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Theorems On Best Proximity Points For

Generalized Rational Proximal Contractions
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Abstract

If the fixed point equation Tx = x does not posses a solution, then
the natural interest is to find an element x ∈ X such that x is in proxim-
ity to Tx in some sense. In other words, we would like to get a desirable
estimate for the quantity d(x, Tx) . In this paper, we prove best proxim-
ity point theorems for generalized rational proximal contraction of the
first and second kinds. We also prove a best proximity point theorem for
nonself mapping for generalized rational proximal contraction of the first
and second kinds without assuming the continuity. Our results unify,
generalize various known comparable results from the current literature
[6, 7] .
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1 Introduction

Fixed point theory is an active area of research with wide range of appli-

cations in various directions. It is concerned with the results which state that

under certain conditions a self map f on a set X admit one or more fixed points.

Fixed point theory started almost immediately after the classical analysis be-

gan its rapid development. The further growth was motivated mainly by the

need to prove existence theorems for differential and integral equations. Thus

the fixed point theory started as purely analytical theory. Fixed point theory

can be divided into three major areas: Metric fixed point theory, Topological

fixed point theory and Discrete fixed point theory. Classical and major results

in these areas are: Banach’s fixed point theorem, Brouwer’s fixed point theorem

and Tarski’s fixed point theorem. In 1922, the Polish mathematician Stefan

Banach formulated and proved a theorem which concerns under appropriate

conditions the existence and uniqueness of a fixed point in a complete metric

space. His result is known as Banach’s fixed point theorem or the Banach’s

contraction principle. Due to its simplicity and generality, the contraction

principle has drawn attention of a very large number of mathematicians. Af-

ter the period of enormous development of linear functional analysis the time

was ripe to focus on nonlinear problems.

Then the role of the analytical fixed point theory became even more impor-

tant. The study of fixed points for set valued contractions and nonexpansive

maps using the Hausdorff metric was initiated by Markin. Later, an interesting

and rich fixed point theory for such maps has been developed. Following the

Banach’s contraction principle Nadler introduced the concept of set valued con-

tractions and established that a set valued contraction possesses a fixed point

in a complete metric space. Subsequently many authors generalized Nadler’s

fixed point theorem in different ways[1,2,5]. A fundamental result in fixed point

theory is the Banach’s contraction principle. Several extensions of this result

have appeared in the literature; see e.g., Kirk [3]. Srinivasan et al. [4] extended

the Banach’s contraction theorem for a class of mappings satisfying cyclical

contractive conditions. However ,the fixed point theorems do not address the

issue of non-existence of a solution to the equation Tx = x when the mapping

T is not a self-mapping. On the other hand, the best approximation theorems

and best proximity point theorems probe into the existence of an approximate
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solution to the equation Tx = x when T is non-self mapping, in which case

a solution does not necessarily exist. The best proximity point theorems as-

certain an optimal approximate solution to the fixed point equation Tx = x.

In fact, given a non-self mapping T : A → B, a best proximity point theorem

examines the conditions that guarantee the existence of an element x which is

in some sense closest to Tx. In other words, in the setting of metric spaces,

a best proximity point theorem identifies an element x for which d(x, Tx) is

minimum. In this case, a point such that d(z, Tz) = dist(A,B) called a best

proximity point, has been considered. This notion is more general in the sense

that if the sets intersect, then every best proximity point is a fixed point.

