
t t

U UA C U
t t

ζ

ζ

×∗

×∗

 ∂ ∂ ∂Φ ∂ ∂Φ + + + =  ∂ ∂Φ ∂ ∂Φ ∂   
 ∂Φ ∂Φ ∂ ∂   Ι + + + =     ∂ ∂ ∂Φ ∂    

                        

(2.2)
  

where U∂ 
 ∂Φ 

is the normal derivative of U to, this normal derivative is determined 

if 1det 0.A
t ζ ∗

 ∂Φ ∂Φ
Ι + ≠ ∂ ∂ 

 

Combining this result with definition (2.1), then characteristic of the system 

(1.1.13) is given by the equation 

                         1det 0.A
t ζ ∗

 ∂Φ ∂Φ
Ι + = ∂ ∂ 

               (2.3) 

Putting t
t
ζλ

ζ

∗

∗

∂Φ
− ∂∂= =
∂Φ ∂
∂

, then equation (2.3) can be written as  

                          1det( ) 0A λ− Ι =                      (2.4) 

Equation (2.4) is called the characteristic equation of the system (1.1.13), where λ  

is now an eigenvalue of the matrix 1A . 

The above analysis leads to the following.  
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Theorem 2.2 The characteristic of the system (1.1.13) which corresponds to the 

N.G-KdV class (3+1) equation (1.1.1) is given by the roots of the equation  

             19 2 3 4 5
12 13 14 16 15 17( ) 0λ α α λ α λ α λ α λ α λ− + − + − =        (2.5) 

where .
t
ζλ ∂ =  ∂ 

 

Proof. By using the expression of 1A  as in (1.1.14) and expanding 

1det( ) 0A λ− Ι = , then obviously equation (2.5) follows and the theorem is proved.□ 

 

Definition 2.3 

(1) If all the roots of equation (2.4) are real and distinct the system of equation 

(1.1.13) is called "totally hyperbolic". 

(2) If some of the roots of equation (2.4) are complex, the system is called "ultra-

hyperbolic". 

(3) If all the roots of equation (2.4) are complex, the system (1.1.13) is "elliptic". 

(4) The system (1.1.13) is hyperbolic if equation (2.4) has at least one real root. 

In the following we shall concentrate only on the case in which the system is 

hyperbolic. 

 

 

2.1  Normal form of the first order system 

In the previous section we have demonstrated that the characteristic of 

equation (1.1.13) are given by the eigenvalues of eigenvalue problem 

1 .A X Xλ=  

It is now convenient to transform the system (1.1.13) to a simple form in which the 

differentiation should be in one direction only, i.e., directed along a characteristic 

of the system. This new system is called the normal form of equation (1.1.13). 

For doing this let the eigenvectors corresponding to the eigenvalues iλ  of 
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1A  span 24E  and let T  be the matrix in which each column is one of these 

eigenvectors, then T  is nonsingular. Suppose that 

                        U TV=                           (2.1.1) 

 

Inserting this transformation into (1.1.13) then 

          1 24 24( ) ( ) 0, ( ,0) ( ).tTV A TV C TV Hζ ζ ζ×+ + = =           (2.1.2) 

Hence 

         1 1 24 24 0.t tTV TV ATV AT V Cζ ζ ×+ + + + =                    (2.1.3) 

Multiplying both sides of equation by 1T −  

                      1
1 0,tV T ATV Cζ

−+ + =                      (2.1.4) 

such that 

                  1 1 1
1 .tC T C T AT V T TVζ

− − −= + +                 (2.1.5) 

Since 1A  is a matrix of constant coefficients, equation (1.1.13), and then the 

eigenvalues of 1A  don’t depend on ,tζ  and U consequently T doesn’t depend on 

,tζ and U this implies that 0 .tT Tζ= =    

Since 1
1T A T D− =  is diagonal, then equation (2.1.4) can be written as 

         1 2 240, ( , ,..., ),tV DV C D diagζ λ λ λ+ + = =                (2.1.6) 

with the initial condition 

                 1( ,0) ( , ) ( ).V T U tζ ζ ψ ζ−= =                   (2.1.7) 

Finally, equation (2.1.7) can be written in terms of components and the i-th 

component, which corresponds to the i-th characteristic, has the form   

                0, ( ,0) ( ).i i i i i i
tV V C Vζλ ζ ψ ζ+ + = =        (2.1.8) 

From the theory of a single first order partial differential equation, it follows 

that on the characteristic traces for the equation, the equation reduces to an ordinary 
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differential equation. Hence,  i i iV V ζλ+  is a directional derivative in the direction 

iλ . Thus, every equation in the form (2.1.6) and (2.1.7) contains a differentiation 

in one direction only which is the characteristic direction. The form of equation 

(2.1.6) and (2.1.7) is the normal form of the system (1.1.13). 

