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Abstract 

A comprehensive statistical model is developed for the correct evaluation of 

contraception effectiveness. From the probability of a woman, using some 

contraceptive procedure, conceiving in a single cycle, the pregnant woman rate 

and the pregnancy rate are defined and calculated. This is used to infer the values 

of these rates from experimental trials, accounting for the number of followed 

women and for the period they are followed for, whatever kind of events may be 

counted up in the trials, either pregnant women or pregnancies. However, 

computing pregnancies can bias the results of a trial, since the conceiving women, 

supposedly with a greater risk of pregnancy, should be replaced in the sample by 

new ones, whereas computing pregnant women allows more objectivity, since 

those pregnant women can stay in the sample up to the end of the trial. Thus, a 

more realistic effectiveness rate can be deduced from the investigation. 
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1  Introduction  

Human contraception is a highly important current issue and this is 

particularly true of the statistical aspects of clinical investigation referred to the 

effectiveness of different contraceptive procedures. This is why there has always 

been abundant literature devoted to this subject, of which we only quote some 

examples [1]-[5]. 

Actually, the competitivity, both scientific and commercial, in this field is 

very high and demands much accuracy when performing the investigation and 

much reliability when applying the results to potential users of contraception. 

The evaluation of contraception effectiveness starts from experimental data 

obtained from clinical trials and needs go through statistical processing, which 

sometimes is not performed with the required mathematical rigour, but runs up 

against some difficulty as noticed by Trussell (1991), [6]. 

In fact selecting the sample for a trial may have the first difficulty, for, 

whereas the contraception is of universal utility and will be used by very different 

populations, it may be very difficult to get a sample really representative of such 

variable populations. 

Then, once the trial has been performed, to take the clinical results from it 

could be an easy task, but to draw some significant general conclusion with 

respect to the tested contraceptive method may involve some difficulty. 

Effectively, nowadays the contraception effectiveness being very high, the failure 

rates are extremely small and consequently its evaluation requires much accuracy. 

This paper seeks to give contraceptive statistics a solid base, via four main 

objectives: 

 1.- to accurately define different failure rates, 

 2.- to show how contraceptive trials should be conducted to ensure 

statistical rigour, 

 3.- to describe a method for deriving from trial results reliable failure 

rates, with a well defined statistical confidence, and  
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 4.- to recognize and to establish some limitations to the validity of  

the conclusions from contraceptive clinical trials. 

While this paper does not deal with any clinical feature of contraception, 

these notes may be very valuable referring in general to methodological aspects of 

statistics and in particular to clinical research into contraceptive effectiveness. 

Moreover, the present model is self-contained and easy to carry on, since it 

deals in a comprehensive way, including extensive tables, with a practical subject 

such as the statistical inference in contraception. 

 

 

2  Contraception Failure Rates 

There are two main failure rates in use. In this section they are precisely 

defined and related to each other. 

Actually, the failure of any contraceptive method may be evaluated through 

the rate R/100 women-years, which admits at least two versions: 

 A) the pregnant woman rate, if R is the average number of pregnant 

women in a group of W women, in t years, being 100=Wt , and 

 B) the pregnancy rate, if R is the average number of pregnancies of W 

women during t years, also being 100=Wt . The pregnancy rate so defined is 

commonly named as the Pearl rate or Pearl index. 

To avoid confussion, the percentages of these two versions of the failure rate 

will be named RA and RB, respectively. In fact, they correspond to different 

statistical parameters. Therefore, equating them, when possible, requires an 

analytical justification, and, in any case, it seems appropriate to relate one to the 

other. The statistical inference process to determine the actual values of the failure 

rates with a certain confidence will be explained later. 

 

 



102                                     Statistical Inference in Contraception  

2.1 Pregnant Woman Rate 

 If q is the probability of pregnancy of a woman, using some contraceptive 

procedure, in a menstrual cycle, then the probability of this woman having no 

pregnancies in t years, each assumed to comprise 13 menstrual cycles, is given by 

 tqtP 13)1(),0( −=      (1) 

whereas the probability of one woman having 0≠x  pregnancies, within the 

same time interval, is 

 tqtxP 13)1(1),( −−=      (2) 

Hence the pregnant woman rate, that is the average number of pregnant women, 

out of a total of W women, in t years, can be written as ),( txWP , giving 

 [ ]tqWRA 13)1(1 −−=      (3) 

