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Abstract

Fractional differential equations have recently been applied in var-

ious areas of engineering, science, finance, applied mathematics, bio-

engineering and others. However, many researchers remain unaware

of this field. In this paper, an efficient numerical method for solving

the fractional diffusion equation (FDE) is considered. The fractional

derivative is described in the Caputo sense. The method is based upon

Legendre approximations. The properties of Legendre polynomials are

utilized to reduce FDE to a system of ordinary differential equations,

which solved by the finite difference method. Numerical solutions of

FDE are presented and the results are compared with the exact solu-

tion.

Mathematics Subject Classification : 65N14

Keywords: Finite difference method, Fractional diffusion equation, Legendre

polynomials, Caputo derivative

1 Benha University, Faculty of Science, Department of Mathematics, 1358, Egypt,

e-mail: mohamed.khader@fsc.bu.edu.eg, mohamedmbd@yahoo.com
2 Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt,

e-mail: n swilam@yahoo.com
3 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig,

Egypt, e-mail: amr mahdy85@yahoo.com

Article Info: Revised : June 30, 2011. Published online : November 30, 2011



2 An Efficient Numerical Method for Solving ...

1 Introduction

Ordinary and partial fractional differential equations have been the focus

of many studies due to their frequent appearance in various applications in

fluid mechanics, viscoelasticity, biology, physics and engineering [1]. Conse-

quently, considerable attention has been given to the solutions of fractional

ordinary/partial differential equations of physical interest. Most fractional

differential equations do not have exact solutions, so approximation and nu-

merical techniques ([3]-[19]), must be used. Recently, several numerical meth-

ods to solve fractional differential equations have been given such as variational

iteration method [8], homotopy perturbation method [20], Adomian decompo-

sition method [9], homotopy analysis method [6] and collocation method [16].

We describe some necessary definitions and mathematical preliminaries of the

fractional calculus theory required for our subsequent development.

Definition 1.1. The Caputo fractional derivative operator Dα of order α

is defined in the following form:

Dαf(x) =
1

Γ(m− α)

∫ x

0

f (m)(t)

(x− t)α−m+1
dt, α > 0,

where m− 1 < α ≤ m, m ∈ N, x > 0.

Similar to integer-order differentiation, Caputo fractional derivative operator

is a linear operation:

Dα (λ f(x) + µ g(x)) = λDα f(x) + µDα g(x),

where λ and µ are constants. For the Caputo’s derivative we have [15]:

Dα C = 0, C is a constant, (1)

Dα xn =

{

0, for n ∈ N0 and n < dαe;
Γ(n+1)

Γ(n+1−α)
xn−α, for n ∈ N0 and n ≥ dαe.

(2)

We use the ceiling function dαe to denote the smallest integer greater than

or equal to α. Also N0 = {0, 1, 2, ...}. Recall that for α ∈ N, the Caputo

differential operator coincides with the usual differential operator of integer

order.

For more details on fractional derivatives definitions and its properties see

([15], [17]).
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The main goal in this paper is concerned with the application of Legendre pseu-

dospectral method to obtain the numerical solution of the fractional diffusion

equation of the form:

∂u(x, t)

∂t
= d(x, t)

∂αu(x, t)

∂xα
+ s(x, t), (3)

on a finite domain a < x < b, 0 ≤ t ≤ T and the parameter α refers to the

fractional order of spatial derivatives with 1 ≤ α ≤ 2. The function s(x, t) is

the source term.

We also assume an initial condition:

u(x, 0) = u0(x), a < x < b, (4)

and the following Dirichlet boundary conditions:

u(a, t) = u(b, t) = 0. (5)

Note that α = 2, Eq.(3) is the classical diffusion equation:

∂u(x, t)

∂t
= d(x, t)

∂2u(x, t)

∂x2
+ s(x, t).

Our idea is to apply the Legendre collocation method to discretize (3) to get

a linear system of ordinary differential equations thus greatly simplifying the

problem, and use the finite difference method (FDM) ([12]-[14]) to solve the

resulting system.