 

Example 2.1.1 Consider the initial value problem  

   

, 0.

( , , ,0) ( , , ) ( , , ,0) ( , , )
( , , ,0) ( , , ) ( , , ,0) ( , , )
( , , ,0) ( , , ) ( , , ,0) ( , , )

( , , ,0) ( , , ) ( , , ,0) ( , , )

tt xx yy zz

x xx

x yy

y zz

u u u u x t
y
z

u x y z f x y z q x y z g x y z
p x y z f x y z r x y z f x y z
s x y z g x y z k x y z f x y z
o x y z g x y z h x y z f x y z
A

= + + −∞ < < ∞ ≥

−∞ < < ∞
−∞ < < ∞

= =
= =
= =

= =

( , , ,0) ( , , ) ( , , ,0) ( , , , , , , , , )z x xx x yy y zz zx y z g x y z x y z G f g f f g f g f gτ= =

(2.1.9)   

 To find the solution of this equation by using the method of characteristics, 

we firstly reduce it to a system of first order partial differential equations. Thus let  

                   ( , , , , , , , , , ) 0,F u p q r s k o h A r k hτ τ= − − − =       (2.1.10) 

where 

, , , ,
, , , , .

t x xx xt

tt yy yt zz zt

q u p u r u s u
u k u o u h u A uτ

= = = =
= = = = =

        (2.1.11)  

Differentiating equation (2.1.9) with respect to t  

F F u F p F q F r F s F
t u t p t q t r t s t t

F k F o F h F A
k t o t h t A t

τ
τ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

           (2.1.12) 

Using equation (2.1.11), then equation (2.1.9) reduces to the form 

                     0,t t t tr k hτ − − − =                         (2.1.13) 

where  
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, , , ,
, , , , .

t t t x t x

t x t y t y t z t z

q u p s s r s
s k o o h A A

τ
τ τ τ

= = = =

= = = = =
         (2.1.14) 

Combining equations (2.1.13) and (2.1.14), then the original equation (2.1.9) 

reduces to the system  

      
, , , ,
, , , , ,

t t t x t x

t x t y t y t z t z

q p s s r s
s k o o h A A

τ τ
τ τ τ

= = = =

= = = = =
        (2.1.15) 

with the initial data 

( , , ,0) ( , , ) ( , , ,0) ( , , )
( , , ,0) ( , , ) ( , , ,0) ( , , )
( , , ,0) ( , , ) ( , , ,0) ( , , ) (2.1.16)

( , , ,0) ( , , ) ( , , ,0) ( , , )

( , , ,0) ( , , ) ( , , ,0)

x xx

x yy

y zz

z

u x y z f x y z q x y z g x y z
p x y z f x y z r x y z f x y z
s x y z g x y z k x y z f x y z
o x y z g x y z h x y z f x y z
A x y z g x y z x y zτ

= =
= =
= =

= =

= = ( , , , , , , , , )x xx x yy y zz zG f g f f g f g f g

 

Clearly, the system of equations (2.1.15) and (2.1.16) can be written in the matrix 

form  

     , ( , , ,0) ( , , ),t x y zU AU BU DU CU U x y z H x y z= + + + =  (2.1.17) 

where  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

,
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

A B

 
 
 
 
 
 
 

= = 
 
 
 
 
 
 
  

0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
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0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

,
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

C D

 
 
 
 
 
 
 

= = 
 
 
 
 
 
 
  

,

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

and [ , , , , , , , , , ]TU u p q r s k o h Aτ= . Thus the characteristic roots are 

(0,0,0,0,0,0,0,0,1, 1)− .  Then, the eigenvectors can be written in the form of the 

matrix T  

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

T

 
 
