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A sixth-order exponentially fitted scheme

for the numerical solution of systems

of ordinary differential equations
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Abstract

A class of sixth-order three-step second derivative scheme is devel-

oped for stiff systems of ordinary differential equations. The numerical

stability analysis of the scheme revealed that, it is A-stable. The re-

sult of some standard numerical examples are presented which allow an

appraisal of the proposed scheme with existing methods.
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1 Introduction

We shall be concerned with the numerical solution of stiff systems of ordinary

differential equation of the form

y′ = f(x, y); y(x0) = y0 (1.1)

1 School of mathematics Studies, National Mathematical Centre, (NMC), Abuja, Nigeria,

e-mail: cletusabhulimen@yahoo.co.uk.
2 Department of Mathematics, Amrose Alli University, Ekpoma, Nigeria.
⋆ Corresponding author.

Article Info: Revised : May 3, 2011. Published online : May 31, 2011



176 A sixth-order exponentially fitted scheme for the solution of ODE

where x ∈ [a, b], y, f ∈ R
n. The idea of using exponentially fitted methods

which originally proposed by Liniger and Willoughby [9], derived one-step

integration formula containing free parameters for stiff systems denoted by

F r, r = 1, 2, 3, where the index ’r’ represent the order of the method. These

formulas were shown to be A-stable for certain choices of the fitting parameters.

In the same way, Jackson and Kunue [8] designed a fourth-order exponentially

fitted formula denoted by F 4 based on a linear two-step method which is A(α)-

stable, for ’α’ very near π/2. Cash[4] used the F 4 as a predictor to develop a

fifth-order composite second derivative linear multistep method, he discovered

the absence of A-stability. Voss[10] also utilized F 4 to derived a fifth-order

second derivative method for stiff systems which he found to be A-stable,

Abhulimen and Otunta [1, 2, 3] in the spirit of Cash[4] developed two-step

third derivative exponentially fitted methods of orders 7,8 and 9, denoted by

AB7, AB8, NM9 respectively. These methods were found to be compatible

with A-stability for all choices of fitting parameters.

However, the aim of this present paper is to develop three-step second

derivative exponentially fitted scheme of order six which is A-stable for all

choices of fitting parameters.

Remark 1.1. It is important to note that for systems for which exponential

fitting is appropriate, it is usually found that exponentially fitted integration

formulas are substantially more efficient than conventional ones.

Remark 1.2. The exponential fitting methods also offer favourable properties

in the integration of differential equations whose Jacobian has large imaginary

eigenvalues Hochbruck, et al. [7].

2 Derivatives of the scheme

We consider the multiderivative multistep for the initial value problems 1.1;

k
∑

t=0

[

atyn+t −

p
∑

q=1

hqγqty
q
n+t

]

= 0 (2.1)

where k, p, and q are positive integers, h > 0 is a step-size independent of n,

yn+t are approximate to y(xn+t), xn+t = (n + t)h. The coefficients at, γqt are

real constants subject to the conditions, ak = 1, |a0| + |γq0| 6= 0.
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Remark 2.1. If k = 1 Equation 2.1 is called one-step method. So, when

k = 3, and h = 2, we referred to it as three-step second derivative method,

which is our major focus in this paper.

For purpose of efficient implementation of the new proposed scheme, we

adopt the mechanism in Cash [4] and Abhulimen and Okunuga [3] by splitting

2.1 into predictor and corrector schemes as follows:

k
∑

t=0

atyn+t −

[

h

k
∑

t=0

bty
′

n+t + h2

k
∑

t=0

dty
′′

n+t

]

= 0 (2.2)

and
k

∑

t=0

atyn+t −

[

h

k+1
∑

t=0

bty
′

n+t + h2

k
∑

t=0

dty
′′

n+t

]

= 0 (2.3)

where bt = γ1,t, dt = γ2,t, y′

n+t = y
(1)
(xn+t); y′′

n+t = y
(2)
(xn+t). Then Equations 2.2

and 2.3 serves as predictor and corrector respectively.

Remark 2.2. When deriving exponentially fitted methods, the approach is to

allow both 2.2 and 2.3 to possess free parameters which allow it to be fitted

automatically to exponential functions.

