On characterizations of slightly *m*-continuous multifunctions

P. Thangavelu¹ and R. Selvi²

Abstract

Noiri and Popa introduced upper and lower slightly m-continuous multifunctions in topological spaces and study their properties. The purpose of this paper is to further characterize upper and lower slightly *m*-continuous multifunctions.

Mathematics Subject Classification : 54C60.

Keywords: Multifunctions, lower continuity, upper continuity, topology, minimal structure.

1 Introduction

The multifunctions play a dominant role in topology and in set valued analysis. By a multifunction $F:(X,\tau)\to(Y,\sigma)$, we mean a point to set correspondence from (X,τ) into (Y,σ) with $F(x)\neq\emptyset$ for all $x\in X$. For a multifunction $F:(X,\tau)\to(Y,\sigma)$, let

¹ Department of Mathematics, Aditanar College, Tiruchendur-628216 (India), e-mail:ptvelu12@gmail.com

² Department of Mathematics, Sriparasakthi College for Women, Courtallam, India, e-mail: rselvi@yahoo.co.in

Article Info: Revised : March 14, 2011. Published online : May 31, 2011

 $F^+(B) = \{x \in X: F(x) \subseteq B\}$ and $F^-(B) = \{x \in X: F(x) \cap B \neq \emptyset\}$ where $F^+(B)$ and $F^-(B)$ denote the upper and lower inverse of a subset B of Y respectively. In particular $F^+(y) = \{x \in X: F(x) = \{y\}\}$ and $F^-(y) = \{x \in X: y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$. The purpose of this paper is to characterize for upper and

lower slightly m-continuous multifunctions.

2 Preliminary Notes

In this section certain definitions and results are recalled. If A is a subset of a topological space X then cl(A) and int(A) denote the closure and interior of A respectively in X.

Definition 2.1 Let A be a subset of a topological space X. Then A is called

- (i) regular open if A = int(cl(A)) and regular closed if A = cl(int(A)), [7]
- (ii) semi open if $A \subseteq cl(int(A))$ and semi-closed if $int(cl(A)) \subseteq A$, [3]
- (iii) α -open if $A \subseteq int(cl(int(A)))$ and α -closed if $cl(int(cl(A))) \subseteq A$, [5]
- (iv) pre-open if $A \subseteq int(cl(A))$ and pre-closed if $cl(int(A)) \subseteq A$, [4]
- (v) β -open if A \subseteq *cl*(*int*(*cl*(A))) and β -closed if *int*(*cl*(*int*(A))) \subseteq A, [1]
- (vi) a p-set if $cl(int(A)) \subseteq int(cl(A))$, [8]
- (vii) a q-set if $int(cl(A)) \subseteq cl(int(A))$. [9]

 β -open sets are also called semi-pre-open sets.[2]

Definition 2.2 A sub family m_X of the power set $\wp(X)$ of a non empty set X is called a minimal structure (briefly *m*-structure) on X if $\emptyset \in m_X$ and $X \in m_X$. The pair (X, m_X) is a minimal structure space on X. Each member of m_X is said to be m_X -open and the complement of an m_X -open set is said to be m_X -closed. [6].

Definition 2.3 Let X be a non empty set and m_X an *m*-structure on X. For a subset

A of X, the m_X -closure of A and the m_X -interior of A are defined as follows:

(i)
$$m_X - cl(A) = \cap \{ F: A \subseteq F, X \setminus F \in m_X \},\$$

(ii) $m_X - int(A) = \bigcup \{ U: U \subseteq A, U \in m_X \}, [6].$

Definition 2.4 Let (X, m_X) be a minimal structure space and (Y, σ) be a topological space. A multifunction $F:(X, m_X) \rightarrow (Y, \sigma)$ is said to be

- (i) upper slightly *m*-continuous if for each point $x \in X$ and each clopen set V of Y containing F(x), there exists $U \in m_X$ containing x such that $F(U) \subseteq V$,
- (ii) lower slightly *m*-continuous if for each point $x \in X$ and each clopen set V of Y such that $F(x) \cap V \neq \emptyset$, there exists $U \in m_X$ containing x such that $F(u) \cap V \neq \emptyset$ for each $u \in U$. [6]