 
 
 

− 
 

=  
− 

 
 
 
 
  
 

 

Clearly, the inverse of this matrix exists and has the form 
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1

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 1

,
0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

T −

 
 
 
 
 

− 
 − −

=  
− 

 
 
 
 
  
 

 

then we have  

1

1

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 1 0 0 1 1

,
0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0

T AT

T BT

−

−

 
 
 
 
 
 
 −

=  
 
 
 
 
 
 
  

= ,
0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 

− 
 
 
  

 

and  
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1

1

0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

,
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1 2
0

T CT

T DT

−

−

 
 
 
 −
 
 
 

=  
 
 
 
 
 
 
  

−
− −

= ,
0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 1 1

 
 
 
 
 
 
 
 

− 
 
 
 
 
 
 − 

 

then using the lemma (1.1.2). The equation (2.1.17) reduce to the form  

1 ,tU AU CU
ξ∗

= +  

Now, let U TV= , then the system of equation (2.1.17) reduces to  

                        1( ) ( ) ( ).tTV A TV C TV
ξ∗

= +               (2.1.18) 

Since T doesn’t depend on , ,x y z and t , then equation (2.1.18) implies that 

                        ( ) ( )1 1
1 ,tV T AT V T CT V

ξ∗
− −= +             (2.1.19)  

then using the Lemma 1.1.2. The equation (2.1.19) reduce to the form 

           ( ) ( )1 1
1 ,tV T AT V T CT V

ζ ∗
− −= +    ( ,0) ( ).V Hζ ζ∗ ∗=        (2.1.20) 

Such that 1A A B D= + + , i.e.,  
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1 3

2 5 9 10

3 6 9 10

4 5 6 9 10

5 10

6 5 6 8 9 10

7 8

8 6 9 10

9 10

10 6 9 10

0
0
0
2 0

0
2 2 0

0
0
0
0t

V V
V V V V
V V V V
V V V V V
V V
V V V V V V
V V
V V V V
V V
V V V V

     
     + +     
     − +
     − + +     
     −

= +     
− + + +    

    
    

− +    
    
    
   − +     

,








 

with the initial data 1( ,0) ( ,0)V T Uζ ζ∗ − ∗= , i.e.,  

      [ , , , , , , , ] .T
x z zz xx z zz x z zz yy yV f f g g f f g f g g f f g= − + + − − + − +     (2.1.21) 

Next, the first component yields, we find that 

                          1
3 ( ).V V g

t
ζ ∗∂

= =
∂

                    (2.1.22) 

So, by integrating equation (2.1.22), we get that  

                    1
0

1( ) ( ) .
2

x y z tt

x y z t

V g d g dζ ζ ζ ζ
+ + +

∗ ∗ ∗ ∗

+ + −

= =∫ ∫           (2.1.23) 

Since 1( , , ,0) ( , , ,0) ( , , )V x y z u x y z f x y z= = , equation (2.1.23) implies that 

           1
0

1( , , , ) ( ) ( ) .
2

x y z tt

P
x y z t

V u x y z t g d g dζ ζ ζ ζ
+ + +

∗ ∗ ∗ ∗

+ + −

= = =∫ ∫        (2.1.24) 

 

 

3 Well-posedness of N.G-KdV class (3+1) equation  

This section is devoted to the proof of the well-posedness of N.G-KdV class 

(3+1) equation (1.1.1), under characteristic data, by using the method of 

characteristics. For this purpose, we first establish an integral formula for the 

solution of this equation. 
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3.1  Integral formula of the solution 

It has been proved in subsection (1.1), that the equation (1.1.1) of N.G-KdV 

class equation can be reduced to the semi-linear system of first order partial 

differential equations. 

1 24 24 0, ( ,0) ( ) ,tU AU C U H
ζ

ζ ζ∗
∗ ∗

×+ + = =  

and it has been shown that the latter reduces to the normal form 

* 0, ( ,0) ( ),tV MV C V
ζ

ζ ψ ζ∗ ∗+ + = =  

where 1 2 24( , ,..., )M diag λ λ λ=  and C  is defined in (2.1.5). 

