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The Deficient Discrete Quartic Spline Interpolation

Y.P. Dubey’, S.S. Rana? and R.K. Dubey?

Abstract

In the present paper, the existence, uniqueness and convergence properties of
discrete quartic spline interpolation over non-uniform mesh have been studied
which match the given functional values at mesh points, interior points and second
difference at boundary points.
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1 Introduction

Let us consider a mesh P on [0, 1] which is defined by

P:0=X, <X <.ooooee. <X, =1.
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Let p, be the length of the mesh interval [x,,,x;]. Let p=maxp,, and
p'=min p,, throughout h will represent a given positive real number. Consider a

real function s(x,h)defined over [0, 1] which is such that its restriction s;on
[x.,,x] is a polynomial of degree 4 or less for i=1, 2,....n. Then s(x,h) defines a
deficient discrete quartic spline if

DWs, (x;,h)=D"s. . (x,,h)

for j=0,1,2, i =1,2,...,n. The class of such splines is denoted by S(4,1,P,h).

Discrete splines have been introduced by Mangasarian and Schumaker [6] in
connection with certain studies of minimization problems involving differences
(See also [7]). Discrete cubic splines which interpolate given functional values at
one intermediate point of a uniform mesh have been studied in [1]. These results
were generalized by Dikshit and Rana [2] for non-uniform meshes. An
asymptotic precise estimates of the difference between discrete cubic spline
interpolant and the function interpolated have been obtained by Rana and Dubey
[9] which are sometime used to smooth a histogram. Usefulness of the difficient
splines is quite apparent from the fact that they require less smooth data. In the
direction of some constructive aspects of discrete splines, we refer to Jia [8],
Schumaker [10].

In the present paper, we shall study the existence, uniqueness and
convergence properties of deficient discrete quartic spline interpolation, which
matches the given functional values at mesh points, interior points and second
difference at bounary points over non uniform mesh. Our result in particular

includes results of Dubey and Shukla [3].

2 Main result

The difference operator D for a function f is defined by
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Dy f(x)=f(x),

f(x+h)— f(x—h)
2h ’
f(x+h)-2f(x)+ f(x-h)
h? '
and D{™™ f(x)=D{™ D™ f(x), m,n>0.

DO f(x)= (2.1)

D@ £ (x)=

Let S*(4,1,P,h) denotes the class of all deficient discrete quartic splines of
deficiency 1 and degree 4 satisfying the boundary conditions,

D{? s(x,,h)=D{? f (x,,h)

D s(x,,h)=D{? f(x,,h). (2.2)
For a given function f, we introduce the following interpolatory conditions,
s(x,)="1(x;), 1=0,1,...,n,

S(a,)="F(e;), 1=1,...,n-1,

where

o, =X +6p;, 0<6<1, (2.3)

and pose the following.

Problem A : Given h > 0, for what restrictions on P does there exist a unique
s(x,h)eS*(4,1,P,h) which satisfy the interpolatory conditions (2.3) and
boundary conditions (2.2).
Let P(t) be a discrete quartic polynomial on [0, 1], then we can show that
P(t)=P(0)Q,(t)+PL) Q,(t)+ P(6) Qy(t)

+Dy? P(0)Q, (1) + Dy P() Qs(1)

Proof : Denoting (x—x;)/ p,;by t, 0 <t <1, we can write (2.4) in the form of the

(2.4)

restriction s, (x,h) of the deficient discrete quartic spline s(x, h) on [x;,X..,] as

follows:
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S (¥)=f06) Q)+ f(x.,1) Q1)+ f () Qy (1)
+ D575, (x) Q, (1) + D 51, () Qs (1),
where
Q. (2)=1+[{-60" —6+126° +6h*(0° -}t
—6(6-1)ht? —12(6 -1)t° + 6(0 —1)t*]/6A,

(2.5)

Q,(2)=[(60" —120° - 6?h*)t+6h°6t* +1260t° —66t*]/ 6A,
Q,(2)=[6(1+h*)t—6h’t* —12t° +6t*]/6A,

Q,(2)=[{-26" +56° —36° + (8 — 0°)h*}
+{3(8" +6-26°)+ (6 - *)h* }?
{(=6" 50+ 607 — (0 —0°) I} + (6° —36% + 20)t*]/ 6 A,

Q,(2)=[{-6" +6° —n*(&° -0t +h* {(&° - O)t*
+{0" -0+ (0-60*)* ) —(6° - 6)t*]/6A,

where A={6"+6-26° +(6-6°)h*}

Observing (2.5), it may easily be verified that s,(x,h)is a quartic on
[x;,x.,] fori=o, 1,....n-1 satisfying (2.2) - (2.3).
Denoting g(a,b)=a+bh*, G,(c,d)=cp?+dh*, where a, b, ¢ and d are real

numbers and we are set to answer the problem A in the following.