To derive our predictor method of order six, we employed the Taylor series

expansion to (2.2), to obtain a set of six equations. We let b3 = r (as free

parameter) and ak = a3 = 1 (since k = 3), we have

a0 + 1 = 0

3(1 − r
3
) − (b1 + b2) = b0

1
2
(9 − 6r) − (b1 + 2b2 + d3) = d0

9(1 − r) − (4b2 + 6d3) = b1 (2.4)

1
32

(81 − 108r) − 1
32

[4b1 + 108d3] = b2

1
20

(9 − 15r) − 1
180

(b1 + 16b2) = d3

}

We then solve for the values of the unknown parameters, and substituting

these values into 2.2, we obtain the three-step second derivative predictor

method of order six.

yn+3 = yn + h
[

(39
40

− r)y′

n + (39
13

r)y′

n+1 + (81
40

− 27
13

r)y′

n+2 + ry′

n+3

]

(2.5)

+h2
[

( 3
10

− 6
13

r)y′′

n + ( 3
20

− 6
13

r)y′′

n+3

]
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Next, we introduce the scalar test function for the purpose of exponential

fitting and stability analysis of our methods as follows:

Let

y′

(x) = λy(x); y(0) = 1 (2.6)

where Re(λ) < 0.

When we apply (2.5) to (2.6), we obtain the exponential fitted predictor

scheme of order six.

ȳn+3

yn

=
1 + (39

40
− r)u + (27

13
r)ueu + (81

40
− 27

13
r)ue2u + ( 3

10
− 6

13
r)u2

1 − ru − ( 3
10

− 6
13

r)u2

= R̄(u) (2.7)

where u = λh.

Similarly, to derive the three-step corrector method of order six, we main-

tain the same condition as in the case of predictor and let b4 = s (free param-

eter), we then have seven sets of equations as follows:

a0 + 1 = 0

3(1 − 1
3
s) − (b1 + b2) = b0

1
2
(9 − 8s) − (b1 + 2b2 + d3) = d0

1
3
(27 − 48s) − (4b2 + 9b3 + 6d3) = b1 (2.8)

1
32

(27 − 256s) − 1
8
(b1 + 27b3 + 27d3) = b2

1
81

(121s − 256s) − 1
81

(b1 + 16b2 + 16d3) = b3

1
270

(243 − 2048s) − 1
270

(2b1 + 64b2 + 486b3) = d3

}

As before, after determining the values of the unknown parameters, we sub-

stitute the values into (2.3) to obtain the corrector formula

yn+3 = yn + h[(39
80

− 29
9
s)y′

n + (81
80

+ 8s)y′

n+1 +

+ (81
80

− 12s)y′

n+2 + (39
80

+ 56
9
s)y′

n+3 + sy′

n+4]

+h2
[

( 3
40

− 4
3
s)y′′

n + (− 3
40

− 16
3
)y′′

n+3

]

(2.9)

We apply (2.9) to (2.6) to obtain the exponentially fitted corrector method of

order six.

yn+3

yn

=
1 + us(e4u) + (81

80
− 12s)ue2u + (89

80
+ 80s)ueu + (89

80
− 29

9
s)u + ( 3

40
− 4

3
s)u2

1 − (39
80

+ 56
9
s)u − (−3

4
− 16

3
s)u2

= R(u) say (2.10)
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However, for purpose of computation and stability analysis, we unite the pre-

dictor (2.7) and the corrector (2.10) together to obtain;

yn+3

yn

=
1 + us[R̄(u)]4/3 + (81

80
− 12s)u[R̄(u)]2/3 + (81

80
+ 80s)u[R̄(u)]1/3

1 − (29
80

+ 56
9
s)u − (−3

4
− 16

3
s)u2

+

+
(89

80
− 29

9
s)u + ( 3

40
− 4

3
s)u2

1 − (29
80

+ 56
9
s)u − (−3

4
− 16

3
s)u2

(2.11)

where

e4u =
yn+4

yn

=

[

ȳn+3

yn

]4/3

= [R̄(u)]4/3

e2u =
yn+2

yn

=

[

ȳn+3

yn

]2/3

= [R̄(u)]2/3

eu =
yn+1

yn

=

[

ȳn+3

yn

]1/3

= [R̄(u)]1/3

3 Stability Analysis

Definition 3.1. A numerical method is said to be A-stable if its reguin

of absolute stability (RAS), contains the whole of the left-half of the complex

plane. That is h > 0 for all values of Re(λh) is negative.