Thus the ith component is 

        * , ( ,0) ( ) ( 1,2,...),i i i i i
tV V C V i

ζ
λ ζ ψ ζ∗ ∗+ = = =

    (3.1.1) 

Such that C C= −

  . Along the characteristics, equations (3.1.1) are ordinary 

differential equations, since the differentiation is now in one direction only. This is 

the root of establishing the integral formula. 

 

Definition 3.1.1 (Domain of determinacy) Consider the linear or semi-linear 

system 1 0.tU AU C
ξ∗

+ + =  The domain of determinacy for this system is defined 

as the set of all points ( , )p tζ ∗ which can be connected to the initial interval by 

characteristic trajectories. 

 

Now, if  ( , )p tζ ∗  is any point in the domain of determinacy of the system 

(3.1.1), then integrating along the characteristic ipq , we have  

                                    ( ) ( ) ( ) ,
i

p
i i i i

i
q

V p V q C V dη= + ∫                                 (3.1.2) 

where q  are those points the initial interval, connected to p  by the i-th 

characteristic for all 1, 2,...i = , then equation (3.1.2) converted to 
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                        ( ) ( ) ( ) ,
i

p
i i i i

q

V p q C V dψ η= + ∫                (3.1.3) 

This is the integral formula of the underlying system. 

 

3.1.2 Uniqueness 

To prove the uniqueness of the solution of the system  

1 24 24 0, ( ,0) ( ) ,tU AU C U H
ζ

ζ ζ∗
∗ ∗

×+ + = =  

where 1A and 25 25C × are given by equation (1.1.13), it is important to note that it 

can be rewritten in the form 

             1 24 24 0, ( ,0) ( ),tU AU U U H
ζ

ζ ζ∗
∗ ∗

×+ + Ε = =      (3.1.4) 

since by the expression of 24 24C × , it can be shown that 24 24 24 24C U× ×= Ε , where 

U  is given by equation (1.1.11) and  

 

24 24

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

×

−
−

−
−

−
−

Ε =
4 5 6 11 10 9 8 10 9 7 8 9 3 6 1 4 5 2

17 17 17 17 17 17 17

0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

( ( ) ) ( ) ( ) ( ) ( ) ( ( ) )0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

L s s r u uα β α α α ξ α β α α β α τ α α α τ α α α α α α α
α α α α α α α

+ + + + + + + + + + +

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

−
−

−
−

−

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −
 

− 
 − 
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Lemma 3.1.3 [2] If  ( , )W tξ ∗  is a solution of the linear system 

           1 24 24 0, ( ,0) 0,tW AW W W
ξ

ξ∗
∗

×+ + Ε = =        (3.1.5) 

where 1A  is a symmetric matrix, then 0W = . 

Using the result of Lemma 3.1.3, then the uniqueness of the solution of the original 

system 3.1.4 can be proved.  

   

Theorem 3.1.4 If U  is a solution of the semi-linear system (3.1.4), then U  is 

unique. 

Proof. The semi-linear system (3.1.4) can be reduced, by nonsingular linear 

transformation to the normal form:  

             ( ) 0, ( ,0) ( ),tV MV C V V
ξ

ζ ψ ζ∗
∗ ∗+ + = =           (3.1.6) 

where U V= Κ , 1 2 24( , ,..., )M diag λ λ λ= , 1
24 24C E−
×= ϒ ϒ  and iλ  for every 

1,2,..., 24i =  are the eigenvalues of the matrix 1A . Hence, to prove the uniqueness 

of the system (3.1.4) it suffices, without loss of generality, to prove that the 

solution of equation (3.1.6) is unique. 

Let 1V  and 2V  be two solutions of equation (3.1.6) and 1 2W V V= − , then 

W satisfies 

1 2( ) ( ) 0, ( ,0) 0tW MW C V C V W
ξ

ξ∗
∗+ + − = =   

Using the mean-value theorem, we have 

1 2 1 2 1 2 1 2( ) ( ) ( , )( ) ( , ) .C V C V k V V V V k V V W− = − =   

Then equation (3.1.7) reduce to  

           1 2( , ) 0, ( ,0) 0,tW MW k V V W W
ξ

ξ∗
∗+ + = =         (3.1.7) 

then the previous equation (3.1.7) with 1A  diagonal and k doesn’t depend on W . 

