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1 Introduction

Impulsive differential equations play a very important role in modern ap-

plied mathematics due to their deep physical background and broad applica-

tion. In this paper,we consider the existence of multiple positive solutions of

two-point boundary value problems for nonlinear second-order singular and

impulsive differential equations:




−Lu = h(x)g(x, u), x ∈ I ′,

−∆(pu′)|x=xk
= Ik(u(xk)), k = 1, 2, · · · ,m,

∆(pu)|x=xk
= Ik(u(xk)), k = 1, 2, · · · ,m,

R1(u) = αu(0)− βu′(0) = 0,

R2(u) = γu(1) + δu′(1) = 0,

(1.1)

here Lu = (p(x)u′)′ + q(x)u is sturm-liouville operator, I = [0, 1], I ′ =

I \ {x1, x2, · · · , xm} and 0 < x1 < x2 < · · · < xm < 1 are given, R+ =

[0, +∞), g ∈ C(I×R+, R+), Ik, Ik ∈ C(R+, R+), ∆(pu′)|x=xk
= p(xk)u

′(x+
k )−

p(xk)u
′(x−k ), ∆(pu)|x=xk

= p(xk)u(x+
k )−p(xk)u(x−k ) u′(x+

k ), u(x+
k ) ( u′(x−k ), u(x−k ))

denote the right limit ( left limit) of u′(x) and u(x) at x = xk respectively,h(x) ∈
C(I, R+) and may be singular at x = 0 or x = 1.

Throughout this paper, we always suppose that

(S1) p(x) ∈ C1([0, 1], R), p(x) > 0, q(x) ∈ C([0, 1], R), q(x) ≤ 0, α, β, γ, δ ≥
0, ρ = βγ + αγ + αδ > 0.

It is well known that there are abundant results about the existence of

positive solutions of boundary value problems for second order impulsive dif-

ferential equations. Some works can be found in [1, 3, 6 − 9] and references

therein.They,mainly investigated the case p(x) = 1 and q(x) = 0. In this pa-

per ,we will consider the case p(x) 6= 1,and q(x) 6= 0. Here we also mention

that second order dynamic inclusions on time scales with impulses has been

studied in [2] .We obtain the existence results of positive solutions,by means

of the fixed point index theorem in cones under some conditions on g(x, u)

concerning the first eigenvalue corresponding to the relevant linear operator.

To conclude the introduction,we introduce the following notation:

g0 = lim inf
u→0+

min
x∈[a,b]

g(x, u)

u
, I0(k) = lim inf

u→0+

Ik(u)

u
, I0(k) = lim inf

u→0+

Ik(u)

u

g∞ = lim inf
u→+∞

min
x∈[a,b]

g(x, u)

u
, I∞(k) = lim inf

u→+∞
Ik(u)

u
, I∞(k) = lim inf

u→+∞
Ik(u)

u
;
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Moreover,for the simplicity in the following discussion,we introduce the

following hypotheses.

(H1) :

g0 +

σ
m∑

k=1

(I0(k)φ1(xk) + I0(k)φ′1(xk))

∫ b

a
φ1(x)h(x)dx

> λ1,

g∞ +

σ
m∑

k=1

(I∞(k)φ1(xk) + I∞(k)φ′1(xk))

∫ b

a
φ1(x)h(x)dx

> λ1.

here σ = min{m(a)
m(1)

, n(b)
n(0)

} (see section 2), and φ1(x) is the eigenfunction related

to the smallest eigenvalue λ1 of the eigenvalue problem −Lφ = λφh, R1(φ) =

R2(φ) = 0.

(H2) : There is a p > 0 such that 0 ≤ u ≤ p and 0 ≤ x ≤ 1 implies

g(x, u) ≤ ηp, Ik(u) ≤ ηkp, Īk(u) ≤ η̄kp

here η, ηk, η̄k ≥ 0, η+
m∑

k=1

(ηk + η̄k) > 0, η
∫ 1

0
G(y, y)h(y)dy+

m∑
k=1

G(xk, xk)(ηk +

η̄k) < 1 and G(x, y) is the Green’s function of boundary value problem −Lu =

0, R1(u) = R2(u) = 0 (see section 2).