2 Preliminary Notes

In this section we give some basic definitions and concepts which are useful

and related to the context of our results. Define

PA(x) = {y ∈ X : d(x, y) = d(x,A)}
d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}

A0 = {x ∈ A : d(x, y) = d(A, B), for some y ∈ B}
B0 = {y ∈ B : d(x, y) = d(A,B), for some x ∈ A}

There are some sufficient conditions which guarantee the non emptiness of A0

and B0.One such simple condition is that A is compact and B is approximately

compact with respect to A(if every sequence {xn} of B such that d(y, xn) →
d(y, B) for some y in A should have a convergent subsequence)

Definition 2.1. Let (X, d) be a metric space. Let A and B be two nonempty

subsets of X. A mapping T : A → B is said to be generalized rational proximal

contraction of the first kind if there exist ai ≥ 0, i = 1, 2, ..., 5 with a1+a2+a3+

2a4 + 2a5 < 1 such that the conditions d(u1, Tx1) = d(A,B) and d(u2, Tx2) =
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d(A,B) imply that

d(u1, u2) ≤ a1 d(x1, x2) + a2

(
1 + d(x1, u1)

)

1 + d(x1, x2)
d(x2, u2)

+ a3

(
1 + d(x1, u1)

)

1 + d(x1, x2)
d(x1, x2) + a4

[
d(x1, u1) + d(x2, u2)

]

+ a5

[
d(x1, u2) + d(x2, u1)

]
,

for all u1, u2, x1, x2 ∈ A.

Note that, if a3 = 0 , we get a rational proximal contraction of the first

kind by taking a1 = α, a2 = β, a4 = γ, a5 = δ, see[6].

Definition 2.2. Let (X, d) be a metric space. Let A and B be two nonempty

subsets of X. A mapping T : A → B is said to be generalized rational proximal

contraction of the second kind if there exist ai ≥ 0, i = 1, 2, ..., 5 with a1 +

a2 + a3 + 2a4 + 2a5 < 1 such that the conditions d(u1, Tx1) = d(A,B) and

d(u2, Tx2) = d(A,B) imply that

d(Tu1, Tu2) ≤ a1 d(Tx1, Tx2) + a2

(
1 + d(Tx1, Tu1)

)

1 + d(x1, x2)
d(x2, Tu2)

+ a3

(
1 + d(Tx1, Tu1)

)

1 + d(Tx1, Tx2)
d(Tx1, Tx2) + a4

[
d(Tx1, Tu1)

+ d(Tx2, Tu2)
]
+ a5

[
d(Tx1, Tu2) + d(Tx2, Tu1)

]
,

for all u1, u2, x1, x2 ∈ A.

Note that, if a3 = 0 , we get a rational proximal contraction of the second

kind by taking a1 = α, a2 = β, a4 = γ, a5 = δ, see[6].

3 Main Results

Theorem 3.1. Let (X, d) be a complete metric space and A and B be two

non-empty, closed subsets of X such that B is approximately compact with

respect to A. Suppose that A0 and B0 are non-empty and T : A → B is a non

self-mapping satisfying the following conditions:

(a) T is a generalized rational proximal contraction of the first kind,
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(b) T (A0) ⊆ B0.

Then there exists a unique element x in A such that d(x, Tx) = d(A,B).

Further, for any x0 ∈ A0, the sequence {xn}, defined by

d(xn+1, Txn) = d(A,B), converges to the best proximity point x.

Proof. Let x0 ∈ A0. Since T (A0) ⊆ B0, then by the definition of B0, there

exists x1 ∈ A0 such that

d(x1, Tx0) = d(A,B)

Again, Tx1 ∈ B0, it follows that there is x2 ∈ A0 such that

d(x2, Tx1) = d(A,B)

Continuing this process, we construct a sequence {xn} in A0, such that

d(xn+1, Txn) = d(A,B), for every non - negative integer n, because T (A0) ⊆ B0.