This expression proves that RA depends on W, which means that the condition 

100=Wt  is insufficient. For example, when q = 0.003, if W = 100 and t =1, RA = 

3.831, whereas, if W = 20 and t = 5, RA = 3.548. Thus, if the pregnant woman rate 

is to be meaningful, it needs to be precisely defined for specific W and t, and we 

recommend that the convention W = 100 and t = 1 should be adopted, such that RA 

be the average percentage of pregnant women in one year. It is this definition of 

RA that will be utilized for the remainder of this paper, such that 

 [ ]13)1(1100 qRA −−=      (4) 

 

 

2.2 Pregnancy Rate 

 Now, the probability of one woman having n pregnancies in t years of 

exposure is 

 t
n

ntn CqqtnP 1313)1(),( −−=      (5) 

and the pregnancy rate, as previously defined, is 
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 The definition of the pregnancy rate in this way does not account for the fact 

that a woman is not exposed to pregnancy uninterruptedly, but a pregnancy makes 

impossible another one for some time. Nevertheless, the question would be how 

long a pregnancy takes before a new pregnancy is possible. Since it can vary from 

nearly nothing, in case of abortion, up to about eighteen months, in case of normal 

delivery and lactancy, the correct approach is to define the pregnancy rate and 

calculate it under the most unfavourable hypothesis, when the rate can reach the 

highest value. The same applies to other causes that prevent from pregnancy. 

 According to this, RB is defined and calculated as the average number of 

pregnancies of W women during t years (Wt = 100), as if they could conceive in 

all their possible cycles of the t years. 

Then, RB does not depend on W and t, but on the product Wt and is given by 

 qRB 300,1=      (7) 

whatever W may be, provided that Wt = 100. 

 Now we can talk of the pregnancy rate as RB/100 women-years. In this case, 

referring the pregnancy rate to one woman during a hypothetical period of 100 

years, although unrealistic, may be useful to evaluate easily the expected number 

of pregnancies of a woman in a real period of exposure of 100/x fertile years, for it 

would be worth RB/x. 

 

 

2.3 Comparison of Failure Rates 

 Beyond the above considerations, Eqs. (4) and (7) show that RBRA ≠ . For 

instance, when q = 0.003, RA = 3.831 (pregnant women) whereas RB = 3.900 

(pregnancies). Nevertheless, within certain conditions, both failure rates become 

virtually numerically equal. 
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Effectively, if the right hand side of Eq. (4) is developed in series, it remains 

 .....
!3

111213100
!2

1213100
!1
13100 32 −+−= qxxxqxxqxRA  

Then, equating 

 RBqRA == 300,1      (8) 

and leaving out all the remaining terms results in a relative error of RA 

 q
RA

6<
ε      (9) 

 This error depends only on q and when q is very small the error is negligible, 

so equating the two failure rates is justified. This means that the average number 

of pregnant women in a group of 100 women, during one year, if it is samll 

enough, yields as well the average number of pregnancies of W women during 

100/W years. 

In any case, the relation between the pregnant woman rate and the pregnancy 

rate is proportioned by Eqs. (4) and (7). Therefore, determining RA allows in all 

cases the calculation of RB, and vice versa. In this way, once one of them has been 

determined, inequality (9) bounds the error from equating RA = RB and indicates 

whether this is acceptable or the calculation of the other rate must be performed 

more accurately through Eqs. (4) and (7). 

 

 

3  Design and Conduct of Contraception Trials  

 Contraception trials need to be carried out with statistical rigour in order to 

infer any statistical parameter with a well determined confidence, so that the 

investigation into this subject can be reliable to potential users. 

 In this section two important features of any contraception statistical research 

are analysed, the outcome event of the trial and the characteristics of the samples. 
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3.1 Choice of Outcome Event 

 In a contraception trial a number W of women, who are using certain 

contraceptive procedure, are exposed to pregnancy during a time period of t years. 

In the course of the trial there are two events that may be accounted for, either 

pregnant women or pregnancies. According to this, it is quite true that the trial 

must be performed in a different way in each case, and also the result takes 

different forms and has to be dealt with differently. 

If pregnant women are counted up, once a woman becomes pregnant, she 

may be removed from the trial, and there is no need neither to replace her nor to 

wait until the resolution of her pregnancy. Paradoxically, she remains in the 

sample, but no further information is required from her, since she is accounted for 

as having an undetermined number of pregnancies (one or more). In this case, the 

result of the trial will be that, among W women, N of them have conceived within 

a period of t years. 