(H3) : 0 <
∫ 0

1
G(y, y)h(y)dy < +∞

2 Preliminary Notes

In this paper, we shall consider the following space

PC(I, R) = {u ∈ C(I, R); u|(xk,xk+1) ∈ C(xk, xk+1), u(x−k ) = u(xk), ∃ u(x+
k ),

k = 1, 2, · · · , m} PC ′(I, R) = {u ∈ C(I, R); u′|(xk,xk+1) ∈ C(xk, xk+1), u′(x−k ) =

u′(xk), ∃ u′(x+
k ), k = 1, 2, · · · ,m} with the norm ‖u‖PC = sup

x∈[0,1]

|u(x)|,
‖u‖PC′ = max{‖u‖PC , ‖u′‖PC}, Then PC(I, R),PC ′(I, R) are Banach spaces.

Definition 2.1. A function u ∈ PC ′(I, R)∩C2(I ′, R) is a solution of (1.1),

if it satisfies the differential equation

Lu + h(x)g(x, u) = 0, x ∈ I ′

and the function u satisfies conditions ∆(pu′)|x=xk
= −Ik(u(xk)), ∆(pu)|x=xk

=

Ik(u(xk)) and R1(u) = R2(u) = 0.
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Let Q = I × I and Q1 = {(x, y) ∈ Q|0 ≤ x ≤ y ≤ 1}, Q2 = {(x, y) ∈
Q|0 ≤ y ≤ x ≤ 1}. Let G(x, y) is the Green’s function of the boundary value

problem

−Lu = 0, R1(u) = R2(u) = 0.

Following from [4], G(x, y) can be written by

G(x, y) :=

{
m(x)n(y)

ω
, (x, y) ∈ Q1,

m(y)n(x)
ω

, (x, y) ∈ Q2.
(2.1)

Lemma 2.2. Suppose that (S1) holds, then the Green’s function G(x, y),

defined by (2.1), possesses the following properties:

(i): m(x) ∈ C2(I, R) is increasing and m(x) > 0, x ∈ (0, 1].

(ii): n(x) ∈ C2(I, R) is decreasing and n(x) > 0, x ∈ [0, 1).

(iii): (Lm)(x) ≡ 0, m(0) = β, m′(0) = α.

(iv): (Ln)(x) ≡ 0, n(1) = δ, n′(1) = −γ.

(v): ω is a positive constant. Moreover, p(x)(m′(x)n(x)−m(x)n′(x)) ≡ ω.

(vi): G(x, y) is continuous and symmetrical over Q.

(vii): G(x, y) has continuously partial derivative over Q1, Q2.

(viii): For each fixed y ∈ I, G(x, y) satisfies LG(x, y) = 0 for x 6= y, x ∈ I.

Moreover, R1(G) = R2(G) = 0 for y ∈ (0, 1).

(viiii): G′
x has discontinuous point of the first kind at x = y and

G′
x(y + 0, y)−G′

x(y − 0, y) = − 1

p(y)
, y ∈ (0, 1).

Following from Lemma2.2, it is easy to see that:

G(x, y) ≤ G(y, y) =
m(y)n(y)

ω
, x, y ∈ [0, 1]

G(x, y) ≥ σG(y, y), x ∈ [a, b], y ∈ [0, 1], (2.2)

where a ∈ (0, t1], b ∈ [tm, 1), 0 < σ = min{m(a)
m(1)

, n(b)
n(0)

} < 1

Consider the linear Sturm-Liouvile problem

−(Lu)(x) = λu(x)h(x), R1(u) = R2(u) = 0.

By the Sturm-Liouvile theory of ordinary differential equations, we know that

there exists an eigenfunction φ1(x) with respect to the first eigenvalue λ1 > 0

such that φ1(x) > 0 for x ∈ (0, 1).
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Let E be a Banach space and K ⊂ E be a closed convex cone in E. For

r > 0, let Kr = {u ∈ K : ||u|| < r} and ∂Kr = {u ∈ K : ||u|| = r}. The

following two Lemmas are needed in our argument.

Lemma 2.3. Let Φ : K → K be a continuous and completely continuous

mapping and Φu 6= u for u ∈ ∂Kr. Thus the following conclusions hold:

(i) If ||u|| ≤ ‖Φu‖ for u ∈ ∂Kr, then i(Φ, Kr, K) = 0;

(ii) If ‖u‖ ≥ ‖Φu‖ for u ∈ ∂Kr, then i(Φ, Kr, K) = 1.

Lemma 2.4. Let Φ : K → K be a continuous and completely continuous

mapping. Suppose that the following two conditions are satisfied:

(i) inf
u∈∂Kr

||Φu|| > 0; (ii) µΦu 6= u for every u ∈ ∂Kr and µ ≥ 1.