Also, T is a generalized rational proximal contraction of the first kind, we have

d(xn, xn+1) ≤ a1 d(x1, x2) + a2

(
1 + d(x1, u1)

)

1 + d(x1, x2)
d(x2, u2)

+ a3

(
1 + d(x1, u1)

)

1 + d(x1, x2)
d(x1, x2) + a4

[
d(x1, u1) + d(x2, u2)

]

+ a5

[
d(x1, u2) + d(x2, u1)

]

d(xn, xn+1) ≤ a1 d(xn−1, xn) + a2

(
1 + d(xn−1, xn)

)

1 + d(xn−1, xn)
d(xn, xn+1)

+ a3

(
1 + d(xn−1, xn)

)

1 + d(xn−1, xn)
d(xn−1, xn) + a4

[
d(xn−1, xn)

+ d(xn, xn+1)
]
+ a5

[
d(xn−1, xn+1) + d(xn, xn)

]

≤ a1 d(xn−1, xn) + a2 d(xn, xn+1) + a3 d(xn−1, xn)

+ a4 d(xn−1, xn) + a4 d(xn, xn+1) + a5 d(xn−1, xn)

+ a5d(xn, xn+1)

≤ (a1 + a3 + a4 + a5)

1− (a2 + a4 + a5)
d(xn−1, xn).

It follows that, d(xn, xn+1) ≤ k d(xn−1, xn), where, k = ( a1+a3+a4+a5

1−(a2+a5+a5)
).

Similarly, we will show that d(xn, xn+1) ≤ k2 d(xn−2, xn−1). By induction, we
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obtain, d(xn, xn+1) ≤ kn d(x0, x1). Note that for m,n ∈ N such that m > n,

we have,

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + · · ·+ d(xn+1, xn)

≤ (km−1 + km−2 + · · ·+ kn) d(x0, x1)

= kn(1 + k + k2 + k3 + · · ·+ km−n−1) d(x0, x1)

≤ kn

∞∑
r=0

kr d(x0, x1)

≤ kn

1− k
d(x0, x1)

Since 0 ≤ k < 1, then as n → ∞, kn(1 − k)−1 → 0 and d(xm, xn) → 0 as

m,n →∞.

Therefore, {xn} is a Cauchy sequence in X. But X is complete and A is

closed, the sequence {xn} converges to some x ∈ A. Further, we have,

d(x,B) ≤ d(x, Tx)

≤ d(x, xn+1) + d(xn+1, Txn)

= d(x, xn+1) + d(A,B)

≤ d(xnxn+1) + d(x,B).

Therefore, d(x, Txn) → d(x,B). But B is approximately compact with respect

to A, then the sequence {Txn} has a subsequence {Txnk
} that converges to

some y ∈ B. Then, d(x, y) = limk→∞ d(xnk+1
, Txnk

) = d(A,B) and hence x

must be in A0. Since T (A0) ⊆ B0, then, d(u, Tx) = d(A, B) , for some u ∈ A.

Using the fact that T is generalized rational proximal contraction of the first

kind, we obtain,

d(u, xn+1) ≤ a1 d(x, xn) + a2

(
1+d(x,u)

)
1+d(x,xn)

d(xn, xn+1) + a3

(
1+d(x,u)

)
1+d(x,xn)

d(x, xn)

+a4

[
d(x, u) + d(xn, xn+1)

]
+ a5

[
d(x, xn+1) + d(xn, u)

]
.

Taking the limit as n → ∞, we get, d(u, x) ≤ (a4 + a5) d(x, u), which yields

x = u, since a4 + a5 < 1. Therefore, d(x, Tx) = d(u, Tx) = d(A,B). Hence, x

is a best proximity point of T .

Uniqueness: Let y be the other best proximity points of T . So that

d(y, Ty) = d(A,B).
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Since T is a generalized rational proximity contraction of the first kind, we

have,

d(x, y) ≤ a1 d(x, y) + a2

(
1+d(x,x)

)
1+d(x,y)

d(y, y) + a3

(
1+d(x,x)

)
1+d(x,y)

d(x, y)

+a4

[
d(x, x) + d(y, y)

]
+ a5

[
d(x, y) + d(x, y)

]

which yields d(x, y) < (a1 + a3 + 2a5) d(x, y). It follows that x = y, since

a1 + a3 + 2a5 < 1.

Hence, T has a unique best proximal point.

