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Abstract

In option pricing one of the main problems to solve is how to de-
termine the fair price of an option when no-arbitrage opportunity is
considered. To solve this problem many models have been developed
but most of them there is no closed form solutions. In this paper, general
mean model is used to price Lookback option since it can entervene in
determination of minimum and maximum of underlying asset price un-
der some conditions. The study shows the construction of lattice using
moment-matching which provide a system of linear equations where real
world probabilities are unknown. To solve this system, Vandermonde
matrix is preferred as one of the easiest way to use. Since it is not al-
lowed to price with real world probabilities and as this paper deals with
incomplete market which has more than one martingale measure, it is
needed to choose the best one to use in pricing. Therefore, the relative
entropy method is introduced to find the minimum entropy martingale
measure which is the neutral probability in other words. Finally, the
results from pricing Binomial floating lookback option is compared to
well known Black-Scholes model.
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1 Introduction

Option trading has a long history even before Christ. Option is one of

types of derivatives that give the holder the rights but not obligation to buy

or to sell an underlying asset at a fixed price on the expiry date. Lookback

option is one of Exotic options which is not new to the financial market. It

came into existence many years ago before the birth of the first organised

option exchange in the world named ”Chicago Board of Option Exchange” in

1973 [8]. This is the largest option exchange because it can provide more than

one million contracts per day [1]. In 1973, Myron Scholes and Fisher Black

introduced famous option pricing model named Black-Scholes model which

deals with continuous time under some assumptions. Since that time many

researches have been done in option pricing in both continuous and discrete

time and noticed that standard models in continuous time are not doing well

in discrete counterpart that is why other methods like lattice, Monte Carlo,

numerical, statistical methods,... were created to solve this problem. Since

Exotic options can play a special role in which standard options cannot do

without difficulities, Exotic options are the best to use with discrete time

methods.

Lookback options are path-dependent exotic options whose payoffs depend

on the maximum and minimum of the underlying asset price attained through-

out the option lifetime. Standard Lookback options was first introduced by [3].

Lookback option as one of Exotic options allows the holders of the option to

know the historical path of the underlying asset and when to exercise. Holders

can choose the most beneficial price of the underlying asset which is occurred

in that time. Lookback option provide numerous advantages for option traders

since always end up in money due to its floating strike price. The payoff for

a call option is provided by the asset price at maturity minus the minimum

price observed during the option lifetime. For put option the payoff is given by

the maximum price observed during the option lifetime minus the asset price
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at maturity time.

General mean function was used by [9] to study the difference between

arithmetic mean and geometric mean in order to approximate mathematically,

the arithmetic Asian options and geometric Asian options. Since Lookback

option payoffs depend on minimum and maximum of underlying asset, in this

study general mean model is used to find minimum and maximum of the un-

derlying asset when the path of lattice is considered. [6] described how to

construct lattice using moment-matching technique to get a system of equa-

tions which contain jump probabilities as unknown. To solve that system, a

Vandemonde matrix was used with some condition on jump size denoted as

α which stands for the distance between two outcomes of stock when stock

is considered as an exponential Le
′
vy process. This paper is dealing with

moment-matching and general mean in pricing Lookback options and It has

the following structure: First section is introduction, Second section is moment

matching technique in binomial model, section three is minimum relative en-

tropy martingale measure, section four is general mean model, and the last is

to price lookback option and compare the result to Black-Scholes model.

2 Moment-matching technique in binomial model

Consider the stochastic distribution of the price of paying non-dividend

stock price in a risk-neutral economy. Let stock price Yt be a stochastic random

variable at time t in a period [t, T ] such that Yt = Yt−1Z where Z is a discrete

random variable defined as follows:

Z =

λ1 with probability p1

λ2 with probability p2

(1)

Such that λ1 > λ2 implies λ1 6= λ2

Matching the moments of a random variable X with a discrete random variable

D where E(X) = m1 as given below

Dt = m1 + Yt (2)

where t = 1, 2, 3, ..., T

Considering an incomplete market, the probabilities cannot be the same at
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each period.