 Otherwise, if pregnancies are counted up, each woman getting pregnant has to 

be replaced, so that the sample always contains a constant number of women at 

risk of pregnancy and it can be said properly that the result of the trial has been of 

S pregnancies among W women, during t years. 

Evidently, from a statistical point of view, the two ways of performing a trial are 

correct, provided that the result is treated in the appropriate way, in order to 

determine, by statistical inference, the failure rates of the tested method. 

It is noted that, if pregnant women are computed, a sample of W women followed 

for t years is not equivalent to other sample of W´ women followed for t´ years, 

even when Wt = W´t´, since the number N of pregnant women will depend 

obviously on the total number of women of the sample. This is in agreement with 

Eq. (3). 

 On the contrary, if pregnancies are computed, instead of pregnant women, the 

two above mentioned samples of women are equivalent, as long as the number of 

followed cycles is the same in both cases. This is in accordance with Eq. (6). 
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The pregnant woman rate and the pregnancy rate of the tested contraceptive 

method can be determined with the desired statistical confidence in the two cases, 

either having computed the pregnant women or the pregnancies. 

 This is sound from a statistical point of view, and would be correct in real 

practice, if all women could be considered equivalent with respect to the risk of 

pregnancy. But it is not so, and the matter needs some important clarification. 

 Effectively, if pregnancies are being computed in a trial and each pregnant 

woman needs to be substituted by a new one, so that the number of women at risk 

of pregnancy remains constant in the sample, there is a trend to eliminate from the 

sample those women with a greater risk of pregnancy, leaving a more 

homogeneous population, with lower pregnancy risk. Thus, the longer this 

population is followed, the lower the observed rate of pregnancies will be, with 

which the evaluation of contraception could be severely biassed. 

 To avoid this effect, the use of a life table analysis was suggested by Potter [7] 

(1986). However, the life table analysis, besides complicating the interpretation of 

the trial results, also tends to make the experience of the participants seem 

homogeneous and to lack precision to identify patterns of use, as Keller et al.[8] 

(1981) had already indicated. 

 For this reason, we suggest simply to carry out the contraception trials by 

computing the pregnant women, instead of the pregnancies. This makes much 

easier to perform a trial and to evaluate its results. 

 In fact, if one computes the pregnant women, each pregnant woman is 

acccounted for as having an undetermined number of pregnancies (one or more). 

In this case, the pregnant women have not to be replaced, but they remain in the 

sample, with the only difference that they enter the group af pregnant women, 

from which the investigator does not inquire further information. They are counted 

up as pregnant women, irrespectively of how many pregnancies they could have 

during the whole time the trial may last. Thus, the population of the sample does 

not degenerate into a group of low pregnancy risk, but the sample remains the 
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same from the beginning of the trial up to the end. 

 Of course, the result of a clinical trial consisting of N pregnant women, 

among W women in t years, has to be dealt with accordingly, in order to infer the 

limits of the failure rates of contraception with a well defined confidence. This is 

shown in the following section.  

 

 

3.2 Standardization of Samples 

The aim of finding statistically the failure rates of contraceptive procedures is 

double. First, it makes possible to compare the effectiveness of different methods; 

second, it provides potential users with useful information about unwanted 

pregnancies. 

Referring to the latter objective, it is clear that each couple is a particular one, 

in the sense that the correctness and consistency with which they are to use the 

contraception, in some cases, depends mainly on them. For this reason, the 

application of statistical data to a couple may need to consider their particular 

circumstances. 

It is also well known that different couples have different grades of fertility 

and that the fertility of a couple varies with time. This means certainly that the risk 

of pregnancy per cycle and so the probability q of Eq. (1) is not the same for all 

couples and does not remain constant for every couple. 

This being absolutely true, as noted by Trussell9 (2014), and precisely for it, it 

is clear that contraception samples cannot adapt to every population, but need to 

be standardized and so the failure rates will correspond to an ideal population. 

Therefore, the application of statistical results has to be carried out in every case 

after considering all general, particular and even private circumstances. 