Theorem 3.2. Let (X, d) be a complete metric space. Let A and B be two

non-empty, closed subsets of X such that A is approximately compact with

respect to B. Suppose that A0 and B0 are non-empty and T : A → B is a non

self-mapping satisfies the following conditions:

(a) T is continuous generalized rational proximal contraction of the second

kind.

(b) T (A0) ⊆ B0.

Then there exists an element x in A such that d(x, Tx) = d(A, B) and the

sequence {xn}, defined by d(xn+1, xn) = d(A,B) converges to the best proximity

point x, where x0 is any fixed element in A0 and d(xn+1, xn) = d(A,B), for

n ≥ 0.

Moreover, if y is another best proximity point of T , then Tx = Ty and hence

T is a constant on the set of all best proximity points of T .

Proof. Proceeding as in Theorem 3.1, it is possible to construct a sequence

{xn} in A0 such that d(xn+1, xn) = d(A,B) ,for any non-negative integer n.

Since T is a generalized rational proximal contraction of the second kind, we
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obtain,

d(Txn, Txn+1) ≤ a1 (Txn−1, Txn) + a2

(
1 + d(Txn−1, Txn)

)

1 + d(Txn−1, Txn)
d(Txn, Txn+1)

+ a3

(
1 + d(Txn−1, Txn)

)

1 + d(Txn−1, Txn)
d(Txn−1, Txn)

+ a4

[
d(Txn−1, Txn) + d(Txn, Txn+1)

]

+ a5

[
d(Txn−1, Txn+1) + d(Txn, Txn)

]

≤ a1 d(Txn−1, Txn) + a2 d(Txn, Txn+1)

+ a3 d(Txn−1, Txn) + a4 d(Txn−1, Txn)

+ a4 d(Txn, Txn+1) + a5 d(Txn−1, Txn+1)

≤ a1 d(Txn−1, Txn) + a2 d(Txn, Txn+1)

+ a3 d(Txn−1, Txn) + a4 d(Txn−1, Txn)

+ a4 d(Txn, Txn+1) + a5 d(Txn−1, Txn)

+ a5 d(Txn, Txn+1).

It follows that, d(Txn, Txn+1) ≤ k d(Txn−1, Txn), where k = ( a1+a3+a4+a5

1−(a2+a4+a5)
).

Following the same proof of the Theorem 3.1, we can show that {Txn} is a

Cauchy sequence. Since X is complete, then the sequence {Txn} converges to

some y ∈ B. Moreover, we have,

d(y, x) ≤ d(y, xn+1)

≤ d(y, Txn) + d(Txn, xn+1)

= d(y, Txn) + d(A,B)

≤ d(y, Txn) + d(y, A).

Therefore, d(y, xn) → d(y, A). But, A is approximately compact with respect

to B, then the sequence {xn} has a subsequence {xnk
} converging to some

x ∈ A. Since T is continuous mapping,

d(x, Tx) = lim
k→∞

d(xnk+1
, Txnk

) = d(A,B).

Hence, x is a best proximity point of T .

Uniqueness: Let y be another best proximity point of T . So that,

d(y, Ty) = d(A,B).
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Using the fact that T is a generalized rational proximal contraction of the

second kind, we obtain,

d(Tx, Ty) ≤ a1 d(Tx, Ty) + a2

(
1 + d(Tx, Tx)

)

1 + d(Tx, Ty)
d(Ty, Ty)

+ a3

(
1 + d(Tx, Tx)

1 + d(Tx, Ty)
d(Tx, Ty) + a4

[
d(Tx, Tx)

+ d(Ty, Ty)
]
+ a5

[
d(Tx, Ty) + d(Tx, Ty)

]
,

which yields,

d(Tx, Ty) < (a1 + a3 + 2a5) d(Tx, Ty),

since a1 + a3 + 2a5 < 1. Hence, Tx = Ty. This completes the proof.

Theorem 3.3. Let (X, d) be a complete metric space. Let A and B be two

non-empty, closed subsets of X. Suppose that A0 and B0 are non-empty . Let

T : A → B satisfies the following conditions:

(a) T is a generalized rational proximal contraction of the first kind and second

kind.