Theorem 2.1. For any h > 0 and p' > h then there exist a unique dificient discrete
quartic spline s(x,h)e S*(4,1, P,h) which satisfies the condition (2.2) and (2.3).

Remark. In the case when 6’:%, and p; = p i.e. uniform mesh Theorem 2.1 gives

the corresponding result for deficient discrete quartic spline studied in Dubey and
Shukla [3].

Now applying continuity of first difference of sj(x,h) at x; we get the

following system of equations,
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p, G,_{9(6" —6+30° —36°,6° —6%),9(-0" +360—66° + 46,
(0> -6)yDPs,  (X)+[p,G, {0(26* —30° +0,0° + 67 - 26),
g(6* +30-46°,0-6°)}
—p,,G{9(-26* +56° —36%,6° — 6%),g(-0" —50 +66°, (-6 + 6°))}]
DPs (x)+ p,,G{9(0" -6%,6°-6°),9(6-0°,6°-0)}Ds. (X)=F (say)
i=12,....n. (2.6)
where

F=—P[G_{g(-66" +6+120° 12,60 + 6-126),g(0,12(0 ~1))} T,

i-1
+G_{g(660" —120° +120, (120 -66%), g(0,—120)} .
+G,,{9(-6(1+h*),0),9(0,12)} f ()

+%Gi{g (-60° —6+126°,6(6> —1), g(0,12(1— O)h?} f.

+G{g(60* —126°,-66%),¢(0,120)} f
+G,{g(60+h?),6),9(0,-12)} f ()]

i+1

Writing D?s(x,,h)=m. (h)=m, (say) for all i, we can easily see that excess
of the absolute value of the coefficient of m, dominant the sum of the absolute
values of the coefficient of m,_ and mj.; in (2.6) under the conditions of Theorem
2.1 and is given by
d.(h)=[0p.G, ,{9(6° +2-30,0-1),9(26° —86% + 66,2 — 26)

+0P_ G {g(0° -46° +36,20-20%),9(26° + 4—66,2—20))}].
Therefore, the coefficient matrix of the system of equation (2.6) is

diagonally dominent and hence invertible. Thus, the system of equations has a
unique solution. This complete the proof of Theorem 2.1. m

3 Error bounds

It may be observed that system of equations (2.6) may be written as
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A(h)yM (h)=F (3.1)
where A(h) is coefficient matrix and M (h)=m. =D®s(x.,h) (say).

However, as already shown in the proof of Theorem 2.1. A(h) is invertible.
Denoting the inverse of A(h) by A™(h), we note that row max norm
|| A (h)|| satisfies the following inequality
IAZ(h)lI<y(h) (3.2)
where y(h)=max{d. (h)}".

For a given h> 0, we introduce the set R, ={jh: j is an integer} and define a
discrete interval as follows: [0,1], =[0,1]NR, .

For a function f and three distinct points X, X,, X;in the domain, the first,

and second divided difference are defined by

f(Xl)_ f(XZ) ’ and [X11X21X3] f :[XZ’XS] f _[Xl'xz] f
(Xl_XZ) (Xg _Xl)

[X. %] ¢ = , respectively.

For convenience, we write f*for D f and w(f,p) is the modulus of
continuity of f. The discrete norm of the function f over the intervals [0,1], is
defined by || f ||=Xrg[%?l<]|f(x)|.

Without assuming any smoothness condition on the data f, we shall obtain in the

following the bounds for the error function over the discrete interval [0, 1];.

Theorem 3.1. Suppose s(x,h) is the discrete quartic spline interpolant of Theorem

2.1. Then

lef? [I<C (h) K (p,h)w(f, p) (3.3)
e I<C, (M) Ky (p,h)w(f, p) 3.4)
and

le() 1< p*K™(p,h)w(f, p) (3.5)

where the K (p, h), K3 (p, h) and K* (p,h) are positive constants of p and h.
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Proof: To obtain the error estimate (3.3) - (3.5) first we replace m,(h) by error
function e (x.)=DPs(x,,h)— @=L, in (3.1) and need following Lemma due

to Lyche [4,5].