Then, i(Φ, Kr, K) = 0.

In applications below, we take E = C(I, R) and define

K = {u ∈ C(I, R) : u(x) ≥ σ‖u‖, x ∈ [a, b]}.

One may readily verify that K is a cone in E.

Define an operator Φ : K → K by

(Φu)(x) =

∫ 1

0

G(x, y)h(y)g(y, u(y))dy+
∑

0<xk<x

G(x, xk)(Ik(u(xk))+Ik(u(xk))), x ∈ I.

It follows form (H3) that φ is well defined.

Lemma 2.5. If (H3) is satisfied,then Φ : K → K is continuous and com-

pletely continuous, Moreover, Φ(K) ⊂ K.

Proof By the property of continuous of g(x, u), Ik(x), Ik(x), it is easy to see

that Φ : K → K is continuous and completely continuous. Thus we only need

to show Φ(K) ⊂ K. In fact, for u ∈ K, by using inequalities (2.2) and (H3),

we have that

‖Φu‖ ≤
∫ 1

0

G(y, y)h(y)g(y, u(y))dy+
∑

0<xk<x

G(xk, xk)(Ik(u(xk))+Īk(u(xk))) < +∞
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On the other hand ,for any x ∈ [a, b],by (2.2) we obtain

(Φu)(x) =

∫ 1

0

G(x, y)h(y)g(y, u(y))dy +
∑

0<xk<x

G(x, xk)(Ik(u(xk)) + Ik(u(xk)))

≥
∫ a

b

G(x, y)h(y)g(y, u(y))dy +
∑

0<xk<x

G(x, xk)(Ik(u(xk)) + Ik(u(xk)))

≥ σ

(∫ 0

1

G(y, y)h(y)g(y, u(y))dy +
∑

0<xk<x

G(xk, xk)(Ik(u(xk)) + Ik(u(xk)))

)

≥ σ‖Φu‖

Thus, Φ(K) ⊂ K.

Lemma 2.6. If u is a fixed point of the operator Φ, then u is a solution of

problem (1.1).

3 Main Results

Lemma 3.1. If (H2) is satisfied, then i(Φ, Kp , K) = 1.

Proof Let u ∈ K with ‖u‖ = p. It follows from (H2) that

‖Φu‖ ≤
∫ 1

0

G(y, y)h(y)g(y, u(y))dy +
m∑

k=1

G(xk, xk)(Ik(u(xk)) + Ik(u(xk)))

≤ p[η

∫ 1

0

G(y, y)h(y)dy +
m∑

k=1

G(xk, xk)(ηk + ηk)] < p = ‖u‖.

Thus

‖Φu‖ < ‖u‖, ∀ u ∈ ∂Kp.

It is obvious that Φu 6= u for u ∈ ∂Kp. Therefore, i(Φ, Kp, K) = 1, here we

use Lemma2.3.

Theorem 3.2. Assume that (H1)− (H3) are satisfied. Then problem (1.1)

has at least two positive solutions u1 and u2 with

0 < ||u1|| < p < ||u2||.
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Proof According to Lemma 3.1, we have that

i(Φ, Kp, K) = 1. (3.1)

Since (H1) holds, then there exists 0 < ε < 1 such that

(1− ε)[g0 +

σ
m∑

k=1

(I0(k)φ1(xk) + I0(k)φ′1(xk))

∫ b

a
φ1(x)h(x)dx

] > λ1,

(1− ε)[g∞ +

σ
m∑

k=1

(I∞(k)φ1(xk) + I∞(k)φ′1(xk))

∫ b

a
φ1(x)h(x)dx

] > λ1. (3.2)

By the definitions of g0, I0, one can find 0 < r0 < p such that

g(x, u) ≥ g0(1−ε)u, Ik(u) ≥ I0(k)(1−ε)u, Ik(u) ≥ I0(k)(1−ε)u ∀ x ∈ [a, b], 0 < u < r0.