Now, to investigate the stability criteria of our method, the determination

of the values of the free parameter r(u) and s(u) in the open left-half plane

(−∞, 0] becomes very important. From equations (2.7) and (2.10), we obtain

the free parameters r(u) and s(u) respectively as follows:

r(u) =
1 + 1

40
u(39 + 81e2u) + 3

10
u2(1 + 1

2
e3u) − e3u

29
13

u(e2u + eu) + 6
13

u2(1 + e3u) + u(1 − e3u)
(3.1)

and

s(u) =
1 + 81

80
u(e2u + eu) + 59

80
u(1 + e3u) + 3

40
u2(1 − e3u) − e3u

4u(3e2u − 2eu) + 1
9
u(29 − 56e3u) + 4

3
u2(1 + 4e3u) − ue4u

(3.2)

By Cash[4] mechanism, we need to find the conditions which r(u) and s(u)

needs to satisfy such that

∣

∣

∣

∣

yn+2

yn

∣

∣

∣

∣

< 1, i.e. |R(u)| < 1 (3.3)
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for all u, with Re(u) < 0.

Necessary and sufficient conditions this inequality (3.3) to hold are given

by the application of the maximum modulus theorem

(i) |R(u)| ≤ 1 in Re(u) = 0.

(ii) R(u) analytic in Re(u) < 0.

If condition (i) holds, it follows that R(u) is analytic at u = −∞ and thus (i)

and (ii) will guarantee A-stability by the maximum modulus theorem.

From (3.3) −1 < yn+3

yn

< 1, but it is obviously true for −1 < yn+3

yn

, we are

now left with the case of

yn+3

yn

< 1 i.e. R(u) < 1 (3.4)

Now, from equation (3.4), we have

yn+3

yn

− 1 < 0 i.e. R(u) − 1 < 0 (3.5)

From equation (2.10), we have that

1 + us[R̄(u)]34 + A1ue2u + A2ueu + A3u + A4u
2

1 − B1u − B2u2
− 1 < 0 (3.6)

where A1 = 81
80

− 12s, A2 = (89
80

+ 80s), A3 = (89
80

− 29
9
s), A4 = ( 3

40
− 4

3
s),

B1 = (39
80

+ 56
9
s), B2 = (− 3

40
− 16

3
s).

So, it becomes easy to verify that as u → −∞ for our problem (3.5),

condition (i) gives
3

40
−

4

3
s < 0

i.e.

s <
9

180
(3.7)

Similarly, we need to check the conditions satisfy by r

ȳn+3

yn

− 1 < 0

i.e.

R̄(u) − 1 < 0 as u → −∞

From (2.7), we have

1 + D1u + D2ueu + D3ue2u + D4u
2

1 − ru − Fu2
− 1 < 0 (3.8)
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where D1 = (39
40
−r), D2 = 27

13
r, D3 = (81

40
− 29

13
r), D4 = ( 3

10
− 6

13
r), F = ( 3

10
− 6

13
r).

Again as u → −∞, we obtain the inequality

3

10
−

6

13
r < 0

i.e.

r <
13

20
(3.9)

Thus (3.7) and (3.9) will help to determine the region of absolute stability of

our proposed scheme. We further show that r(u) and s(u) have finite limit at

origin and infinity.

From (3.1)

lim
u→−∞

r(u) =
13

20
and lim

u→0
r(u) = 0

In similar fashion, from (3.2), we obtain

lim
u→−∞

s(u) =
9

160
and lim

u→0
s(u) = −

523

1760

Thus

r ∈ [13
20

, 0] and s ∈ [ 9
160

,− 523
1760

] (3.10)

These interval becomes the region of absolute stability.

We further use numerical procedure to examine the behaviour of our pa-

rameters by plotting the values of r(u) and s(u) for a large sample of u in the

range (−∞, 0] as shown in Table (3.1) below.

Table 3.1: Parameter values of r and s as a function of u.
u r s

-10.0 0.587751 0.035846

-50.0 0.636185 0.031738

-100.0 0.643024 0.0539733

-1000.0 0.649296 0.056021

-2000.0 0.649648 0.056135

-3000.0 0.649650 0.056147

-4000.0 0.649660 0.056152

-5000.0 0.649672 0.056165

-6000.0 0.649683 0.056178

-7000.0 0.649689 0.056182

-8000.0 0.649660 0.056188

-9000.0 0.649661 0.056200

-10000.0 0.650000 0.056245
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From Table (3.1), we observed that as the values of u decreases, the values of

the parameters r(u) and s(u) are monotonically increasing. This suggests that

all values of r(u) and s(u) within these ranges are convergent and bounded.