Legendre polynomials are well known family of orthogonal polynomials on the

interval [−1, 1] that have many applications [16]. They are widely used because

of their good properties in the approximation of functions. However, with our

best knowledge, very little work was done to adapt this polynomials to the

solution of fractional differential equations.

The organization of this paper is as follows. In the next section, the ap-

proximation of fractional derivative Dαy(x) is obtained. Section 3 summarizes

the application of Legendre collocation method to solve (3). As a result a

system of ordinary differential equations is formed and the solution of the con-

sidered problem is introduced. In section 4, some numerical results are given

to clarify the method. Also a conclusion is given in section 5. Note that we

have computed the numerical results using Matlab programming.
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2 Evaluation of the fractional derivative using

Legendre Polynomials

The well known Legendre polynomials are defined on the interval [−1, 1] and

can be determined with the aid of the following recurrence formula [2]:

Lk+1(z) =
2k + 1

k + 1
z Lk(z)−

k

k + 1
Lk−1(z), k = 1, 2, ...,

where L0(z) = 1 and L1(z) = z. In order to use these polynomials on the

interval x ∈ [0, 1] we define the so called shifted Legendre polynomials by

introducing the change of variable z = 2x − 1. Let the shifted Legendre

polynomials Lk(2x− 1) be denoted by Pk(x). Then Pk(x) can be obtained as

follows:

Pk+1(x) =
(2k + 1)(2x− 1)

(k + 1)
Pk(x)−

k

k + 1
Pk−1(x), k = 1, 2, ..., (6)

where P0(x) = 1 and P1(x) = 2x−1. The analytic form of the shifted Legendre

polynomials Pk(x) of degree k given by:

Pk(x) =
k

∑

i=0

(−1)k+i (k + i)! xi

(k − i)(i!)2
. (7)

Note that Pk(0) = (−1)k and Pk(1) = 1. The orthogonality condition is:

∫ 1

0

Pi(x)Pj(x) dx =







1

2i+ 1
, for i = j;

0, for i 6= j.
(8)

The function y(x), square integrable in [0, 1], may be expressed in terms of

shifted Legendre polynomials as:

y(x) =
∞
∑

i=0

yiPi(x),

where the coefficients yi are given by:

yi = (2i+ 1)

∫ 1

0

y(x)Pi(x) dx, i = 1, 2, ... .

In practice, only the first (m + 1)-terms shifted Legendre polynomials are

considered. Then we have:

ym(x) =
m
∑

i=0

yiPi(x). (9)



M.M. Khader, N.H. Sweilam and A.M.S. Mahdy 5

In the following theorem we introduce an approximate formula of the fractional

derivative of y(x).

Theorem 2.1. Let y(x) be approximated by shifted Legendre polynomials

as (9) and also suppose α > 0 then:

Dα(ym(x)) =
m
∑

i=dαe

i
∑

k=dαe

yi w
(α)
i,k x

k−α, (10)

where w
(α)
i,k is given by:

w
(α)
i,k =

(−1)(i+k)(i+ k)!

(i− k)!(k)!Γ(k + 1− α)
. (11)

Proof. Since the Caputo’s fractional differentiation is a linear operation

we have:

Dα(ym(x)) =
m
∑

i=0

yiD
α(Pi(x)). (12)

Employing Eqs.(1)-(2) in Eq.(7) we have:

DαPi(x) = 0, i = 0, 1, ..., dαe − 1, α > 0. (13)

Also, for i = dαe, ...,m, by using Eqs.(1)-(2) and (7) we get:

DαPi(x) =
i

∑

k=0

(−1)i+k(i+ k)!

(i− k)!(k!)2
Dα(xk) =

i
∑

k=dαe

(−1)i+k(i+ k)!

(i− k)!(k!)Γ(k + 1− α)
xk−α.

(14)

A combination of Eqs.(12), (13) and (14) leads to the desired result.