(b) T (A0) ⊆ B0. Then, there exists a unique element x in A such that

d(x, Tx) = d(A,B). Further, for any fixed x0 ∈ A0, the sequence {xn}, defined

by d(xn+1, Txn) = d(A,B), converges to x.

Proof. Let x0 ∈ A0. Since T (A0) ⊆ B0, then by the definition of B0, there

exists x1 ∈ A0 such that

d(x1, Tx0) = d(A,B)

Again, Tx1 ∈ B0, it follows that there is x2 ∈ A0 such that

d(x2, Tx1) = d(A,B).

Continuing this process, we construct a sequence {xn} in A0, such that

d(xn+1, Txn) = d(A,B),

for every non- negative integer n, because T (A0) ⊆ B0.
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Also, T is a generalized rational proximal contraction of the first kind, we have

d(xn, xn+1) ≤ a1 d(x1, x2) + a2

(
1 + d(x1, u1)

)

1 + d(x1, x2)
d(x2, u2)

+ a3

(
1 + d(x1, u1)

)

1 + d(x1, x2)
d(x1, x2) + a4

[
d(x1, u1) + d(x2, u2)

]

+ a5

[
d(x1, u2) + d(x2, u1)

]

d(xn, xn+1) ≤ a1 d(xn−1, xn) + a2

(
1 + d(xn−1, xn)

)

1 + d(xn−1, xn)
d(xn, xn+1)

+ a3

(
1 + d(xn−1, xn)

)

1 + d(xn−1, xn)
d(xn−1, xn) + a4

[
d(xn−1, xn)

+ d(xn, xn+1)
]
+ a5

[
d(xn−1, xn+1) + d(xn, xn)

]

≤ a1 d(xn−1, xn) + a2 d(xn, xn+1) + a3 d(xn−1, xn)

+ a4 d(xn−1, xn) + a4 d(xn, xn+1) + a5 d(xn−1, xn)

+ a5d(xn, xn+1)

≤ (a1 + a3 + a4 + a5)

1− (a2 + a4 + a5)
d(xn−1, xn).

It follows that, d(xn, xn+1) ≤ k d(xn−1, xn), where k = ( a1+a3+a4+a5

1−(a2+a5+a5)
).

Similarly, we will show that, d(xn, xn+1) ≤ k2 d(xn−2, xn−1). By induction, we

obtain,

d(xn, xn+1) ≤ kn d(x0, x1).

Note that for m,n ∈ N such that m > n, we have,

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + · · ·+ d(xn+1, xn)

≤ (km−1 + km−2 + · · ·+ kn) d(x0, x1)

= kn(1 + k + k2 + k3 + · · ·+ km−n−1) d(x0, x1)

≤ kn

∞∑
r=0

kr d(x0, x1)

≤ kn

1− k
d(x0, x1).

Since, 0 ≤ k < 1, then as n → ∞, kn(1 − k)−1 → 0 and d(xm, xn) → 0 as

m,n → ∞. Therefore, {xn} is a Cauchy sequence in X and hence converges

to some element x ∈ A.
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d(xn+1, xn) = d(A,B), for any non-negative integer n. Since, T is a gener-

alized rational proximal contraction of the second kind, we obtain,

d(Txn, Txn+1) ≤ a1 (Txn−1, Txn) + a2

(
1 + d(Txn−1, Txn)

)

1 + d(Txn−1, Txn)
d(Txn, Txn+1)

+ a3

(
1 + d(Txn−1, Txn)

)

1 + d(Txn−1, Txn)
d(Txn−1, Txn)

+ a4

[
d(Txn−1, Txn) + d(Txn, Txn+1)

]

+ a5

[
d(Txn−1, Txn+1) + d(Txn, Txn)

]

≤ a1 d(Txn−1, Txn) + a2 d(Txn, Txn+1)

+ a3 d(Txn−1, Txn) + a4 d(Txn−1, Txn)

+ a4 d(Txn, Txn+1) + a5 d(Txn−1, Txn+1)

≤ a1 d(Txn−1, Txn) + a2 d(Txn, Txn+1)

+ a3 d(Txn−1, Txn) + a4 d(Txn−1, Txn)

+ a4 d(Txn, Txn+1) + a5 d(Txn−1, Txn)

+ a5 d(Txn, Txn+1).