Theorem 3.2. A monotonic increasing sequence of real set of numbers

which is bounded above converges.

Thus the set of values in Table (3.1) will satisfy the A-stability condition

given by maximum modulus theorem.

Finally, it remains to investigate whether condition (ii) of the maximum is

satisfied for all u ∈ (−∞, 0]. Now the stability function of our new proposed

scheme from equation (2.11) is given by

τ 2 =
1 + us[R̄(u)]3/4 + (81

80
− 12s)u[R̄(u)]2/3 + (81

80
+ 80s)u[R̄(u)]3

1 − (39
80

+ 56
9
u) − (−3

4
− 16

3
s)u2

+

+
(81

80
− 29

9
s)u + ( 3

40
− 4

3
s)u2

1 − (39
80

+ 56
9
u) − (−3

4
− 16

3
s)u2

Evaluating for all values of u ∈ (−∞, 0] in the stability function, we established

that |τ | < 1 for all i.e. yn+3

yn

< 1 for all Re(u) < 0. Hence our new proposed

exponential fitted scheme of order six is A-stable for choices of the fitting

parameters.

4 Numerical Examples and Results

In other to appraise the efficiency and accuracy of our new scheme, we present

some numerical examples and results in this section. The implementation of

our new scheme was carried out in double precision on FORTRAN on digital

desktop computer.

Example 4.1. We consider Ehle’s linear problem [5].

y′ = −y + 95z; y(0) = 1

z′ = −y − 97z; z(0) = 1

x ∈ [0, 1]

The eigenvalues of the Jacobian at x = 0 are λ1 = −2 and λ2 = −96.
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Example 4.2. Test problem from Enright and Pryce[6]

y′

1 = −104y1 + 100y2 − 10y3 + y4; y1(0) = 1

y′

2 = −100y2 + 10y3 − 10y4; y2(0) = 1

y′

3 = −y3 + 10y4; y3(0) = 1

y4 = −0.1y3; y4(0) = 1

The eigenvalues of Jacobian are λ1 = −0.1, λ2 = −1.0, λ3 = −10000.0, λ4 =

−10000.0.

Example 4.3. Second order differential equation taken from Abhulimen

and Okunuga[3]

y′′ + 1001y′ + 100y = 0

y(0) = 1, y′(0) = 1

The eigenvalues of the Jacobian are λ1 = −1 and λ2 = −1000.

The results obtained for the integration of Example 4.1 using fixed stepsizes

are given in Table 4.1. Here F (4), CH4, CH5, and F (5) denote the formulas

due to Jackson and Kunue, Cash’s method of order 4 and 5, and formula due

to Voss David respectively. While AB7, AB8 and NM9(represent Abhulimen

and Otunta two-step third derivative methods of order seven, eight and nine

respectively. F (6) denote our proposed three-step second derivative scheme.

Table 4.1a: Efficiency and accuracy of new the integrator scheme on Prob-

lem 1 at x = 1.

step method y(1) (|error|) z(1) × 102 (|error| × 102)

0.0625 CH4 0.27355498(3.0 × 10−7) −0.2879471(3.0 × 10−7)

CH5 0.27355005(1.0 × 10−8) −0.28794742(1.0 × 10−8)

AB7 0.27354004(4.0 × 10−5) −0.28796321(6.0 × 10−5)

F 4 0.2735503(3.0 × 10−7) −0.2879477(3.1 × 10−7)

NM9 0.27354004(7.9 × 10−5) −0.28794740(8.3 × 10−7)

F 5 0.27355003(6.4 × 10−9) −0.28794741(6.7 × 10−9)

∗F 6 0.29355004(3.2 × 10−10) −0.28794748(2.4 × 10−10)
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Table 4.1b: Efficiency and accuracy of new integrator scheme on problem 1

at x = 1.
step size method y(1) (|error|) z(1) × 102 (|error| × 102)

0.03125 CH4 0.27355003(1.0 × 10−8) −0.28794742(1.0 × 10−8)

NM9 0.27354004(3.7 × 10−5) −0.28794744(4.0 × 10−5)

F 4 0.27355005(1.0 × 10−8) −0.28794742(1.0 × 10−8)

F 5 0.27355004(6.3 × 10−10) −0.28794740(1.4 × 10−10)

∗F 6 0.27355005(1.2 × 10−10) −0.28794741(8.1 × 10−10)

True solution 0.27355004 −0.28794741 × 10−2

From the numerical results of Example 4.1 presented in Table (4.1a) and (4.1b),

we observed at step size h = 0.0625, our proposed scheme have higher accuracy.