Now since ( ,0) 0W ξ ∗ = then by using lemma (3.1.3) ( , ) 0W tξ ∗ = , i.e., 1 2V V= . 

Consequently the solution of the equation (3.1.4) is unique.                  □ 
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Example 3.1.5  Consider the initial value problem 

       0,xxt xtt xxt t xt xtttt ttttt yy zzu u uu u u u u u u+ + + + + − − =             (3.1.8) 

        
( , , ,0) ( , , ), ( , , ,0) ( , , )
( , , ,0) ( , , ), ( , , ,0) ( , , )
( , , ,0) ( , , ), (3.1.9)

t

tt ttt

tttt

u x y z f x y z u x y z g x y z
u x y z H x y z u x y z x y z
u x y z x y z

ϕ
= =
= =
= Ω

 

It is clear that the equation (3.1.8) belongs to the N.G-KdV class (3+1) equation 

(1.1). To prove that the solution of this problem is unique, we reduce the problem 

into a system of first order partial differential equations. Thus let  

    ( , , , , , , , , , , , , , , , , , , , , , ) 0,F u p q r s M N I h L k E Oτ ω µ υ γ η π ξ β =        (3.1.10) 

, , , , , , ,
, , , , , , , (3.1.11)
, , , , , , ,

t x tt xt xx xxxxt xxxtt

xxttt xtttt ttttt tttt xttt ttxx txxx

ttt yy yt zz zt ttx txx

p u q u r u s u u u u
u u u M u N u I u h u

L u k u E u O u u u u

τ ω µ
υ γ η

π ξ β

= = = = = = =
= = = = = = =
= = = = = = =

 
then by using equation (3.1.11) into equation (3.1.8)  

                 (1 ) 0.u ps k Oξ β γ η+ + + + + − − =               (3.1.12) 

Differentiating equation (3.1.10) with respect to t and using equation (3.1.11), we 

get 

,

t t t t t t t t t

t t t t t t t t

t t t t

F F F F F F F F F Fu p q r s
t u p q r s

F F F F F F F FM N I L k E
M N I L k E

F F F FO
O

τ ω µ υ
τ ω µ υ

γ η
γ η

π ξ β
π ξ β

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

+ + + +
∂ ∂ ∂ ∂

 

then equation (3.1.10) reduce to the form 

        (1 ) 0,t t t t t t t t tu u ps p s k Oξ β β γ η+ + + + + + + − − =            (3.1.13) 

But 

    
, , , , , , ,
, , , , , , .

t t t t t t t

t x t y t z t x t x t z t y

p u s q I N p r s
k E O r E r

β τ β ξ ξ
γ η π ω µ µ υ π
= = = = = = =
= = = = = = =

  (3.1.14) 

Combining equation (3.1.13) and (3.1.14) then, we get  
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            (1 ) 0,x t y zN p I u p rs Eβ ξ η η π+ + + + + + + − − =         (3.1.15) 

with the initial data 

( , , ,0) ( , , ) ( , , ,0) ( , , )
( , , ,0) ( , , ) ( , , ,0) ( , , )
( , , ,0) ( , , ) ( , , ,0) ( , , )
( , , ,0) ( , , ) ( , , ,0) ( , , )

( , , ,0) ( , , ) ( , , ,0) ( , , )
(

x

x xx

x

xx

u x y z f x y z p x y z g x y z
q x y z f x y z r x y z H x y z
s x y z g x y z x y z f x y z
L x y z x y z x y z H x y z

x y z g x y z M x y z x y z
N x

τ
ϕ ξ

β

= =
= =
= =
= =
= = Ω

, , ,0) ( , , ) ( , , ,0) ( , , )
( , , ,0) ( , , ) ( , , ,0) ( , , )
( , , ,0) ( , , ) ( , , ,0) ( , , )
( , , ,0) ( , , ) ( , , ,0) ( , , )
( , , ,0) [ , , , , , , , ,

x xx

x yy

y zz

z xxx

x x xx x xx

y z x y z I x y z H x y z
x y z x y z k x y z f x y z

E x y z g x y z O x y z f x y z
x y z g x y z h x y z g x y z
x y z G f g f h g f h g

ϕ
γ

π
η ϕ

= =
= Ω =
= =
= =

= = , , , , , , , , , ]xxx x xx x yy y zz zg h f g f gϕΩ Ω

 