As for the former objective, the comparison of results drawn from different 

contraception trials also implies some standardization of the samples. To achieve 

this, there are several points, which may be accomplished in the selection of the 
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sample. These are: 

 1.- all the women of the sample have given at least one birth, 

 2.- none of them has a known cause that makes impossible a new 

pregnancy, 

 3.- all the women keep a regular sexual partner, and 

 4.- the age of the women is uniformly distributed within a determined 

interval, say from 25 to 35 years. 

 

 

4  Confidence Limits of Failure Rates 

 Although we discard conducting contraception trials by measuring the 

number of pregnancies for the above mentioned reasons, for the sake of clarity, we 

present the statistical inference process to calculate the confidence limitis of a 

contraceptive method in the two cases, after measuring the number of pregnant 

women and after measuring the number of pregnancies. In all cases the limits of 

contraception failure rates must be defined with precise confidence. 

 

 

4.1 Confidence Limits after computing the Number of Pregnant 

Women 

 If pregnant women have been counted up in a trial, one can consider that the 

probability of N women conceiving, within a sample of W women in t years, is 

 [ ] W
N

NWN CtxPtxPtWNP −−= ),(1),(),/(     (10) 

which is ploted in Figure. 1 in the three assumptions: N = 0 , N = 1 and N > 1 . 
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Figure 1:  Interval (L,M): confidence region either of the probability P(x,t) of 

a woman having one or more pregnancies in t years, or of the 

probability q of a woman conceiving in a single cycle. 

 

 Then, if a trial yields the result that N women, out of a total of W women, 

have become pregnant in t years, P(x,t) may have any value between 0 and 1, but 

it can always be bounded by a pair of values, L and M (see Figure 1), with a 

confidence given by the proportion of area left under the corresponding curve 
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between L and M. 

Afterwards, the limits of the pregnant woman rate can be calculated, with the 

same confidence, by replacing ),( txP  by L and M in the expression 

 ( )[ ]{ }ttxPRA /1,11100 −−=     (11) 

which is derived from Eqs. (2) and (4). 

In a similar way, the limits of the pregnancy rate, with equal confidence, can be 

calculated through the expression 

 ( )[ ]{ }ttxPRB 13/1,11300,1 −−=     (12) 

which is derived by combining Eqs. (2) and (7). 

 

 

4.2 Confidence Limits after counting up the Number of 

Pregnancies 

 Otherwise, if pregnancies had been computed, it would be advisable to 

proceed in the following way. 

The probability of S pregnancies in a total of C menstrual cycles is given by 

 ( ) ( ) C
S

SCS CqqCSP −−= 1/     (13) 

which is also plotted in Figure 1, in the three assumtions: S = 0 , S = 1 and S > 1 , 

coinciding with the graphs of Eq. (10). 

Then, if a trial yields the result that S pregnancies have been counted up after C 

cycles of exposure, q may have any value between 0 and 1, but it can always be 

bounded by a pair of values, L and M (see Figure 1), with a confidence given by 

the proportion of area left under the corresponding curve between L and M. 

Next, the limits of the pregnant woman rate can be calculated, with the same 

confidence, by replacing q by L and M in Eq. (4), and, similarly, the limits of the 

pregnancy rate, with equal confidence, can be calculated through Eq. (7). 
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4.3 Tables to calculate Confidence Limits 

 The calculation of the confidence limits L and M in this way, in principle, is a 

very simple task. Nevertheless, the difficulty arises from the fact that, nowadays, 

scientific and social requirements from contraception are very high, and the 

resulting failure rates must be very low. Therefore, the sample size W, as well as C, 

need to be large numbers, while N<<W and S<<C, with which the curves of Figure 

1 become very sharp. Thus, calculations to obtain L and M require a very accurate 

mathematical process, which can only be carried out with the help of a computer.                                                                                                                                                                                                     

 For this reason we offer in the Appendix a set of tables, Tables 1(a), 1(b) and 

1(c), representing such limits L and M (see Figure 1) of the 95 per cent confidence 

region of the probability P(x,t) of a woman having any number pregnancies in t 

years, as a function of the size of the sample W (controlled women during t years) 

and the number N of pregnant women. 

 Since Eqs. (10) and (13) are of the same form, the limits L and M which 

appear in the tables also apply to the probability q of a woman conceiving in a 

single cycle, as a function of C (followed cycles) and S (pregnancies). 

The use of Tables 1 is shown in the following examples, in which our statistical 

model is applied to hypothetic contraception trials, to infer the failure rates with a 

well defined 95 per cent confidence. 