Y1 = y0Z where Z is expressed in equation (1) then at t = 1 the equation (2)

will be

D1 = m1 + Y1

By applying moment matching technique yieldsE(Y 0
1 ) = p1 + p2 = µ0

E(Y1) = E(y0Z) = y0λ1p1 + y0λ2p2 = µ1

In matrix form, it can be written as(
µ0

µ1

)
=

(
1 1

y0λ1 y0λ2

)(
p1

p2

)
(3)

Let V =

(
1 1

y0λ1 y0λ2

)
represents the Vandermonde matrix obtained in equa-

tion (3) then jump probability can be determined as

−→p = V −1−→µ (4)

where −→p and −→µ are vectors containing the probability and moments respec-

tively. The probability p on each period is unique as it is possible to determine

the inverse of Vandermonde matrix since it has been confirmed by [5].

Definition 2.1. Vandermonde matrix is investigated by Alexandre-Thophile

Vandermonde, It is a matrix with the terms of a geometric progression in each

row. (Some authors use the transpose of the matrix). It has the following form

VN =


1 1 · · · 1

δ1 δ2 · · · δN

δ2
1 δ2

2 · · · δ2
N

...
...

. . .
...

δN−1
1 δN−1

2 · · · δN−1
N

 (5)

The determinant has been proven by [4] and it is written as

det(VN) =
∏

2≤i<j≤N

(δj − δi)
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If all δi are distinct and different from zero then, the matrix is also guaranteed

to be invertible. Consider

δi = y0λi where 1 ≤ i ≤ N with N ∈ ℵ (6)

Will give the general lattice matrix with the final row missing.

Theorem 2.2. For a Vandermonde matrix VN with elements defined by (6),

the elements of inverse are given by

(V −1
N )ij =

(−1)j−iσN−j,i∏N
k=1,k 6=i y0(λk − λi)

(7)

where σN−j,i is a cofactor matrix. Matching the lattice to the first N − 1

moments gives the equation (4) Using formulas (7) and (4) gives

pi =
N∑

j=1

(V −1)ijµj−1 =
N∑

j=1

(−1)j−iσN−j,i∏N
k=1,k 6=i y0(λk − λi)

µj−1 (8)

for more details see [6].

2.1 Determination of transition probabilities in bino-

mial lattice

The expression of probabilities when N is even is given in equation (8). For

binomial lattice N = 2, then by replacing the value of i anf j yields p1 and p2

respectively.

p1 =
2∑

j=1

(−1)j−1σ2−j,1∏2
k=1,k 6=i y0(λk − λ1)

µj−1 =
σ1,1µ0

y0(λ2 − λ1)
− σ0,1µ1

y0(λ2 − λ1)

p2 =
2∑

j=1

(−1)j−2σ2−j,2∏2
k=1,k 6=i y0(λk − λ2)

µj−1 =
−σ1,2µ0

y0(λ1 − λ2)
+

σ0,2µ1

y0(λ1 − λ2)

In matrix form we have

−→p =

(
p1

p2

)
=

(
σ1,1

y0(λ2−λ1)
− σ0,1

y0(λ2−λ1)
−σ1,2

y0(λ2−λ1)

σ0,2

y0(λ2−λ1)

)(
µ0

µ1

)
(9)

From equation (3) the Vandermonde matrix of order two is constructed and its

inverse should be compared to the inverse of Vandermonde matrix in equation
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(9) to get the adjacent matrix. The deteminant of Vandermonde matrix V of

order two defined in equation (3) is given by

det(V ) = y0λ2 − y0λ1 = y0(λ2 − λ1)

and the inverse is

V −1 =
1

y0(λ2 − λ1)

(
y0λ2 −1

−y0λ1 1

)
=

(
y0λ2

y0(λ2−λ1)
−1

y0(λ2−λ1)
−y0λ1

y0(λ2−λ1)
1

y0(λ2−λ1)