Let r ∈ (0, r0), then for u ∈ ∂Kr, we have

u(x) ≥ σ‖u‖ = σr > 0. x ∈ [a, b]

Thus

(Φu)(
1

2
) =

∫ 1

0

G(
1

2
, y)h(y)g(y, u(y))dy +

∑

0<xk< 1
2

G(
1

2
, xk)(Ik(u(xk)) + Ik(u(xk)))

≥
∫ b

a

G(
1

2
, y)h(y)g(y, u(y))dy +

∑

0<xk< 1
2

G(
1

2
, xk)(Ik(u(xk)) + Ik(u(xk)))

≥ g0(1− ε)

∫ b

a

G(
1

2
, y)h(y)u(y)dy + (1− ε)

∑

0<xk< 1
2

G(
1

2
, xk)I0(k)u(xk)

+ (1− ε)
∑

0<xk< 1
2

G(
1

2
, xk)I0(k)u(xk)

≥ (1− ε)σr


g0

∫ b

a

G(
1

2
, y)h(x)dy +

∑

0<xk< 1
2

G(
1

2
, xk)(I0(k) + I0(k))


 > 0

from which we see that inf
u∈∂Kr

||Φu|| > 0, namely, hypothesis (i) of Lemma 2.4

holds. Next we show that µΦu 6= u for any u ∈ ∂Kr and µ ≥ 1.
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If this is not true, then there exist u0 ∈ ∂Kr and µ0 ≥ 1 such that µ0Φu0 =

u0. Note that u0(x) satisfies




Lu0 + µ0h(x)g(x, u0(x)) = 0, x ∈ I ′,

−∆(pu′0)|x=xk
= µ0Ik(u0(xk)), k = 1, 2, · · · ,m,

∆(pu0)|x=xk
= µ0Ik(u0(xk)), k = 1, 2, · · · ,m,

αu0(0)− βu′0(0) = 0,

γu0(1) + δu′0(1) = 0.

(3.3)

Multiply equation (3.3) by φ1(x) and integrate from a to b, note that
∫ b

a

φ1(x)[(p(x)u′0(x))′ + q(x)u0(x)]dx =

∫ x1

a

φ1(x)[(p(x)u′0(x))′ + q(x)u0(x)]dx

+
m−1∑

k=1

∫ xk+1

xk

φ1(x)[(p(x)u′0(x))′ + q(x)u0(x)]dx

+

∫ b

xm

φ1(x)[(p(x)u′0(x))′ + q(x)u0(x)]dx

= φ1(x1)p(x1)u
′
0(x1 − 0)−

∫ x1

a

p(x)u′0(x)φ′1(x)dx +

∫ x1

a

q(x)u0(x)φ1(x)dx

+
m−1∑

k=1

[φ1(xk+1)p(xk+1)u
′
0(xk+1 − 0)− φ1(xk)p(xk)u

′
0(xk + 0)

−
∫ xk+1

xk

p(x)u′0(x)φ′1(x)dx +

∫ xk+1

xk

q(x)u0(x)φ1(x)dx]

− φ1(xm)p(xm)u′0(xm + 0)−
∫ b

xm

p(x)u′0(x)φ′1(x)dx +

∫ b

xm

q(x)u0(x)φ1(x)dx

= −
m∑

k=1

∆(p(xk)u
′
0(xk))φ1(xk)−

∫ b

a

p(x)φ′1(x)u′0(x)dx +

∫ b

a

q(x)φ1(x)u0(x)dx

.

Also note that
∫ b

a

p(x)φ′1(x)u′0(x)dx =

∫ x1

a

p(x)φ′1(x)du0(x) +
m−1∑

k=1

∫ xk+1

xk

p(x)φ′1(x)du0(x)

+

∫ b

xm

p(x)φ′1(x)du0(x)

= −
m∑

k=1

∆(p(xk)u0(xk))φ
′
1(xk)−

∫ b

a

u0(x)(p(x)φ′1(x))′dx

= −
m∑

k=1

∆(p((xk)u0(xk))φ
′
1(xk) +

∫ b

a

u0(x)q(x)φ1(x)dx + λ1

∫ b

a

h(x)φ1(x)u0(x)dx
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∫ b

a

φ1(x)[(p(x)u′0(x))′ + q(x)u0(x)]dx = −
m∑

k=1

∆(p(xk)u
′
0(xk))φ1(xk)

+
m∑

k=1

∆(p(xk)u0(xk))φ
′
1(xk)− λ1

∫ b

a

h(x)φ1(x)u0(x)dx

=
m∑

k=1

µ0(Ik(u0(xk))φ1(xk) + Ik(u0(xk))φ
′
1(xk))− λ1

∫ b

a

u0(x)h(x)φ1(x)dx

So we obtain

λ1

∫ b

a

u0(x)h(x)φ1(x)dx =
m∑

k=1

µ0(Ik(u0(xk))φ1(xk) + Ik(u0(xk))φ
′
1(xk))

+ µ0

∫ b

a

φ1(x)h(x)g(x, u0(x))dx

≥ (1− ε)
m∑

k=1

u0(xk)(I0(k)φ1(xk) + I0(k)φ′1(xk))

+ (1− ε)g0

∫ b

a

φ1(x)u0(x)h(x)dx

Since u0(x) ≥ σ||u0|| = σr, we have
∫ b

a
φ1(x)u0(x)h(x)dx > 0 and

m∑
k=1

u0(xk)(I0(k)φ1(xk)+

I0(k)φ′1(xk)) > 0. So from the above inequality we see that λ1 > (1− ε)g0.

