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On Almost Increasing Sequences For Generalized
Absolute Summability

W. T. Sulaiman®

Abstract
A general result concerning absolute summability of infinite series by quasi-power
increasing sequence is proved. Our result gives correction and improvement to the

result of Savas and Sevli [2].
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1 Introduction

Let Zan be an infinite series with partial sum(s,), A denote a lower triangular

matrix . The series Zan is said to be absolutely A-summable of order k >1, if
ST, T, <o,
n=1

where
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The series ) a, is summable |A8] , k=1, 620, if
in(’“k-lhn T <. (1)
n=1

A positive sequence y = (y,)is said to be a quasi- £ -power increasing sequence if
there exists a constant K = K(f,7) >1 such that

Kn’y >m’y_ (2)
Holds for all n>m>1. It may be mentioned that every almost increasing
sequence is a quasi - S -power increasing sequence for any nonnegative 5, but the
converse need not be true.

Two lower triangular matrices A and A are associated with A as follows

a, =Y, Nv=0L..., (3)

Savas and Sevli [2] proved the following result.

Theoreml.1l. Let A be a lower triangular matrix with nonnegative entries
satisfying
a,,, 2a,, for nzv+]
a,=1 n=01...,
na,, =0(),1/na,, =0(1), as n - o,

n-1

z a‘vv é\‘v,n+1 = O (ann )1 (4)
S n*a,8,/=00"a,). ©)
n=v+1

mZﬂn‘*én,M =0(v™), (6)

n=v+1l

and let (g,) and (4,) be sequences such that
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AZ,| < B, (7)
p,—0as n— o, (8)

If (X,) isaquasi -/ -increasing sequence satisfying

inﬁk*1|sn|k =0(X,), M-, (9)
S X, [AB, <o, (10)
4, X, =0(@), (11)

then the series »_a, 4, is summable |A, 5] , k =1, 0 <5 <1/k.

We name the following condition

z%mk —0(X,), m—>. (12)

n=1

Remark 1. It may be mentioned that in the proof of theorem 1.1, an incorrect

step through the estimation of I,,. The author consider (v£,) is bounded regarding
this follows from the fact vg,X, =O(1). This not true, as for X, is g —quasi,
we may take X, =v”, which implies via vB X, =0(l) that (vB,)is not
bounded.

Therefore the proof of theorem 1.1 is not valid.

2 Lemmas
Lemma 2.1. Condition (12) is weaker than (9) when X is non-decreasing.
Proof. If (9) holds, then we have

$ Bl o oS ks o).

na N n= N

while if (12) is satisfied then,
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m 1k 51 Ky k-1
;n Sn| _énx:—l |S”| X”

IS Do I PR oL i

n=1| v=1 Vx\i(_l ' 1 NX :_l "
=o)X, [Ax 1+ 0(x, )X
n=1
= 0(X,) 3 (x5 - X 4 0(x )
n=1

= 0(X,)(XE =X+ o(xK)
= 0(x¥).

Therefore (9) implies (12) but not conversely .

Remark 2.
1. Condition (9) has been replaced by (12) which is better in the following sense

(@). If X, isnon-decreasing, (12) is weaker than (9) (see lemma 2.1)

(b) The more advantage of our conditions is to obtain the desired result without

any loss of powers through estimations. As an example the proof via condition
(9) impose to deal with |2,[ as |4, =[4,| "|4,|=0(4,]), loosing |2, as
considered to be O(1). We have no such case via condition (12).

2. Condition (4) is eliminated.

Lemma 2.2. Conditions (8) and (10) imply

mX, B, =0(1), m— oo, (13)
> 5,X, =00 (14)

Proof. As B8, —0, and n” X is non-decreasing, we have
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nX, 6, = n’ X, YA,

=0(1)n*” ivﬂ X, [AB,

= o(1)§v1-ﬁ ViX, |AB,

= O(l)ivXV|A,BV =0(1).