)
(10)

From Algabra, two square matrices are equal if and only if the element located

in the same position are the same. Then by comparing inverse of Vandermonde

matrix in equation (9) and (10) yield

σ1,1

y0(λ2 − λ1)
=

y0λ2

y0(λ2 − λ1)
;− σ0,1

y0(λ2 − λ1)
=

−1

y0(λ2 − λ1)

− σ1,2

y0(λ2 − λ1)
=

−y0λ1

y0(λ2 − λ1)
;

σ0,2

y0(λ2 − λ1)
=

1

y0(λ2 − λ1)

From the above equations we have

σ1,1 = y0λ2; σ0,1 = 1; σ1,2 = y0λ1; σ0,2 = 1 (11)

By replacing (11) in equation (9) then the binomial probabilities would be

p1 =
λ2µ0

(λ2 − λ1)
− µ1

y0(λ2 − λ1)
(12)

p2 = − λ1µ0

(λ2 − λ1)
+

µ1

y0(λ2 − λ1)
(13)

Since p1 + p2 = µ0 = 1, then p1 > 0 if µ1 > λ2y0 while p2 > 0 when µ1 < λ1y0

which means that both p1 and p2 are positive if and only if λ2y0 < µ1 < λ1y0 or

λ2 < µ1

y0
< λ1. The above assumptions indicate that all moments are positive

which imply the positivity of probabilities. In this study, the case y0λi ≥ 1 is

considered where i = 1, 2.

3 Minimal Relative Entropy Martingale Mea-

sure

Many authors have discused the minimal Entropy Martingale measure in

different ways. Some of them say [7] described how to use minimal entropy
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martingale measure to price American and European options in multinomial

lattices which take into cumulants information. [2] gave the sufficient condi-

tions for the existence and uniqueness of equivalent martingale measure which

minimizes the relative entropy with respect to the real world probabilities and

many others.

In this paper which deals with incomplete market where there is more

that one martingale measure, a good method is needed to choose a suitable

martingale measure that is why relative entropy were preferred.

Definition 3.1. Given two probability measure Q = (q1, q2) and P =

(p1, p2) > 0 ; then relative entropy of Q with respect to P given by R(Q||P ) is

defined as

R(Q||P ) =
2∑

i=1

qiln(
qi

pi

) (14)

Consider binomial one-period model. Suppose λi has two possible values,

denoted by λ1 and λ2 with corresponding probabilities from p1 to p2. They

must be a positive probability that the stock will go down, similarly going up.

We impose a probability distribution q on the set of stock prices y0λ1, y0λ2 such

that the following two conditions are satisfied. If q is a probability measure,

then can be expressed as
2∑

i=1

qi = 1

Another condition is that q has risk neutal implies that the expected value of

y1 under q has to be equal to y0, it can be written as

2∑
i=1

qiλi = y0

Then it is needed to solve the minimization problem of relative entropy between

q and the real world probability p subject to these two contraints. Before to

do so, let show that the relative entropy is a convex function of q. Consider

the function

F : V : <n −→ < and q ⇁ F (q) =
2∑

i=1

qiln(
qi

pi

) with

V = V ∗ = <n, Y = Y ∗ = <m and q ∈ V : q = (q1, q2), γ ∈ Y : γ = (γ1, γ2)
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Let the set of equivalent martingale measure be defined as

Me =

{
q ∈ V :

2∑
i=1

qi = 1,
2∑

i=1

qiλi = y0, q > 0

}
then the convexity of relative entropy in (14) should be determined from

i(q, p) = R(Q||P ) =
2∑

i=1

qiln(
qi

pi

)

Let q1,p1 and q2,p2 be the probability distribution, define q and p as

q = αq1+(1−α)q2 and p = αp1+(1−α)p2 with α ∈ [0, 1] then

i(q, p) = i(αq1+(1−α)q2, αp1+(1−α)p2) =
2∑

i=1

(αq1+(1−α)q2)ln(
αq1 + (1− α)q2

αp1 + (1− α)p2

)