Thus

[λ1 − (1− ε)g0]

∫ b

a

u0(x)h(x)φ1(x)dx ≥ (1− ε)
m∑

k=1

(I0(k)φ1(xk) + I0(k)φ′1(xk))u0(xk)

≥ (1− ε)σr

m∑

k=1

(I0(k)φ1(xk) + I0(k)φ′1(xk)).

Since
∫ b

a
u0(x)h(x)φ1(x)dx ≤ r

∫ b

a
φ1(x)h(x)dx, we have

[λ1 − (1− ε)g0]

∫ b

a

h(x)φ1(x)dx ≥ (1− ε)σ
m∑

k=1

(I0(k)φ1(xk) + I0(k)φ′1(xk)),

which contradicts (3.2) again. Hence Φ satisfies the hypotheses of Lemma 2.4

in Kr. Thus

i(Φ, Kr, K) = 0. (3.4)
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On the other hand, from (H1), there exists H > p such that for any x ∈
[a, b], u ≥ H.

g(x, u) ≥ g∞(1− ε)u, Ik(u) ≥ I∞(k)(1− ε)u, Ik(u) ≥ I∞(k)(1− ε)u, (3.5)

Let

C = max
0≤u≤H

max
a≤x≤b

|g(x, u) − g∞(1 − ε)u| +
m∑

k=1

max
0≤u≤H

|Ik(u) − I∞(k)(1 − ε)u| +
m∑

k=1

max
0≤u≤H

|Ik(u)− I∞(k)(1− ε)u|. It is clear that for any x ∈ [a, b], u ≥ 0.

g(x, u) ≥ g∞(1−ε)u−C, Ik(u) ≥ I∞(k)(1−ε)u−C, Ik(u) ≥ I∞(k)(1−ε)u−C,

(3.6)

Choose R > R0 := max{H
σ
, p} and let u ∈ ∂KR. Since u(x) ≥ σ||u|| = σR >

H for x ∈ [a, b], from (3.5) we see that

g(x, u(x)) ≥ g∞(1− ε)u(x) ≥ σg∞(1− ε)R, ∀ x ∈ [a, b].

Ik(u(xk) ≥ σI∞(k)(1− ε)R, Ik(u(xk) ≥ σI∞(k)(1− ε)R.

Essentially the same reasoning as above yields inf
u∈∂KR

||Φu|| > 0. Next we show

that if R is large enough, then µΦu 6= u for any u ∈ ∂KR and µ ≥ 1. In fact,

if there exist u0 ∈ ∂KR and µ0 ≥ 1 such that µ0Φu0 = u0, then u0(x) satisfies

equation (3.3) .

Multiply equation (3.3) by φ1(x) and integrate from a to b, using integra-

tion by parts in the left side to obtain

λ1

∫ b

a

u0(x)h(x)φ1(x)dx =
m∑

k=1

µ0(Ik(u0(xk))φ1(xk) + Ik(u0(xk))φ
′
1(xk))

+ µ0

∫ b

a

φ1(x)h(x)g(x, u0(x))dx

≥ (1− ε)
m∑

k=1

(I∞(k)φ1(xk) + I∞(k)φ′1(xk))u0(xk) + (1− ε)g∞

∫ b

a

u0(x)φ1(x)h(x)dx

− C

(
m∑

k=1

(φ1(xk) + φ′1(xk)) +

∫ b

a

φ1(x)h(x)dx

)
.