Example 2.2. Consider the case when y(x) = x2 and m = 2, the shifted

series of x2 is:

x2 =
1

3
P0(x) +

1

2
P1(x) +

1

6
P2(x).

Hence,

D
1

2x2 =
2

∑

i=1

i
∑

k=1

yi w
( 1
2
)

i,k x
k− 1

2 , where, w
( 1
2
)

1,1 =
2

Γ(3
2
)
, w

( 1
2
)

2,1 =
−6

Γ(3
2
)
, w

( 1
2
)

2,2 =
12

Γ(5
2
)
.

Therefore:

D
1

2x2 = x− 1

2 [y1 w
( 1
2
)

1,1 x+ y2 w
( 1
2
)

2,1 x+ y2 w
( 1
2
)

2,2 x
2] =

2

Γ(5
2
)
x

3

2 .
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3 Solution of the fractional diffusion equation

Consider the fractional diffusion equation of type given in Eq.(3). In order to

use Legendre collocation method, we first approximate u(x, t) as:

um(x, t) =
m
∑

i=0

ui(t)Pi(x). (15)

From Eqs.(3), (15) and Theorem 2.1 we have:

m
∑

i=0

dui(t)

dt
Pi(x) = d(x, t)

m
∑

i=dαe

i
∑

k=dαe

ui(t)w
(α)
i,k x

k−α + s(x, t), (16)

we now collocate Eq.(16) at (m+ 1− dαe) points xp as:

m
∑

i=0

u̇i(t)Pi(xp)

= d(xp, t)
m
∑

i=dαe

i
∑

k=dαe

ui(t)w
(α)
i,k xk−α

p + s(xp, t), p = 0, 1, ...,m− dαe. (17)

For suitable collocation points we use roots of shifted Legendre polynomial

Pm+1−dαe(x).

Also, by substituting Eqs.(15) and (10) in the boundary conditions (5) we can

obtain dαe equations as follows:

m
∑

i=0

(−1)iui(t) = 0,
m
∑

i=0

ui(t) = 0. (18)

Eq.(17), together with dαe equations of the boundary conditions (18), give

(m + 1) of ordinary differential equations which can be solved, for the un-

known ui, i = 0, 1, ...,m, using the finite difference method, as described in the

following section.

4 Numerical results

In this section, we implement the proposed method to solve FDE (3) with

α = 1.8, of the form:

∂u(x, t)

∂t
= d(x, t)

∂1.8u(x, t)

∂x1.8
+ s(x, t),
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defined on a finite domain 0 < x < 1 and t > 0,

with the coefficient function: d(x, t) = Γ(1.2)x1.8,

and the source function: s(x, t) = 3x2(2x− 1)e−t,

with initial condition: u(x, 0) = x2(1− x),

and Dirichlet conditions: u(0, t) = u(1, t) = 0.

Note that the exact solution to this problem is: u(x, t) = x2(1− x)e−t,

which can be verified by applying the fractional differential formula (2).

We apply the method with m = 3, and approximate the solution as follows:

u3(x, t) =
3

∑

i=0

ui(t)Pi(x). (19)

Using Eq.(17) we have:

3
∑

i=0

u̇i(t)Pi(xp) = d(xp, t)
3

∑

i=2

i
∑

k=2

ui (t)w
(1.8)
i,k xk−1.8

p + s(xp, t), p = 0, 1, (20)

where xp are roots of shifted Legendre polynomial P2(x), i.e.

x0 = 0.211324, x1 = 0.788675.

By using Eqs.(18) and (20) we obtain the following system of ordinary differ-

ential equations:

u̇0(t) + k1 u̇1(t) + k2 u̇3(t) = R1 u2(t) +R2 u3(t) + s0(t), (21)

u̇0(t) + k11 u̇1(t) + k22 u̇3(t) = R11 u2(t) +R22 u3(t) + s1(t), (22)

u0(t)− u1(t) + u2(t)− u3(t) = 0, (23)

u0(t) + u1(t) + u2(t) + u3(t) = 0, (24)

where:

k1 = P1(x0), k2 = P3(x0), k11 = P1(x1), k22 = P3(x1),

R1 = d(x0, t)w
(1.8)
2,2 x0.2

0 , R2 = d(x0, t) [w
(1.8)
3,2 x0.2

0 + w
(1.8)
3,3 x1.2

0 ],

R11 = d(x1, t)w
(1.8)
2,2 x0.2

1 , R22 = d(x1, t) [w
(1.8)
3,2 x0.2

1 + w
(1.8)
3,3 x1.2

1 ].