Lemma 3.1. Let {a,}";and {b;}] be a given sequences of non-negative real
numbers such that Zai :ij . Then for any real value function f defined on a

discrete interval [0,1],, we have

where X;,,y;, €[0,1], for relavent values of i, j and k. It may be observed that the

r.h.s. of (3.1) after replacing mi(h) by e®(x;) is written as
8 7

|(Li)|:zai[xi0’xi1]f _ij[ij’yjl]fl (3-6)
i1 =i

where
a, =P, P9 (694 _1293 '_662) =bl
a, =Py P; 9(6‘9’60):b2 =a,

a,= p 9(0.120)=b, =a, =h,

i-1

a, =%Gil{g (0 —0+30>-30%),(0° - 0)}, 9{(-0" +30-66% + 46°)— (6 - 6%)}=h,

a, =;—;]Gi—l [{g(26* —36% +0,6° + 6> — 20), (0" + 30— 46°,0— 67}

_%Gi{g(ze“—se%wz,ez—93),9(94+59—692,¢9—6'2}=be
_pi—l[ 4_p3 p3_p2 —0* 9> — ]—b

8y == —(6{9(0" -0°.0°~0%),g{(0-6",0" - O)}}=b,

and

X10 =X = Y11 = X350 = Y1 = X413 = Y31 = X50 = Y0 = Yo = X715
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Y10 = X1 = X1 = Y20 = X40 = Xe1 = Y50 »

X1 =X =X = Y70 = Xen = Y =Xjn + h,
Xa0 =i 1 = Y30,

X1 = =Yap s

Xeo =Xy — I,

Y51 =Xi4 +h,
Ye1 =X + h,
X50=X; —h,
Xgo = Xj11 —h.

We observe that

izglzai:ji; ;=N (0,P,h) (say).
Thus applying Lemma 3.1 in (3.6) for m=8,n =7and k=1, we get
IL <N, P,hyw(fD| pl). 3.7)
Now using the equation (3.2) and (3.7), we get
1€ 06) [I<y(h) K (p,hyw(F ™, p) (3.8)
where K (p,h) is some positive function of p and h which completes the proof of
(3.3).
We next proceed to obtain a upper bound for e(x), replacing mj(h) by

e@and s(x,h) by e(x,h) in equation (2.5), we obtain

e(x,h)= pi2—1Q4 t) ei(—zl) + ples ®) ei(2) =M, (f) (Say) (3.9)

Now, we write M, (f)in term of divided difference as follows :

Mi(f)zzui[XiO’Xil]f_Z[Vj[ij’yjl]f , (3.10)

where

u, = p.{60° —126° —66°h?)t + 66°t°h* +126t° — 661},
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v, =0p{6(1+h*)t+6h*t* +12t° - 6t*},

pr
u, :2_th4 (t)=V2 1

u —p—‘ze (t)=v
3_2h 5 '3

v,=6Apt,
and

X0 =X =Xp1s
X1 =X
Xpo =% —h,

Xg0 = Xij1 — h,

X3 =X

i+17

Y1 =% =Yoo,

Y =% +h,

Y30 =Xis1s

Yo =Xy +h,

Yao =X Y =%
Hence

i31 u; :JZA;VJ- =6p,0t[0° —20° -Oh® +h* + 2t* —ts)]+%{pile4(t)+ pAQ. (1)}

Again applying Lemma 3.1 in (3.10) for m=3,n=4,k =1, we get

M, (F)[<N*(p,h)w(f®, p). (3.11)
Thus, using (3.8) and (3.11) in (3.9) we get the following
le()II<pk*(p.hyw(f?, p), (3.12)

where K *(p,h)is a positive constant of p and h. This is the inequality (3.5) of
Theorem 3.1.
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We now proceed to obtain an upper bound of e . From equation (2.5), we
get
6Ae” (x,h)=p, e Q7 (1) + pfef QP (1) +U; (), (3.13)
where

U, (1)=[,Q° O+ £, Q)+  (er)Q:" (1)

2 £ A0 2 £ A0 i (3.14)
+ P fQ (1) +pr 77 Q7 (D) -6A £ (x, h)].

By using Lemma 3.1 and first and second divided difference in U, (f)as

follows:
4 3

U (F)I<w(f®,p)> a;=>b;, (3.15)
i=1 =1

where

a, = p,{60" —1260° —66°h” +12h*& +120(h” + 3t°) - 240t (t* + h*)},
a, = p{6(L+h?) —12h? +120(h? +3t*) + 244 (t* + h?)},
p:
8, == Q (0 =b;,
p_2
8, = QO =b,,

bs :6Api ]

and

X0 =Xis11 Xg1 =X

Yio=X =Ny =X ,
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Y30 =X
Yo =X +h.

Since a, +a,=h;, so

4 3 p2 p2
a,=) b, = 6Ap, +2QP (1)+--Q (1) | (3.16)
= = 2h 2h
From equation (3.8) putting the value of e® in (3.13) and using (3.15) we
get upper bound of e® . This completes the proof of Theorem 3.1. O
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