If g∞ ≤ λ1, then we have

[λ1 − (1− ε)g∞]

∫ b

a

u0(x)h(x)φ1(x)dx + C

(
m∑

k=1

(φ1(xk) + φ′1(xk)) +

∫ b

a

φ1(x)h(x)dx

)

≥ (1− ε)
m∑

k=1

(I∞(k)φ1(xk) + I∞(k)φ′1(xk))u0(xk).
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thus

‖u0‖[λ1 − (1− ε)g∞]

∫ b

a

h(x)φ1(x)dx + C

(
m∑

k=1

(φ1(xk) + φ′1(xk)) +

∫ b

a

φ1(x)h(x)dx

)

≥ (1− ε)σ‖u0‖
m∑

k=1

(I∞(k)φ1(xk) + I∞(k)φ′1(xk)).

and

‖u0‖ ≤
C

(
m∑

k=1

(φ1(xk) + φ′1(xk)) +
∫ b

a
φ1(x)h(x)dx

)

(1− ε)σ
m∑

k=1

(I∞(k)φ1(xk) + I∞(k)φ′1(xk))− [λ1 − (1− ε)g∞]
∫ b

a
φ1(x)h(x)dx

=: R̄. (3.7a)

If g∞ > λ1, we can choose ε > 0 such that (1− ε)g∞ > λ1, then we have

C

(
m∑

k=1

(φ1(xk) + φ′1(xk)) +

∫ b

a

φ1(x)h(x)dx

)
≥ [(1− ε)g∞ − λ1]

∫ b

a

φ1(x)u0(x)h(x)dx

≥ [(1− ε)g∞ − λ1]σ‖u0‖
∫ b

a

φ1(x)h(x)dx.

Thus

‖u0‖ ≤
C

(
m∑

k=1

(φ1(xk) + φ′1(xk)) +
∫ b

a
φ1(x)h(x)dx

)

[(1− ε)g∞ − λ1]σ
∫ b

a
φ1(x)h(x)dx

=: R̄. (3.7b)

Let R > max{p, R̄}, then for any u ∈ ∂KR and µ ≥ 1, we have µΦu 6= u.

Hence hypothesis (ii) of Lemma 2.4 is satisfied and

i(Φ, KR , K) = 0. (3.8)

In view of (3.1), (3.4) and (3.8), we obtain

i(Φ, KR \ K̄p, K) = −1, i(Φ, Kp \ K̄r, K) = 1.

Then Φ has fixed points u1 and u2 in Kp \ K̄r and KR \ K̄p, respectively, which

means u1(x) and u2(x) are positive solution of the problem (1.1) and 0 <

‖u1‖ < p < ‖u2‖.
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Corollary 3.3. The conclusion of Theorem 3.2 is valid if (H1) is replaced

by

(H∗
1 ) g0 = ∞ or

m∑

k=1

I0(k)φ1(xk) = ∞ or

m∑

k=1

I0(k)φ′1(xk) = ∞;

and

g∞ = ∞ or

m∑

k=1

I∞(k)φ1(xk) = ∞ or

m∑

k=1

I∞(k)φ′1(xk) = ∞.

Example 3.4.





Lu + 1
2
(u

1
3 + u3) = 0, x ∈ I ′,

−∆(pu′)|x=xk
= cku(xk), ck ≥ 0,

∆(pu)|x=xk
= dku(xk), dk ≥ 0,

R1(u) = αu(0)− βu′(0) = 0,

R2(u) = γu(1) + δu′(1) = 0,

(3.9)

here Lu = (p(x)u′)′+q(x)u. Assume that (S1) is satisfied. Then problem (3.9)

has at least two positive solutions u1 and u2 with

0 < ||u1|| < 1 < ||u2||

provided

1 <
1

d

(
1−

m∑

k=1

G(xk, xk)(ck + dk)

)
, d =

∫ 1

0

G(y, y)dy. (3.10)

Proof To see this we will apply Theorem 3.2 (or Corollary 3.3).

By (3.10), η > 0 is chosen such that

1 < η <
1

d
(1−

m∑

k=1

G(xk, xk)(ck + dk)).

Set

g(x, u) =
1

2
(u

1
3 + u3).

Note

g0 = ∞, g∞ = ∞,

so (H1) (or (H∗
1 )) holds.
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Let ηk = ck, η̄k = dk, then η, ηk, η̄k satisfy

η

∫ 1

0

G(y, y)dy +
m∑

k=1

G(xk, xk)(ηk + ηk) < 1.

Let p = 1, then for 0 ≤ u ≤ p, we have

g(x, u) =
1

2
(u

1
3 + u3) ≤ 1

2
+

1

2
< ηp = η,

and

Ik(u) = cku = ηku ≤ ηkp, Ik(u) = dku = ηku ≤ ηkp

thus (H2) holds. The result now follows from Theorem 3.2 (or Corollary3.3).
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