 The system (3.1.14) and (3.1.15) can be written in the matrix form 

                   0,t x y zU AU BU DU CU+ + + + =               (3.1.16) 

then by using the Lemma 1.1.2. The equation (3.1.16) reduce to the form 

             1 0, ( ,0) ( ),tU AU CU U H
ξ

ξ ξ∗
∗ ∗+ + = =          (3.1.17) 

where  

[ , , , , , , , , , , , , , , , , , , , , , ],TU u p q r s M N I h L k E Oτ ω µ υ γ η π ξ β=  

then  

( ) [ , , , , , ,0,0,0,0, (1 ) , ,
, ,0, ,0,0,0,0, , ]

TCU p r s L N p I u p rs
M N I

ξ β β ξ η
γ υ

= − − − − − − + + + + + −
− − − − −

  (3.1.18) 

where 1A A B D= + + ,  
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1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

A

−
−

−

=

0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0

−
− −

−

−
− 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −
 

− 
 
 
  

 

The eigenvalues of 1A  given by 1det( ) 0A Iλ− = , thus 

           [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1],iλ =          (3.1.19) 

the eigenvectors correspond these eigenvalues (3.1.19) are the solution of 

1A X Xλ= , then T and 1T −  can be easily obtained and yields  

           1
1 (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1)T A T diag− = . 

Now, applying the nonsingular transformationU TV= , to the system of equation 

(3.1.10) this leads to the characteristic form, i.e., 

           0, ( ,0) ( ),tV GV C V
ξ

ξ φ ξ∗
∗ ∗+ + = =             (3.1.20) 

where (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1)G diag=  and 

[ , , , , , , , , , , , , , ,0, ,0,0,0,0, , ] .TC p r s L I I I I J I M N Iξ β η γ υ= − − − − − − − − + − − − − − −  
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Hence to prove the uniqueness of the system (3.1.14) and (3.1.15) it is 

sufficient to prove the uniqueness of (3.1.20). Thus, let 1V  and 2V  be two 

solutions of equation (3.1.20).  

 Let 1 2W V V= − . Then W satisfies the initial value problem  

              1 2( ) ( ) 0, ( ,0) 0.tW GW C V C V W
ξ

ξ∗
∗+ + − = =          (3.1.21) 

By using the differentiation of C  from equation (3.1.18) with the relations 

 
1 1 2 2 1 2 1 1 2 2 1 2

(1 )
( ) ( ) ,

J I N p I u p rs I
p p p p p p p

β ξ
β β β β β β β
+ = + + + + + +

− = − + − = +
 

 and  

1 1 2 2 1 2 1 1 2 2 1 2

1 1 2 2 1 2 1 1 2 2 1 2

1 1 2 2 1 2 1 1 2 2 1 2

( ) ( ) ,
( ) ( ) ,
( ) ( ) ,

p p p p p p p
r s r s r r s s s r rs sr
I u I u I I u u u I Iu uI

ξ ξ ξ ξ ξ ξ ξ− = − + − = +
− = − + − = +
− = − + − = +

 

where 1 1 1 2, ,t t tp u p u p W= = = …etc, . Then 

1 2

1 2 1 2 1 2

( ) ( )
[ , , , , , , , , , , 2 ,

, , ,0, ,0,0,0,0, , ].

C V C V
p r s L I I I I N p p Iu uI p rs sr I

M N I
ξ β β β ξ
η γ υ

− =
− − − − − − − − + + + + + + + +

− − − − − −

 Hence 1 2( ) ( )C V C V MW− =   , where  
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0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

M

−
−

−
−

−
−

−

= 2 2 1 1 2 1 2 1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

u s r u p pβ ξ
−

+ +
−

−
−

−
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −
 

−  

 

1 2( , ) 0, ( ,0) 0.tW GW K V V W W
ξ

ξ∗
∗+ + = =  

In the case of this system is linear in W and the matrix M is symmetric and  

( ,0) 0W ξ ∗ = , then the hypotheses of lemma (3.1.3) has at most one solution. 

Consequently, the equation (3.1.8) has at most one solution also. 