≤ α
2∑

i=1

q1ln(
q1

p1

) + (1− α)
2∑

i=1

q2ln(
q2

p2

) = αi(q1, p1) + (1− α)i(q2, p2)

Hence relative entropy in equation (14) is convex. Then, the problem can be

solved using the Lagrange multipliers method by formulating the augmented

cost function using the constraints that has indicated in condition one and two

respectively L(q, γ) = F (q) +
∑m

i=1 γiBi

s.t
∑2

i=1 qi = 1,
∑2

i=1 qiλi = y0

Where

B1 =
2∑

i=1

qi − 1 and B2 =
2∑

i=1

qiλi − y0

Lagrange equation becomes

L(q, γ1, γ2) =
2∑

i=1

qiln(
qi

pi

) + γ1B1 + γ2B2

=
2∑

i=1

qiln(
qi

pi

) + γ1(
2∑

i=1

qi − 1) + γ2(
2∑

i=1

qiλi − y0)

where γ1 and γ2 are Lagrange multipliers. By minimizing L with respect to q,

set the partial derivative ∂L
∂qi

equal to zero for all i ∈ N. This leads to

ln(
qi

pi

) + 1 + γ1 + γ2λi = 0
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by arranging yields

qi =
piexp(ηλi)∑2
i=1 piexp(ηλi)

=
piexp(ηλi)

E[exp(ηλi), p]
(15)

and η function is written as follows

f(η) =
E[Zexp(ηZ), p]

E[exp(ηZ), p]
or

∑2
i=1 λipiexp(ηλi)

E[exp(ηλi), p]
(16)

To determine the values of neutral probability qi we need to analyse the func-

tion of η and find η∗ such that f(η∗) = y0 this can be determined by trial and

error. By studying the limit of the function in (16) yields

lim
η−→−∞

f(η) = λ2; lim
η−→+∞

f(η) = λ1

Proof. f(η) could be written as follows

f(η) =
λ1p1exp(ηλ1) + λ2p2exp(ηλ2)

p1exp(ηλ1) + p2exp(ηλ2)

Let consider α0 = λ1, α1 = λ1p1, β0 = λ2, β1 = λ2p2, α = p1, β = p2 then f(η)

becomes

f(η) =
α1e

ηα0 + β1e
ηβ0

αeηα0 + βeηβ0
=

α1eηα0+β1eηβ0

α1eηα0

αeηα0+βeηβ0

α1eηα0

=
1 + α−1

1 β1e
η(β0−α0)

α−1
1 α + α−1

1 βeη(β0−α0)
= α1α

−1

[
1 + α−1

1 β1e
η(β0−α0)

1 + α−1βeη(β0−α0)

]
Set x = eη(β0−α0) = eη(λ2−λ1) since λ1 > λ2 then η −→ −∞ implies x −→ +∞
then

f(x) = α1α
−1

[
1 + α−1

1 β1x

1 + α−1βx

]
lim
−∞

f(η) = lim
+∞

f(x) = α1α
−1α−1

1 β1

α−1β
=

β1

β
=

λ2p2

p2

= λ2

If η −→ +∞ then x −→ 0 which means that

lim
+∞

f(η) = lim
0

f(x) = α1α
−1 =

α1

α
=

λ1p1

p1

= λ1

It is clear that in binomial case limit should be

lim
η−→−∞

f(η) = λ2; lim
η−→+∞

f(η) = λ1
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Figure 1: f(η) versus η in Binomial

By studying equation (16) yields

Example 3.2. Binomial case Consider y0 = 2.5, λ1 = 5, λ2 = 2, µ0 = 1

from assumption of moments in binomial, one can get 5 < µ1 < 12.5, let in

this case consider µ1 = 10 then by replacing back in equation (12) and (13)

yields p1 = 0.6667 and p2 = 0.3333. From these information f(η) in (16) is

determined in Figure 1 where one should find η∗ by trial and error. Consider

η∗ = −0.8 and use it to determine neutral probabilities qi. From the equation

(15) we have

q1 =
p1exp(η∗λ1)

p1exp(η∗λ1) + p2exp(η∗λ2)
=

0.6667exp(−0.8 ∗ 5)