Lemma 2.5 For a multifunction $F:(X, m_X) \rightarrow (Y, \sigma)$, the following are equivalent:

- (i) F is upper slightly *m*-continuous,
- (ii) $F^+(V) = m_X int(F^+(V))$ for each $V \in CO(Y, \sigma)$,
- (iii) $F^{-}(V) = m_X cl(F^{-}(V))$ for each $V \in CO(Y, \sigma)$. [6]

Lemma 2.6 Let $F:(X, m_X) \to (Y, \sigma)$ be a multifunction. Then the following are equivalent.

- (i) F is lower slightly *m*-continuous,
- (ii) $F^{-}(V) = m_X int(F^{-}(V))$ for each $V \in CO(Y, \sigma)$,
- (iii) $F^+(V) = m_X cl(F^+(V))$ for each $V \in CO(Y,\sigma)$ where $CO(Y,\sigma)$, the collection of all clopen sets of (X,τ) . [6]

Lemma 2.7 Let B be subset of X. Then the following are equivalent.

- (i) B is regular clopen,
- (ii) B is clopen,
- (iii) B is α -clopen,

- (iv) B is pre-clopen and a q-set,
- (v) B is semi-clopen and p-set,
- (vi) B is β -clopen, p-set and a q-set. [8]

We use the following notations.

 $\alpha CO(Y,\sigma)$ (resp. RCO(Y, σ); PCO(Y, σ); q(Y, σ); SCO(Y, σ); $\beta CO(Y, \sigma)$)denotes the collection of all α -clopen (resp. regular clopen, pre-clopen, semi-clopen, β -clopen)sets in (Y, σ). p(Y, σ) (resp. q(Y, σ)) denotes the collection of all p-sets (resp. q-sets) in (Y, σ).

3 Slightly *m*-continuity

In this section, upper and lower slightly m-continuous multifunctions are characterized by using regular clopen sets, α -clopen sets, pre-clopen sets, semi-clopen sets, p-sets, q-sets and β -clopen sets.

Theorem 3.1 For a multifunction $F:(X, m_X) \rightarrow (Y, \sigma)$, the following are equivalent:

- (i) F is upper slightly *m*-continuous,
- (ii) $F^+(V) = m_X int(F^+(V))$ for each $V \in \alpha CO(Y, \sigma)$,

(iii)
$$F^+(V) = m_X - int(F^+(V))$$
 for each $V \in RCO(Y, \sigma)$,

- (iv) $F^+(V) = m_X int(F^+(V))$ for each $V \in PCO(Y, \sigma) \cap q(Y, \sigma)$,
- (v) $F^+(V) = m_X int(F^+(V))$ for each $V \in SCO(Y, \sigma) \cap p(Y, \sigma)$,
- (vi) $F^+(V) = m_X int(F^+(V))$ for each $V \in \beta CO(Y, \sigma) \cap q(Y, \sigma) \cap p(Y, \sigma)$,
- (vii) $F^{-}(V) = m_X cl(F^{-}(V))$ for each $V \in \alpha CO(Y, \sigma)$,
- (viii) $F^{-}(V) = m_X cl(F^{-}(V))$ for each $V \in RCO(Y, \sigma)$,
- (ix) $F^{-}(V) = m_X cl(F^{-}(V))$ for each $V \in PCO(Y, \sigma) \cap q(Y, \sigma)$,
- (**x**) $F^{-}(V) = m_{X} cl(F^{-}(V))$ for each $V \in SCO(Y, \sigma) \cap p(Y, \sigma)$,
- (xi) $F^{-}(V) = m_X \cdot cl(F^{-}(V))$ for each $V \in \beta CO(Y, \sigma) \cap q(Y, \sigma) \cap p(Y, \sigma)$.