 

Example 1 

A trial has been conducted by observing 500 women during 2 years, in which time 

11 women have become pregnant. 

In the corresponding table (W = 500 and N = 11) the following limits of the 

probability P(x,t) of a woman having one or more pregnancies in t years are seen: 

 L = 11.437800 x 10-3        and        M = 37.483515 x 10-3 

If these values replace P(x,t) and t = 2 in Eq. (11) the limits RA1 and RA2 of the 

95 per cent confidence region of the pregnant woman rate are obtained: 

 ( )[ ] 574.0111001 2/1 =−−= LRA        
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and ( )[ ] 892.1111002 2/1 =−−= MRA  

Otherwise, if L and M substitute P(x,t) in Eq. (12) the limits RB1 and RB2 of the 

pregnancy rate are obatined with the same confidence: 

 ( )[ ] 575.011300,11 26/1 =−−= LRB  

and ( )[ ] 909.111300,12 26/1 =−−= MRB  

In this case the trial has been conducted by counting up the number of pregnant 

women irrespective of the number of pregnancies they could have in the end. 

Table 2 of the Appendix was completed in this way. 

 

Example 2 

Now we consider a trial with 500 women, each during 20 cycles, in which 9 

pregnancies have taken place. In this case, every time a woman became pregnant 

she was substituted by a new one, so that the sample always contained the same 

number of women at exposure. 

The appropriate table (C = 10,000 and S = 9) gives the following limits for the 

probability q of a woman conceiving in a single cycle 

 L = 0.429300 x 10-3        and        M = 1.629778 x 10-3 

Now, if these values replace q in Eq. (4) the limits RA1 and RA2 of the 95 per cent 

confidence region of the pregnant woman rate are obtained: 

 ( )[ ] 557.0111001 13 =−−= LRA  

and ( )[ ] 098.2111002 13 =−−= MRA  

whereas, if L and M substitute q in Eq. (7), the limits RB1 and RB2 of the 

pregnancy rate are obtained with the same confidence: 

 == LRB 300,11 0.558 

and == MRB 13002 2.119 

Table 3 of the Appendix was built in this manner. 
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5  Advising on Trials 
Tables 2 and 3 are not exhaustive, but allow to draw some consequences as 

for the possibilities of contraception trials. The size of the sample and the number 

of failures have been combined in each case to have the upper limit of the failure 

rates successively under 5 per cent, 2 per cent, 1 per cent, 0.5 per cent, 0.2 per cent 

and 0.1 percent. 

It is evident from these tables that the upper and lower limits of the failure 

rates get closer when the number of controlled cycles, or of the women in the 

sample, is increased, as it had to be. Accordingly, the larger the sample the better, 

since the confidence region of the failure rate narrows and this means a higher 

precision. 

Tables 2 and 3 also show the relation between the expected upper limit of the 

failure rate and both the required size of the sample and the length of the trial. It 

may be seen that to prove the failure rate of a contraceptive procedure to be very 

samll, with 95 per cent confidence, demands a determined sample, which may be 

very large. Therefore, the choice of the sample size depends basically on the order 

of the result expected from the trial. Thus, one has to assess in advance the 

possibilities of different samples before planning any research in this field. 

Nevertheless, it should be pointed out that samples may be accumulative, 

which means that the whole sample of women does not have to be necessarily one 

closed and compact group, but it may be dispersed in location and time. This 

could lead to unsolvable problems in other fields of statistical research, but it does 

not seem so concerning clinical research of contraception, in which the 

standardization conditions of the sample may be easily achieved. 

Also it is noted that, if the failure rate is not small, as it was not for the first 

occlusive methods, one has to distinguish between the pregnant woman rate and 

the Pearl index or pregnancy rate. For instance, a pregnant woman rate of 28/100 

women-year, as reported by Beebe and Overton (1942) for the use of an occlusive 

device combined with a spermicide, represents a pregnancy rate of 32/100 
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women-years, as deduced from Eqs. (4) and (7). But now, when failure rates of 

modern contraceptive methods are not higher than 2 per cent, the pregnant woman 

rate and the pregnancy rate become nearly numerically equal. 

Traditionally it has been controversial the combination of the size of the 

sample and the duration of the trial. In this point the Pearl index has been 

criticized because it does not distinguish between a small number of women being 

followed for a long period of time and a large number of women being followed 

for a short period of time. 