Now, we use FDM to solve the system (21)-(24). We will use the following

notations: ti = i∆t to be the integration time 0 ≤ ti ≤ T, ∆t = T/N, for

i = 0, 1, ..., N.
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Define un
i = ui(tn), sni = si(tn). Then the system (21)-(24), is discretizes

in time and takes the following form:

un
0 − un−1

0

∆t
+ k1

un
1 − un−1

1

∆t
+ k2

un
3 − un−1

3

∆t
= R1 u

n
2 +R2 u

n
3 + sn0 , (25)

un
0 − un−1

0

∆t
+ k11

un
1 − un−1

1

∆t
+ k22

un
3 − un−1

3

∆t
= R11 u

n
2 +R22 u

n
3 + sn1 , (26)

un
0 − un

1 + un
2 − un

3 = 0, (27)

un
0 + un

1 + un
2 + un

3 = 0. (28)

We can write the above system (25)-(28) in the following matrix form:











1 k1 −τ R1 k2 − τ R2

1 k11 −τ R11 k22 − τ R22

1 −1 1 −1

1 1 1 1





















u0

u1

u2

u3











n

=











1 k1 0 k2

1 k11 0 k22

0 0 0 0

0 0 0 0





















u0

u1

u2

u3











n−1

+











s0

s1

0

0











n

. (29)

We will use the notation for the above system:

AUn = B Un−1 + Sn, or, Un = A−1B Un−1 + A−1Sn, (30)

where

Un = (un
0 , u

n
1 , u

n
2 , u

n
3 )

T and Sn = (sn0 , s
n
1 , 0, 0)

T .

The obtained numerical results by means of the proposed method are shown

in Table 1 and Figures 1 and 2. In the Table 1, the absolute error between

the exact solution uex and the approximate solution uapprox at m = 3 and

m = 5 with the final time T = 2 are given. Also, in the Figures 1 and 2,

comparison between the exact and approximate solution with m = 5 and time

step τ = 0.0025, at T = 1, and T = 2, respectively, are presented.
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Table 1: The absolute error between the exact and approximate solution

at m = 3, m = 5 and T = 2.

x |uex − uapprox| at m = 3 |uex − uapprox| at m = 5

0.0 4.483787e-03 2.726496e-04

0.1 4.479660e-03 3.455890e-04

0.2 4.201329e-03 3.809670e-04

0.3 3.695172e-03 3.809103e-04

0.4 3.007566e-03 3.514280e-04

0.5 2.184889e-03 3.009263e-04

0.6 1.273510e-03 2.387121e-04

0.7 0.319831e-03 1.735125e-04

0.8 0.629793e-03 1.119821e-04

0.9 1.528978e-03 0.572150e-04

1.0 2.331347e-03 0.072566e-04

5 Conclusion

The properties of the Legendre polynomials are used to reduce the fractional

diffusion equation to the solution of system of ordinary differential equations

which solved by using FDM. The fractional derivative is considered in the

Caputo sense. The solution obtained using the suggested method is in very

excellent agreement with the already existing ones and show that this approach

can be solved the problem effectively. Although we only considered a model

problem in this paper, the main idea and the used techniques in this work are

also applicable to many other problems. It is evident that the overall errors

can be made smaller by adding new terms from the series (15). Comparisons

are made between approximate solutions and exact solutions to illustrate the

validity and the great potential of the technique.
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Figure 1: Comparison between the exact and approximate solution at T = 1

with τ = 0.0025, m = 5.

Figure 2: Comparison between the exact and approximate solution at T = 2

with τ = 0.0025, m = 5.
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