Proof

The implications (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi) \Rightarrow (ii) follow from Lemma 2.7. By using Lemma 2.5 and Lemma 2.7 we see that F is upper slightly m-continuous \Leftrightarrow F⁺(V) = m_{X} .int(F⁺(V)) for each V \in CO(Y, σ) \Leftrightarrow F⁺(V) = m_{X} .int(F⁺(V)) for each V $\in \alpha$ CO(Y, σ). This proves (i) \Leftrightarrow (ii). Now the implications (vii) \Rightarrow (viii) \Rightarrow (ix) \Rightarrow (x) \Rightarrow (xi) \Rightarrow (vii) follow from Lemma 2.7.

Again by using Lemma 2.5 and Lemma 2.7 it follows that

F is upper slightly m-continuous \Leftrightarrow F⁻(V) = $m_X \cdot cl(F^-(V))$ for each V \in CO(Y, σ)

$$\Rightarrow F^{-}(V) = m_{X} cl(F^{-}(V)) \text{ for each } V \in \alpha CO(Y,\sigma).$$

This proves (i) \Leftrightarrow (vii).

Theorem 3.2 For a multifunction $F:(X, m_X) \rightarrow (Y, \sigma)$, the following are equivalent:

- (i) F is lower slightly *m*-continuous,
- (ii) $F^{-}(V) = m_X int(F^{-}(V))$ for each $V \in \alpha CO(Y, \sigma)$,
- (iii) $F^{-}(V) = m_X int(F^{-}(V))$ for each $V \in RCO(Y, \sigma)$,
- (iv) $F^{-}(V) = m_X int(F^{-}(V))$ for each $V \in PCO(Y, \sigma) \cap q(Y, \sigma)$,
- (v) $F^{-}(V) = m_X int(F^{-}(V))$ for each $V \in SCO(Y,\sigma) \cap p(Y,\sigma)$,
- (vi) $F^{-}(V) = m_X int(F^{-}(V))$ for each $V \in \beta CO(Y, \sigma) \cap q(Y, \sigma) \cap p(Y, \sigma)$,
- (vii) $F^+(V) = m_X cl(F^+(V))$ for each $V \in \alpha CO(Y, \sigma)$,
- (viii) $F^+(V) = m_X cl(F^+(V))$ for each $V \in RCO(Y, \sigma)$,
- (ix) $F^+(V) = m_X cl(F^+(V))$ for each $V \in PCO(Y, \sigma) \cap q(Y, \sigma)$,
- (**x**) $F^+(V) = m_X cl(F^+(V))$ for each $V \in SCO(Y, \sigma) \cap p(Y, \sigma)$,
- (xi) $F^+(V) = m_X cl(F^+(V))$ for each $V \in \beta CO(Y, \sigma) \cap q(Y, \sigma) \cap p(Y, \sigma)$.

Proof

The implications (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi) \Rightarrow (ii) follow from Lemma 2.7.

By using Lemma 2.6 and Lemma 2.7 it is seen that

F is lower slightly m-continuous \Leftrightarrow F⁻(V) = m_X - *int*(F⁻(V)) for each V \in CO(Y, σ)

 \Leftrightarrow F⁻(V) = m_X - int(F⁻(V)) for each V $\in \alpha CO(Y, \sigma)$,

This proves (i) \Leftrightarrow (ii). Now the implications (vii) \Rightarrow (viii) \Rightarrow (ix) \Rightarrow (x) \Rightarrow (xi) \Rightarrow (vii) follow from Lemma 2.6 and Lemma 2.7.

Again by using Lemma 2.6 and Lemma 2.7 we see that

F is lower slightly m-continuous \Leftrightarrow F⁺(V) = m_X - $cl(F^+(V))$ for each V \in CO(Y, σ),

$$\Leftrightarrow$$
 F⁺(V) = m_X - cl (F⁺(V)) for each V $\in \alpha CO(Y, \sigma)$.

This proves (i) \Leftrightarrow (vii).