 

 

4   Existence 

   The existence theory for hyperbolic system of quasi-linear partial differential 

equations 

0, ( , , ,0) ( , , )t x y zU AU BU DU C U x y z H x y z+ + + + = =  

has been studied in one dimension by many [3], [4], [5], for the analytic problem, 
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now we introduce this initial value problem in (3+1) dimensions, i.e., when 

, ,A B D and C  are analytic in , , ,x y z t and H is analytic in ,x y and z , 

then the solution exists and depends continuously on data in the small (i.e., for 

suitably narrow neighborhood of , , 0x y z = and 0t = ) by the Caushy-

Kowalewsky theorem [2]. This result was extended by Lax [6] who was able to 

show firstly that for analytic data the solution exists not only in the small but it can 

be continued analytically until it reaches the boundary of the domain of analyticity. 

Secondly, by approximating a non- analytic problem by a sequence of analytic 

problems and using the above results, the solution of a non-analytic initial value 

problem which is now a generalized solution is shown to get Lax proved that if all 

the matrices , , ,A B D C and T (where T is the matrix of eigenvectors of A ) 

have continuous first derivatives and the first derivative of ( , , )H x y z is almost 

everywhere continuous at all regular points of the system, i.e., points that don’t lie 

on characteristics through points of discontinuity of the initial data.   

Now we will study the existence theory for hyperbolic system of semi-

linear of equation (3.1.4) which has the normal form 

*
* *0 ( ,0) ( ),tV MV C V

ξ
ξ ψ ξ+ + = =           (4.1) 

where 1 2 24( , ,..., )M diag λ λ λ= ,  and * *( , , )x y zξ ξ= . 

Now, we introduce the next lemma and then prove the existence for equation (4.1). 

 

Lemma 4.2 The system of differential equations (4.1) can be replaced equivalently 

by a system of nonlinear integral equations. 

Proof. Let *k kM
t

λ
ξ

∂ ∂
= +
∂ ∂

in the k-th component of equation (4.1) then kM  

can be regarded as differentiation along the characteristic kC . Thus, by similar 

arguments as were used to derive the integral formula (4.1), the system of equation 

(3.1.3) corresponds to the nonlinear integral equations. 

                            V LV=                             (4.2) 
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                     * *

0

( , ) ( ) ( , , ) ,
p

k i k
kLV C dρ τ ψ ξ ξ η η= + ∫              (4.3) 

This proves the lemma.                                               □ 

Now, we define the region in which the existence proof is valid. Let H  be a 

closed domain in , ,x y z and t  space in which all the characteristics iC  followed 

from a point p  in H  backwards in  t  meet a given section J  of the initial data 

line  0t =  in the points ip , as in the following figure  

 

 

 

 

          iA                             kA                                                                        

                                                               

       iP                    kP  

                                                         

Let S  be the set of all functions V  with domain H  having continuous 

derivatives and equal to ( , , )x y zψ  on 0t = . Finally, we define the norm of 

elements of S  to be the largest value of the functions attained in the closed 

domain H . However, if we choose * *( ) Nψ ξ =  and restrict admissible 

functions by choosing *2V N<  then there exists a common upper bound 0>  

such that [7]:  

                      *,k k
VC C

ξ
< < 

  ,  and  ,k
tC <

           (4.4)  

where k
VC is a functional gradient of kC with respect to V . Note that 

* 0k k
tC C

ξ
= =   for the equation (3.1.4).  

Now, we introduce the following theorem: 

P 
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Theorem 4.3 Let *( )ψ ξ , C  have continuous first derivatives, then the system 

               *
* *0 ( ,0) ( ),tV MV C V

ξ
ξ ψ ξ+ + = =           (4.5) 

possesses a solution which has the same differentiability as *( )ψ ξ .  

Proof.  If we choose α sufficiently small, then equation (4.3) implies that  
* * *( ) 2 .kV N Nψ ξ α α≤ + = + ≤   

The system of equation (4.3) lends itself immediately to a process of solution by 

iteration and for a suitably narrow strip H α the desired fixed element will be 

constructed as the uniform limit, as derivatives with respect to *ξ , since the 

t − derivatives follows from the known directional derivatives. 

Now, the existence and continuity of V in the characteristic direction follows 

directly system of equation (4.3) and from the continuity of the solution obtained. 