In our model we have made clear several points: 

A) Performing the trial. 

One has to choose which events are going to be counted up in the trial, either 

pregnant women or pregnancies. 

If pregnant women are accounted for, both the number W of women of the 

sample and the duration t (years) of the trial are relevant and need to be specified. 

Otherwise, if pregnancies are considered, only the product W t matters. 

In any case the result of the trial needs to be dealt with accordingly and the 

two defined failure rates can be appropriately calculated from the trial results in 

the two cases, as shown in Tables 2 and 3. 

Nevertheless, as it was said, it is more convenient to count up the pregnant 

women, instead of the pregnancies, when carrying out the trial, for it keeps the 

sample unchanged and prevents it from degenerating into a group of low 

pregnancy risk. 

Finally, it is necessary to choose a sufficient and suitable size of the sample 

of women so that it may meet all the standardization requirements. 

B) Failure rates. 

Similarly, the pregnant woman rate, in principle, would depend on both the 

number W of women and the time t (years) it refers to, even when the product W t 

= 100 were determined. However, we have chosen W = 100 (women) and t = 1 
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(year), for which reason the pregnant woman rate is given as RA (pregnant 

women)/100 women-year. 

Otherwise, as for the pregnancy rate, or Pearl index, effectively W and t are 

irrelevant, provided the product W t = 100 is determined, for which reason it is 

given as RB (pregnancies)/100 women-years. 

The two defined failure rates are different statistical parameters, although 

they are related to each other. Nevertheless, when they are small enough, as they 

are nowadays, they are nearly numerically equal. 

 

 

6  Conclusions 

 A comprehensive statistical model has been developed for the evaluation of 

contraception effectiveness. The precise definition of the failure rates of 

contraception and the accurate way to calculate them, as well as to relate one to 

the other, will help assess the available contraceptive possibilities realistically. 

We reject performing a contraception trial by computing the pregnancies and 

replacing the pregnant women, for this can bias the result of the investigation by 

artificially lowering the failure cases in the sample. Instead, we propose to count 

up the number of pregnant women, who have not to be substituted. Then the 

sample may remain unchanged and does not degenerate into a group of low 

pregnancy risk. Thus the trial is more accurate and allows one to infer the 

pregnant woman rate as well as the pregnancy rate without bias and with the 

desired confidence. 

 The model is as general as contraception may be. It is applicable to any 

contraceptive procedure (IUDs, pills, injectables, implants, rithm methods, 

etcetera). Therefore, it can be useful to standardize the results of investigations on 

different contraceptive methods, so that those results are comparable. 

 Finally, this statistical model is very easy to follow in research practice, for it 

needs only some very simple tables like those provided in the Appendix. So it can 
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help investigators in planning their contraception research and in evaluating the 

results they get. 
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Appendix 

Tables 1(a), 1(b) and 1(c) show the limits L and M (see Figure 1) of the 95 per 

cent confidence region of both, 

1) the probability P(x,t) of a woman having some pregnancies, one or more, 

in t years, as a function of the size of the sample W (exposed woman 

during t years) and of the number N of pregnant woman, and 

1) the probability q of a woman conceiving in a single cycle, as a function 

of C (followed cycles) and of the number of pregnancies S counted up in 

the clinical trial. 

The use of these tables to determine, from the results of a contraception trial, the 

confidence regions of the failure rates is explained in the text. 
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Tables 1(a) 
 

 
W = 50         //        C = 50 

  
W = 100        //        C = 100 

 
N // S 

 
L x 103 

 
M x 103 

  
N // S 

 
L x 103 

 
M x 103 

0 0.00000 57.04795  0 0.00000 29.22515 

1 0.92000 90.15862  1 0.44100 46.35017 

2 6.44400 120.59988  2 3.12800 62.10790 

3 15.06000 149.15620  3 7.32300 76.98377 

4 25.49600 176.32644  4 12.40400 91.16352 

5 37.18000 202.41517  5 18.07500 104.84927 

6 49.80000 227.65734  6 24.18600 118.13853 

7 63.14000 252.25762  7 30.63200 131.12840 

8 77.10400 276.25589  8 37.36000 143.84667 

9 91.58400 299.75967  9 44.31600 156.34826 

10 106.52000 322.82031  10 51.46000 168.68136 

11 121.83600 345.52860  11 58.78400 180.83024 

12 137.54400 367.83897  12 66.26400 192.82773 
 
 