Lemma 3.3 For a multifunction F: $(X, m_X) \rightarrow (Y, \sigma)$, the following are equivalent :

(i) F is upper slightly *m*-continuous,

(ii)
$$F^+(int(cl(V))) = m_X - int(F^+(int(cl(V))))$$
 for each $V \in p(Y,\sigma) \cap (Y,\sigma)$.

(iii)
$$F^+(int(cl(V))) = m_X - int(F^+(cl(int(V))))$$
 for each $V \in p(Y,\sigma) \cap q(Y,\sigma)$,

(iv)
$$F^+(cl(int(V))) = m_X - int(F^+(int(cl(V))))$$
 for each $V \in p(Y,\sigma) \cap q(Y,\sigma)$,

- (v) $F^+(cl(int(V))) = m_X int(F^+(cl(int(V))))$ for each $V \in p(Y,\sigma) \cap q(Y,\sigma)$,
- (vi) $F^{-}(int(cl(V))) = m_X cl(F^{-}(int(cl(V))))$ for each $V \in p(Y, \sigma) \cap q(Y, \sigma)$,
- (vii) $F^{-}(int(cl(V))) = m_X cl(F^{-}(cl(int(V))))$ for each $V \in p(Y,\sigma) \cap q(Y,\sigma)$,
- (viii) $F^{-}(cl(int(V))) = m_X cl(F^{-}(int(cl(V))))$ for each $V \in p(Y,\sigma) \cap q(Y,\sigma)$,
- (ix) $F^{-}(cl(int(V))) = m_X cl(F^{-}(cl(int(V))))$ for each $V \in p(Y,\sigma) \cap q(Y,\sigma)$.

Proof

Suppose (i) holds. Let $V \in p(Y, \sigma) \cap q(Y, \sigma)$. Then cl(int(V))=int(cl(V)). Therefore cl(int(V)) and int(cl(V)) are clopen sets in Y. Then from Lemma 2.5 it follows that $F^+(int(cl(V)))=m_X - int(F^+(int(cl(V))), F^-(int(cl(V))) = m_X - cl(F^-(int(cl(V))), F^+(cl(int(V))) = m_X - cl(F^-(cl(int(V))))$.

This proves (i) \Rightarrow (ii), (i) \Rightarrow (vi), (i) \Rightarrow (v) and (i) \Rightarrow (ix).

Again since cl(int(V)) = int(cl(V)), it follows that (i) \Rightarrow (iv), (i) \Rightarrow (viii), (i) \Rightarrow (iii) and (i) \Rightarrow (vii). The reverse implications follow from the fact that every clopen set is both a p-set and a q-set. **ACKNOWLEDGEMENTS.** The authors are thankful to the referees for giving the valuable comments to improve the paper.

References

- M.E. Abdel Monsef, S.N. El Deeb and R.A. Mahmoud, β-open sets and β-continuous mappings, *Bull. Fac. Sci. Assiut Univ.*, **12**(1), (1983), 77-90.
- [2] D. Andrijevic, Semi-pre-open sets, *Mat. Vesnik*, **38**(1), (1986), 24-32.
- [3] N. Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math.Monthly*, **70**, (1963), 36-41.
- [4] A.S. Mashhour, M.E. Abdel Monsef and S.N. El Deeb, On pre-continuous and weak pre-continuous mappings, *Proc. Math. Phys. Soc.Egypt*, 53, (1982), 47-53.
- [5] O. Njastad, On some classes of nearly open sets, *Pacific. J. Math.*, 15, (1965), 961-970.
- [6] T. Noiri and V. Popa, Slightly *m*-continuous mulitifunctions, *Bulletin of the Institute of Mathematics Academia Sinica*(New series), 1(4),(2006), 485-505.
- [7] M.H. Stone, Application of Theory of Boolean rings to general topology, *Trans A.M.S*, 41(3), (1937), 375-481.
- [8] P. Thangavelu and K.C. Rao, p-sets in topological spaces, Bulletin of Pure and Applied Sciences, 21(E)(2), (2002), 341-355.
- [9] P. Thangavelu and K.C. Rao, q-sets in topological spaces, *Prog. of Maths*, 36(1&2), (2002), 159-165.