0.6667exp(−0.8 ∗ 5) + 0.3333exp(−0.8 ∗ 2)
= 0.154

q2 =
p2exp(η∗λ2)

p1exp(η∗λ1) + p2exp(η∗λ2)
=

0.3333exp(−0.8 ∗ 2)

0.6667exp(−0.8 ∗ 5) + 0.3333exp(−0.8 ∗ 2)
= 0.846

Therefore, after getting this neutral probabilities q1 and q2, it is possible

to price.
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4 General Mean Function

Definition 4.1. If x is a non-zero real number and S1, S2, ..., Sn are positive

real numbers which represent the stock, then general mean with exponential x

of these positive real numbers is

M(S|x) = f(x) =

(
1

N

N∑
i=1

Sx
i

) 1
x

Assume that for all i ∈ 1, 2, ..., N and Si > 0 then in exponential form yields

f(x) = e
1
x

ln[ 1
N

∑N
i=1 Sx

i ] =

(
1

N

N∑
i=1

Sx
i

) 1
x

(17)

where N is number of observation, S is stock and x is a parameter which

drive the behavior of stock.

1. Domain of definition

Df =

{
x ∈ < : x 6= 0,

N∑
i=1

Sx
i > 0

}
= <−{0}∩< = <−{0} = (−∞, 0)∪(0,∞)

2. Parity

For all x ∈ Df,−x ∈ Df, such that

f(x) 6= f(−x)

f(−x) 6= −f(x)

Therefore, function f is neither even nor odd. Which means geometri-

cally, that the function adimits no symmetry with ordinate (y-axis) and

no symmetry with the origine. Other word, if f(−x) = f(x) means that

there is symmetry with y since −x and x are symmetry.

3. Limits on the boundaries

In order to prove geometric mean given by

lim
x−→0

Mx = M0

We can rewrite the definition of Mx using the exponential function as it

is in equation (17). Then if the limit x −→ 0, we can apply l’Hôspital’s
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rule to the argument of the exponential function. Differentiating the

numerator and denominator with respect to x, we have:

lim
x−→0

∑N
i=1 ωiS

x
i

x
= lim

x−→0

∑N
i=1 ωiS

x
i ln Si∑N

i=1 ωiSx
i

1

Let

y =
N∑

i=1

ωiS
x
i where ln(y) = ln(

N∑
i=1

ωiS
x
i ) = x

N∑
i=1

ωilnSi

(ln(y))′ =
y′

y
=

N∑
i=1

ωilnSi

y′ = y
N∑

i=1

ωilnSi =
N∑

i=1

ωiS
x
i .

N∑
i=1

ωilnSi =
N∑

i=1

ωi(S
x
i lnSi) =

N∑
i=1

ωiS
x
i lnSi

Then
(ln
∑N

i=1 ωiS
x
i )′

x′
=

∑N
i=1 ωiS

x
i lnSi∑N

i=1 ωiSx
i

= lim
x→0

∑N
i=1 ωiS

x
i ln Si∑N

i=1 ωiSx
i

=
N∑

i=1

ωi ln Si = ln(
N∏

i=1

Sωi
i )

By the continuity of the exponential function, we can substitute back

into the above relation to obtain

lim
x→0

Mx(S1, ..., SN) = exp(ln(
N∏

i=1

Sωi
i )) =

N∏
i=1

Sωi
i =

N∏
i=1

S
1
N
i

= N

√√√√ N∏
i=1

Si = M0(S1, ..., SN). (18)

For other boundary we have

lim
x→+∞

M(x) = lim
x→+∞

(
1

N

N∑
i=1

Sx
i

) 1
x

= max (S1, S2, ..., SN) = S1 (19)

where S1 > S2 > ... > SN > 0.
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Proof. consider