W = 500        //        C = 500 

  
 

W = 1,000      //        C = 1,000 
 

N // S 
 

L x 103 
 

M x 103 
  

N // S 
 

L x 103 
 

M x 103 

0 0.000000 5.961664  0 0.000000 2.988266 

1 0.085400 9.477569  1 0.042500 4.752534 

2 0.610400 12.726901  2 0.304400 6.381849 

3 1.432800 15.794590  3 0.714300 7.923369 

4 2.426400 18.735216  4 1.210000 9.399099 

5 3.535000 21.576418  5 1.762500 10.827092 

6 4.726800 24.344163  6 2.356800 12.216845 

7 5.982200 27.054117  7 2.982000 13.580477 

8 7.289600 29.714089  8 3.633600 14.916881 

9 8.638200 32.336724  9 4.304700 16.237583 

10 10.022000 34.927082  10 4.995000 17.537620 

11 11.437800 37.483515  11 5.699100 18.828183 

12 12.878400 40.020460  12 6.417600 20.099642 
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Tables 1(b) 
 

 
W = 2,000      //        C = 2,000 

  
W = 5,000      //        C = 5,000 

 
N // S 

 
L x 103 

 
M x 103 

  
N // S 

 
L x 103 

 
M x 103 

0 0.000000 1.495997  0 0.000000 0.598847 

1 0.021200 2.379898  1 0.008460 0.953001 

2 0.151900 3.196343  2 0.060720 1.279568 

3 0.356700 3.967969  3 0.142560 1.588713 

4 0.604200 4.707409  4 0.241440 1.885039 

5 0.880000 5.423344  5 0.351700 2.171627 

6 1.176600 6.120287  6 0.470280 2.450669 

7 1.488900 6.803087  7 0.595000 2.724470 

8 1.814000 7.473516  8 0.724960 2.993046 

9 2.149200 8.135055  9 0.858780 3.258339 

10 2.493500 8.787682  10 0.996400 3.519690 

11 2.844600 9.434517  11 1.136740 3.778619 

12 3.202800 10.073484  12 1.279920 4.034711 
 
 

W = 10,000     //        C = 10,000 

  
 

W = 20,000     //        C = 20,000 
 

N // S 
 

L x 103 
 

M x 103 
  

N // S 
 

L x 103 
 

M x 103 

0 0.000000 0.299498  0 0.000000 0.149768 

1 0.004230 0.476602  1 0.002115 0.238311 

2 0.030340 0.640067  2 0.015170 0.320071 

3 0.071250 0.794637  3 0.035625 0.397353 

4 0.120720 0.942698  4 0.060340 0.471469 

5 0.175850 1.086067  5 0.087900 0.543169 

6 0.235080 1.225803  6 0.117510 0.613048 

7 0.297430 1.362687  7 0.148680 0.681522 

8 0.362320 1.497224  8 0.181120 0.748796 

9 0.429300 1.629778  9 0.214605 0.815070 

10 0.498000 1.760658  10 0.248950 0.880532 

11 0.568150 1.890249  11 0.284075 0.945237 

12 0.639720 2.018333  12 0.319800 1.009391 
 



José María Mínguez 121  

Tables 1(c) 
 

 
W = 40,000     //        C = 40,000 

  
W = 60,000     //        C = 60,000 

 
N // S 

 
L x 103 

 
M x 103 

  
N // S 

 
L x 103 

 
M x 103 

0 0.000000 0.074889  0 0.000000 0.049927 

1 0.001068 0.118881  1 0.000768 0.077704 

2 0.007585 0.160041  2 0.005057 0.106696 

3 0.017813 0.198693  3 0.011870 0.132492 

4 0.030170 0.235758  4 0.020113 0.157171 

5 0.043950 0.271591  5 0.029300 0.181063 

6 0.058755 0.306530  6 0.039170 0.204359 

7 0.074340 0.340779  7 0.049560 0.227193 

8 0.090560 0.374423  8 0.060373 0.249613 

9 0.107303 0.407566  9 0.071535 0.271706 

10 0.124475 0.440297  10 0.082983 0.293535 

11 0.142010 0.472706  11 0.094673 0.315143 

12 0.159870 0.504791  12 0.106580 0.336530 
 
 