This proves (13). To prove (14), we observe that

> X8, = mf[ixrjm . (ZX) 5,

v=l \ r=1 v=1

- o(1)mzl[zv‘,r-ﬂ r"XrJ|AﬂV|+ O(l)[iv% vﬂxvjﬂm

v=l \ r=1

= O(l)Evﬂ X, |A,6’V|ZV: rr=ere
v=1 r=1

+0@Q)m? X, B, iv*ﬁ* Ve, e<1-p
v=1

= O(l)fv”’ X, [AB, vezvlr‘ﬂ‘e
v=1 r=1

+O@M)m?X, B, mezm:v‘”‘e
=1

= O(l)ivﬂ+exv|Aﬂv|[]‘uﬂedu)_i_ O(l)mﬂ+exmﬂm [TuﬂedU}

—0(1)> VX, [A8,|+ OWm X, 4,

=0().
Lemma 2.3 [1]. Let A be as defined in theorem 1.1, then

A

a,,,<a, fornv+l

nyv+l —
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3 Main Result

Theorem 3.1. Suppose all conditions of theorem 1.1 are satisfied except

condition (9) is replaced by condition (12), and condition (4) is removed, then the

series Y a, A, is summable |A, 5] , k>1, 0<s5<1/k .
Proof. Let x, be the nth term of the A-transform of the series Zan/ln. By

definition, we have
and hence

Applying Abel's transformation,
n-1 n-1
Tn :annﬁ’nsn + zAvénvﬂVSv + z é\'n,VJrlAﬂ’VSV = Tnl +Tn2 +Tn3 .
v=1 v=1
To complete the proof, by Minkowski's inequality, it is sufficient to show that

o0
Sk+k-1
2.0
n=1

Applying Holder's inequality, we have

x K k
Sk+k-1 _ Sk+k-1
2T =2 " a4y,
n=1 n=1

‘<o, j=123.

T,

m sk-1
<2 e ) Sl 1, )

n=1
m nb‘k—l c
=O(1)§w|sn| za

m-1 n Vc?k—l ‘ m n&k—l ‘
:0(1)Z|Mn|zW|5v| +0() |ﬂm|ZW|Sn|
n=1 v=1 n=1

\ n

:O(l)E,Bn X, +0 M)A, X, =0().
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n-1 k

::VHVVV

v=1

Kok K m+1 Kokt

5 -1 )

N, = 0
n=2

n=2

n-1 k-1
S, anv||zv|k|sv|“[z|avaw|]
n=2 v=1 v=1

m+1

=0M2 " (nay,)" lZIAvamllﬂ Is.[

—0(1)Z|ﬂv| s YA,

n=v+1

—om> v a, s,

v=1l

m V&k—l K a1
=002 s A flalx.)

m Vé‘k—l ‘
=O(1)§w|5v| A

=0(1), asinthecaseof T,,.

k

k+k—1|-|-n3| _zn5k+k ] Zan AALS,

=2

k-1
S Sa, s xS, |

v=1

U)MDY PPN SES

n=2 v=1

_O(l)Z|A2\/||S | xl ‘ z n6k+k N nv-¢-l(é\'nv-¢-l)k7l

n=v+1

_O(1)2|MV||5| X z N4 . (a,)" (by lemma2.3)

n=v+1

—0(1)Z|A2V||S | X Z n‘”é\nHl(nam)k*1

n=v+1
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_om Y |aafsf xS it
v=1l

n=v+1

—0(M) > v A s, X
v=1l

—0(1) S v s, [ X
v=1l

1

m V5k—
:O(l)zvﬂvw sv
v=1 Vi
m-1 v r§k—l K m V§k—l K
ZO(l)ZA(VﬂV)ZFbJ +0@)mg, ZF|SV|
v=1 r=1 r v=1 v

—OMY 4, X, +OMI VAR X, +OMmB, X,

~0(1)
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