M(S|x) =

(
1

N

N∑
i=1

Sx
i

) 1
x

=

(
Sx

1 + Sx
2 + ... + Sx

N

N

) 1
x

= exp

{
1

x
ln

(
Sx

1 + Sx
2 + ... + Sx

N

N

)}
= exp

{
1

x
ln

[
Sx

1 (1 + (S2

S1
)x + (S3

S1
)x + ... + (SN

S1
)x)

N

]}

= exp

{
1

x
ln(Sx

1 ) +
1

x
ln(

1

N
) +

1

x
ln

[
1 + (

S2

S1

)x + ... + (
SN

S1

)x

]}
= exp

{
ln(S1) +

1

x
ln(

1

N
) +

1

x
ln(1 + Yx)

}
where

Yx =
N∑

i=2

(
Si

S1

)x. (20)

If x → +∞, then Yx → 0. Since Si

S1
< 1, for all i belong to {2, 3, ..., N}.

Then ln(1 + Yx) is equivalent to equation (20) at zero.

Therefore,

M(S|x) = exp

{
ln(S1) +

1

x
ln(

1

N
) +

N∑
i=2

(
Si

S1

)x

}

= exp {ln(S1)} exp

{
1

x
ln(

1

N
) +

N∑
i=2

(
Si

S1

)x

}

Since 1
x
ln( 1

N
) → 0 as x → +∞ and

∑N
i=1

(
Si

S1

)x

→ 0 when x → +∞
with Si

S1
< 1 for i belong to {2,3,4,...,N} with finite number of observation

N .

Therefore,

lim
x→+∞

M(S|x) = S1 = max{S1, S2, ..., SN} (21)

Let show that for other boundary

lim
x→−∞

M(S|x) = lim
x→−∞

(
1

N

N∑
i=1

Sx
i

) 1
x

= min (S1, S2, ..., SN) = SN (22)

where S1 > S2 > ... > SN > 0.
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Proof.

M(S|x) =

(
1

N

N∑
i=1

Sx
i

) 1
x

=

(
Sx

1 + Sx
2 + ... + Sx

N

N

) 1
x

= exp

{
1

x
ln

(
Sx

1 + Sx
2 + ... + Sx

N

N

)}
= exp

{
1

x
ln

[
Sx

N(( S1

SN
)x + ( S2

SN
)x + ... + (SN−1

SN
)x + 1)

N

]}

= exp

{
1

x
ln(SN)x +

1

x
ln

[
( S1

SN
)x + ( S2

SN
)x + ... + (SN−1

SN
)x + 1

N

]}

= exp

{
ln(SN) +

1

x
ln(

1

N
) +

1

x
ln(1 + Kx)

}
Let consider

Kx =
N−1∑
i=1

(
Si

SN

)x

=

(
S1

SN

)x

+

(
S2

SN

)x

+ ... +

(
SN−1

SN

)x

If x → −∞ then Kx → 0 Since Si

SN
> 1, for all i ∈ {1, 2, . . . , N − 1}.

Then ln(1 + Kx) is equivalent to Kx at zero.

Therefore,

M(S|x) = exp

{
ln(SN) +

1

x
ln(

1

N
) +

N−1∑
i=1

(
Si

SN

)x

}

= exp {ln(SN)} exp

{
1

x
ln(

1

N
) +

N−1∑
i=1

(
Si

SN

)x

}
Since lim

x→−∞
1
x
ln( 1

N
) → 0 and lim

x→−∞

∑N
i=1(

Si

SN
)x = 0 as number of obser-

vation N is finite. Then

lim
x→−∞

M(S|x) = SN = min{S1, S2, ..., SN}

Example 4.2. Let find min(y0, y0λ2, y0λ
2
2)= min(2.5, 5, 10). Using

general mean, given that N = 3, y0 = 2.5, y0λ2 = 5 and y0λ
2
2 = 10 By

using general mean equation in (19) yields

lim
+∞

M(S|x) = 2.5 ∗ e0 = 2.5 = min(2.5, 5, 10)
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Example 4.3. In similar way, let determine the max(y0, y0λ2, y0λ
2
2)=

max(2.5, 5, 10). Using general mean, given that N = 3, y0 = 2.5, y0λ2 =

5 and y0λ
2
2 = 10 By applying general mean in (21) yields

lim
+∞

M(S|x) = 10 ∗ e0 = 10 = max(2.5, 5, 10)