W = 80,000     //        C = 80,000 

  
 

W = 100,000    //        C = 100,000 
 

N // S 
 

L x 103 
 

M x 103 
  

N // S 
 

L x 103 
 

M x 103 

0 0.000000 0.037445  0 0.000000 0.029957 

1 0.000539 0.059300  1 0.000425 0.047611 

2 0.003793 0.080020  2 0.003034 0.064018 

3 0.008903 0.099367  3 0.007122 0.079496 

4 0.015085 0.117882  4 0.012068 0.094306 

5 0.021975 0.135799  5 0.017580 0.108642 

6 0.029378 0.153276  6 0.023496 0.122636 

7 0.037170 0.170398  7 0.029736 0.136319 

8 0.045280 0.187218  8 0.036224 0.149775 

9 0.053640 0.203817  9 0.042921 0.163028 

10 0.062225 0.220181  10 0.049790 0.176126 

11 0.071005 0.236357  11 0.056804 0.189089 

12 0.079935 0.252400  12 0.063948 0.201922 
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Table 2 shows the confidence regions of the failure rates, according to 

hypothetical trials, in which pregnant women have been counted up. 

W (women) = size of the sample, 

t (years) = length of the trial, 

N = number of pregnant women, 

RA1 and RA2 (per cent women-year) 

 = lower and upper limits of the pregnant woman rate, 

RB1 and RB2 (per cent women-years) 

 = lower and upper limits of the pregnancy rate or Pearl Index. 

 
 

Table 2 
 

 
 

 
W 

 
t 

 
N 

 
RA1 

 
RA2 

 
RB1 

 
RB2 

50 2 1 0.046 4.614 0.046 4.716 

100 1 1 0.044 4.635 0.044 4.737 

100 2 4 0.622 4.667 0.624 4.771 

500 1 4 0.243 1.874 0.243 1.890 

500 2 11 0.574 1.892 0.575 1.909 

1,000 1 11 0.570 1.883 0.571 1.899 

1,000 1 4 0.121 0.940 .0.121 0.944 

1,000 2 11 0.285 0.946 0.286 0.950 

2,000 1 11 0.284 0.943 0.285 0.948 

1,000 4 11 0.143 0.474 0.143 0.475 

2,000 1 4 0.060 0.471 0.060 0.472 

2,000 2 11 0.142 0.473 0.142 0.474 

5,000 1 4 0.024 0.189 0.024 0.189 

5,000 2 11 0.057 0.189 0.057 0.189 

10,000 1 4 0.057 0.189 0.057 0.189 

10,000 1 4 0.012 0.094 0.012 0.094 

10,000 2 11 0.028 0.095 0.028 0.095 

20,000 1 11 0.028 0.095 0.028 0.095 
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Table 3 shows the confidence regions of the failure rates, according to 

hypothetical trials, in which pregnancies have been counted up. 

W (women)  = size of the sample, 

t (years) = length of the trial, 

N = number of pregnant women, 

RA1 and RA2 (per cent women-year) 

 = lower and upper limits of the pregnant woman rate, 

RB1 and RB2 (per cent women-years) 

 = lower and upper limits of the pregnancy rate or Pearl Index. 

 
 

Table 3 

 
C = 13 W t 

 
S 

 
RA1 

 
RA2 

 
RB1 

 
RB2 

1,000 1 0.055 6.005 0.055 6.178 

2,000 3 0.463 5.037 0.464 5.158 

5,000 12 1.651 5.120 1.664 5.245 

2,000 0 0.000 1.927 0.000 1.945 

5,000 3 0.185 2.046 0.185 2.065 

10,000 8  0.470 1.929 0.471 1.946 

5,000 0 0.000 0.776 0.000 0.779 

10,000 3 0.093 1.028 0.093 1.033 

20,000 9 0.279 1.054 0.279 1.060 

10,000 0 0.000 0.389 0.000 0.389 

20,000 3 0.046 0.515 0.046 0.517 

40,000 9 0.139 0.529 0.139 0.530 

40,000 2 0.010 0.208 0.010 0.209 

60,000 4 0.026 0.204 0.026 0.204 

80,000 6 0.038 0.199 0.038 0.199 

60,000 1 0.001 0.101 0.001 0.101 

80,000 2 0.005 0.104 0.005 0.104 

100,000 3 0.009 0.103 0.009 0.103 

 