To prove the existence and continuity of derivatives *

V
ξ
∂
∂

 we observe, first of all, 

that the assumed continuous differentiability of *( )ψ ξ  and C  implies that all the 

approximations constructed in proving the existence of a solution, have continuous 

derivative with respect to *ξ . Differentiating the ( 1)n + th approximation, 

* * *
1

0

( , ) ( (0, , )) ( , , )n nV C t V d
τ

ξ τ ψ ξ τ ε ξ η+ = + ∫   

By differentiate with respect to ε . Thus  

          

( )* *

* *
*1

* * *
0

*
*

0

( (0, , ))

.

n n

n

V

V VC C d
V

C V C d

τ

τ

εξ ξ

ε ξ ξψ ξ τ ε η
ε ξ ξ ε ξ ε

εψ ξ η
ξ

+  ∂ ∂∂ ∂ ∂ ∂ ∂′= + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∂′= + +
∂

∫

∫

 

 

     
(4.6)

  

Similar to the assumption for the system of equation (4.3) we can prove the 

uniform convergence of the sequence *
nV

ξ
 ∂
 ∂ 

{ *ξ instead ofε }, 1, 2,...n = , by 

using the same method which we used to prove the convergence of ( )nV . This 
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gives us * *lim n
n

V V
ξ ξ→∞

∂ ∂
=

∂ ∂
, which suffices to prove the existence of the solution of 

the characteristic system (4.4) locally. We must be sure that the solution exists 

globally. i.e., in a larger region, we use the line t α=  as new initial line and solve 

the problem by the same procedures, as above, in the strip 2tα α< < . We continue 

stepwise in this way which implies the existence of the solution in an arbitrary 

large t  so long as the assumption of the continuity and bounded remains satisfied 

the existence of the original system  

               *
* *

1 0 ( ,0) ( ).tU AU C U G
ξ

ξ ξ+ + = =          □ 

Theorem 4.4 Let ( , , , )U x y z t and ( , , , )W x y z t be two solutions of equation 

(4.1), such that ( , , ,0) ( , , )U x y z x y zψ= and ϕ ψ δ− < . Then W U ε− < and 

0ε → as 0δ →  (continuous dependence of the solution on the initial data). 

Proof. Let  

( , , ) ( , , ) ( , , ),x y z x y z x y zϕ ψ α− =  

where ( , , )x y zα δ< , and  

( , , , ) ( , , , ) ( , , , )U x y z t W x y z t x y z t− = Ω . 

Then, as in Theorem 4.3, and  Ω  satisfies the integral equation  

0

0

( , , , ) ( , , ) ( , , , , )( )

( , , ) ( , , , , ) ( , , , ) ,

V

V

x y z t x y z C x y z V U W d

x y z C x y z V x y z d

τ

τ

δ η η

δ η η η

Ω = + −

= + Ω

∫

∫





 

where V  is intermediate value. 

Let
, , ,
max ( , , , )

x y z t S
x y z t ε

∈
Ω = , then by estimates analogous to that used in the 

existence proof  

                         , ( ),Cε δ ετ< + <                    (4.7) 

replacing Ω  in integral equation (4.6) by the right hand side of equation (4.7) and 

repeating, we obtain  
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2 2

(1 ) .
2
τε δ τ ε< + +


  

Repeating this operation n  times we have 
2 2 1 1

1 ...
2 ( 1)

n n n n

n n
τ τ τε δ τ ε

− − 
< + + + + + − 

  

  

Now, as n →∞ , we get teε δ<  . Thus if t  is bounded, then 0δ →  implies 

0ε → , which proves the theorem.                                      □ 

 

 

5  Conclusion 

In this article, the well-posedness of N.G KdV class (3+1) equation was 

investigated. For this investigation it was convenient to reduce N.G KdV class 

(3+1) equation to a system of first order partial differential equations. It is found 

that if 17 0α ≠ and the data are non characteristic, then N.G KdV class (3+1) 

equation reduced to a semi-linear system of first order partial differential equations 

on its characteristics. The proof of this fact was carried out for the case where all 

the characteristics are real and this proof can be done if some of these 

characteristics are complex by reducing the system to two systems of real 

characteristics and the reduction to systems of ordinary differential equations is 

clearly obtained again.  
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