4. Asymptotes

This function doesn’t admit vertical and oblic asymptotes. Horizontal

asymptote it has been proved in part of limits on the boundaries. For

all x ∈ (−∞, 0) ∪ (0,∞)

Figure 2: Domain of general mean solutions

5. Local extrema

f ′ : Df −→ <

f(x) is continuous function on Domain x ∈ Df

Recall:

f(x) = exp

{
1

x
ln

{
1

N

N∑
i=1

exp (xln(Si))

}}
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f(x) = exp

{
1

x
G(x)

}
where

G(x) = ln

{
1

N

N∑
i=1

exp (xln(Si))

}

G′(x) =

∑N
i=1 ln(Si)exp(xln(Si))∑N

i=1 exp(xln(Si))

Since f(x) = exp
{

G(x)
x

}
For all x ∈ Df , f ′ could be determined as:

f ′(x) =

{
G(x)

x

}′

exp

{
G(x)

x

}
(23)

Since
(
eu(x)

)′
= u′(x)eu(x) then(

G(x)

x

)′

=
G(x)− xG′(x)

x2

The sign of f ′ depends on the sign of

G(x)− xG′(x) (24)

From equation (23) the expression

exp

{
G(x)

x

}
is always positive which means that

(
G(x)

x

)′

is the term which can make f ′(x) zero. Therefore,

G(x)− xG′(x) = 0

implies that

G(x) = xG′(x)

whether Si > 1 or 0 < Si < 1 there is no problem because at x = 0 ,

xG′(x) = 0.

Then for all x ∈ (0, +∞), G(x) > 0 and G′(x) > 0.

The solution of f(x) where x → 0 exist since

limx→0 = limx→0− = limx→0+ =
N∏

i=1

S
1
N
i ∈ <∗+
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Figure 3: The continuity of general mean function

If x = 0, G(0) = ln( 1
N

∑N
i=1 1)=ln( 1

N
.N) = 0

G(0)− 0G′(0) = 0

f ′(x) = 0 admits one solution at x = 0.

6. Concavity

From (23) we set

H(x) =
G(x)− xG′(x)

x2
such that

H ′(x) = −
(

x2G′′(x)− 2xG′(x) + 2G(x)

x3

)
H ′(x) > 0 if and only if

x2G′′(x)− 2xG′(x) + 2G(x)

x3
< 0, then

2G(x) > 2xG′(x)− x2G′′(x)

Therefore, we have H ′(x) > 0 with x ∈ (−∞, 0). Since (H(x))2 and

exp
{

G(x)
x

}
are positive. With H ′(x) > 0 implies that f ′′(x) > 0, which

means that f(x) is convex in the interval of the domain (−∞, 0) and

concave in the interval of domain (0,∞).
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7. Graph

Figure 4: Graph representation of general mean function

4.1 General mean model

By referring to the concept of call and put option where Xc = max(ST −
K, 0) and Xp = max(K − ST , 0) with T maturity time, K strike price and S

the stock. We are considering general mean function as in equation (17) to be

the strike price depends on x and denoted by Kx where in (17) S is stock, N

is number of observation and x is a parameter. The function in (17) is well

defined since Si > 0 and x ∈ (−∞, 0)∪ (0, +∞). Then by valuing the value of

x yields different strike price of exotic options as follows
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

lim
x−→−∞

f(x) = min(Si) = K−∞

...

f(−1) =
N

1
x1

+ ... + 1
xN

= K−1

...