And for h = 0, 03125 our new scheme compete favourably with the existing

methods.

Table 4.2: Absolute error of Numerical solution of Example 4.2.

step method y1(1) y2(1) y3(1) y4(1)

0.05 AB7 3.2 × 10−2 3.2 × 10−2 3.3 × 10−1 3.7 × 10−5

NM9 2.2 × 10−3 3.5 × 10−2 3.2 × 10−5 3.2 × 10−6

∗F 6 3.5 × 10−5 3.8 × 10−4 3.5 × 10−7 3.7 × 10−8

0.1 AB7 2.5 × 10−2 2.1 × 10−1 −2.4 × 10−3 2.7 × 10−5

NM9 2.7 × 10−3 2.4 × 10−3 −2.2 × 10−4 2.5 × 10−6

∗F 6 2.9 × 10−5 2.7 × 10−4 −2.6 × 10−6 2.6 × 10−8

The true solution is given by

y1(1) = −5911.9073

y2(1) = −596.61978

y3(1) = 5.3695798

y4(1) = 0.05966201.

Remark 4.4. Example 4.2 was considered by Enright and Pryce[6] and the

error tolerance was fixed at 10−5. However, the results obtained by ∗F 6 shows

that the error can be raised to 10−8 as against 10−5 given by Enright and Pryce

[6]. We further observed form Table (4.2) that the results obtained by ∗F 6 at

x = 1 for both h = 0.05 and 0.1, show that our method is more accurate.
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Table 4.3: Performance of our new scheme on second differential equation

step method y(x) (—error—)

0.05 AF5 0.36787930 1.8 × 10−7

AB7 0.36787840 1.7 × 10−6

∗F 6 0.36787846 1.4 × 10−8

0.125 AB5 0.36780800 1.4 × 10−6

∗F 6 0.36789400 1.4 × 10−8

0.1 AB5 0.36787960 1.8 × 10−7

∗F 6 0.36787960 1.4 × 10−8

True solution for Example 4.3 at x = 1

step y(x)

0.05 0.36787940

0.125 0.36789500

0.1 0.36787950

Note AF5 in the comparison Table 4.3 denote the fifth-order formula due to

Abhulimen and Okunuga [3].

Remark 4.5. From the results in Table 4.3, we observed that, our proposed

scheme have the least error for various step sizes when compared with the

existing methods. We can simply say for now that our new scheme is efficient.

5 Conclusion

From the numerical results presented so far in this paper, it shows that our

proposed three-step second derivative exponentially fitted scheme of order six

is accurate, efficient and compete favourably with the existing methods which

have solve the same set of stiff problems.

In conclusion, our new scheme is A-stable and is appropriate for solving stiff

systems whose solutions can be expressed in exponential functions.



186 A sixth-order exponentially fitted scheme for the solution of ODE

References

[1] C.E. Abhulimen and F.O. Otunta, A family of Two-step exponentially

fitted multiderivative methods for the Numerical Integration of stiff IVPs

on ODEs, International Journal of Numerical Mathematics (IJNM), l3,

(2007), 1–21.

[2] C.E. Abhulimen and F.O. Otunta, A class of exponential fitting Numer-

ical Integrators for initial value problems in ODEs, Journal of Nigerian

Mathematical Society, 28, (2009), 13–28.

[3] C.E. Abhulimen and S.A. Okunuga, Exponentially fitted second deriva-

tive derivative multistep method for stiff initial value problem for ODEs,

Journal of Engineering Science and Applications, 5, (2008), 36–49.

[4] J.R. Cash, On the exponential fitting of composite multiderivative linear

multistep methods, SIAM J. Numerical Annal., 18(5), (1981), 808–821.
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