lim
x−→0

f(x) =
∏N

i=1 S
1
N
i = K0

...

f(1) = 1
N

∑N
i=1 Si = K1

f(2) =
√

1
N

∑N
i=1 S2

i = K2

...

lim
x−→+∞

f(x) = max(Si) = K+∞

(25)

The function in (17) is just a generalization of strike price for options between

Asian and Lookback option as it is clear in (25). Therefore, the general mean

model should be :

Xc = max (ST − f(x), 0)

Xp = max (f(x)− ST , 0)

Generally we call this function f(x) the general mean which is denoted by

M(x). It is clear that with x tends to −∞ or +∞ general mean function

express the same strike price as the one used in standard lookback option as

it is shown in (22) and (19) respectively.

5 Pricing Lookback Option

Let Yn denote the stock price at time t = tn with n = 0, 1, 2, ..., n − 1.

Suppose that λi ∈ < that satisfies 0 < λ2 < 1 + r < λ1. Then the binomial

lattice diagram will be

Determining the stock price at A,B and C nodes. It is needed to consider

payoffs and use the backward to find the initial stock price A. Therefore, to
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Figure 5: Binomial tree in pricing Lookback option

determine the price at each node yields

B =
1

1 + r

[
q1

(
y0λ

2
1 −K1

−∞
)+

+ q2

(
y0λ1λ2 −K2

−∞
)+]

C =
1

1 + r

[
q1

(
y0λ2λ1 −K3

−∞
)+

+ q2

(
y0λ

2
2 −K4

−∞
)+]

Where K1
−∞ = min {y0, y0λ1, y0λ

2
1}, K2

−∞ = min {y0, y0λ1, y0λ1λ2}, K3
−∞ =

min {y0, y0λ2, y0λ2λ1}, K4
−∞ = min {y0, y0λ2, y0λ

2
2}. With indixes 1, 2, 3, 4 to

indicate number of paths in lattice. The initial stock price will be

A =
1

1 + r
(q1B + q2C)
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From Black-Scholes world, the following equations are used

u = λ1 = eσ
√

T , d = λ2 = e−σ
√

T and q =
erT − d

u− d
=

erT − λ2

λ1 − λ2

The Black Scholes formula for call option is given by

C = StN(d1)−Ke−rT N(d2)

where

d1 =
ln(St

K
) + (r + σ2

2
)T

σ
√

T
and d2 =

ln(St

K
) + (r − σ2

2
)T

σ
√

T
= d1 − σ

√
T

6 Pricing lookback option via general mean

model

Let consider λ1 = 5, λ2 = 2, y0 = 2.5, r = 1.5, K = 3, T = 2 and

σ = ln(λ1)√
T

= 1.6. For p1 and p2 to be positive this condition y0λ1 > µ1 > y0λ2

should hold. One can choose any value in that interval. Let choose µ1 = 10

for example. As it has been done early q1 = 0.154 and q2 = 0.846. From the

following figure Referring to the binomial formulas in section five, we can find

the stock price at the nodes B ,C and A respectively. The stock price should

be B = 11.31, C = 3.924 and A = 2.025 ≈ 2.03. In Black-Scholes way, the

results will be d1 = 1.624, d2 = 0.024 and C = 2.029 ≈ 2.03

7 Conclusion

Lattice method and Black-Scholes model are famous in financial world in

pricing discrete and continuous time respectively. By comparing Binomial

model and Black-Scholes model in this study, the out put shows that both

models end up with approximately equal results considering call option. It is

clear that general mean model in this work helped in determining the payoff of

Lookback option can be also a way of observing other option which is hidden
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Figure 6: Pricing floating lookback via general mean(Binomial case)

between Asian option and Lookback option for further research. This work

also make clear that even the minimum of the whole lattice is considered

in pricing the result will make sense. By considering the stike price exactly

equal to the minimum of lattice or not far from it, one should also end up

with approximately the same results. From the results obtained in study, one

can say that comparing Binomial model and Black-Scholes model there is no

significant difference.
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