It follows that, d(Txn, Txn+1) ≤ k d(Txn−1, Txn), where k = ( a1+a3+a4+a5

1−(a2+a4+a5)
),

we can show that {Txn} is a Cauchy sequence. Since, X is complete, then the

sequence {Txn} converges to some y ∈ B. Therefore,

d(x, y) = lim
n→∞

d(xn1 , Txn) = d(A,B).

Clearly, x must be in A0. Since T (A0) ⊆ B0, then, d(u, Tx) = d(A,B) ,for

some u ∈ A. Since, T is a generalized rational proximal contraction of the first

kind, we obtain,

d(u, xn+1) ≤ a1 d(x, xn) + a2

(
1 + d(x, u)

)

1 + d(x, xn)
d(xn, xn+1)

+ a3

(
1 + d(x, u)

)

1 + d(x, xn)
d(x, xn) + a4

[
d(x, u) + d(xn, xn+1)

]

+ a5

[
d(x, xn+1) + d(xn, u)

]
.

Taking the limit as n →∞, we have, d(u, x) ≤ (a4 + a5) d(x, u), which yields,

x = u, since a4 + a5 < 1. Thus, it follows that,

d(x, Tx) = d(u, Tx) = d(A,B).
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Uniqueness: Let y be the other best proximity points of T . So that,

d(y, Ty) = d(A,B).

Since T is a generalized rational proximity contraction of the first kind, we

have,

d(x, y) ≤ a1 d(x, y) + a2

(
1 + d(x, x)

)

1 + d(x, y)
d(y, y)

+ a3

(
1 + d(x, x)

)

1 + d(x, y)
d(x, y) + a4

[
d(x, x) + d(y, y)

]

+ a5

[
d(x, y) + d(x, y)

]
,

which yields,

d(x, y) < (a1 + a3 + 2a5) d(x, y).

It follows that x = y, since a1 + a3 + 2a5 < 1.

Hence, T has a unique best proximal points.This completes the proof.

Example 3.4. Let (X, d) be complete metric space.

Let X = R endowed with usual metric d(x, y) = |x− y|, for all x, y ∈ X.

Let A = [−2, 2] and B = [−4,−3]
⋃

[3, 4].

Define T : A → B by

Tx = 3 if x ∈ Q
= 4 if x /∈ Q.

Indeed, d(A,B) = 1, A0 = {−2, 2}, B0 = {−3, 3} and T (A0) ⊆ B0.

Hence, T is a generalized rational proximal contraction of the first and second

kinds. All the hypothesis of Theorem 3.3 are satisfied and

d
(
2, T (2)

)
= d(A, B).

Acknowledgements. The authors would like to thank the editor of the

paper and the referees for their precise remarks to improve the presentation of

the paper.



A. Antony Raj, J. Maria Joseph and M. Marudai 147

References

[1] M.A.Al-Thagafi and N. Shahzad, Convergence and Existence results for

best proximity points, Nonlinear Analysis, 70, (2009), 3665-3671.

[2] A.A. Eldred and P. Veeramani, Existence and convergence of best prox-

imity points, J. Math. Anal. Appl., 323, (2006), 1001-1006.

[3] W.A. Kirk, S. Reich and P. Veeramani, Proximal retracts and best prox-

imity pair theorems, Numer. Funct. Anal. Optim., 24, (2003), 851-862.

[4] W.A. Kirk, P.S. Srinivasan and P. Veeramani, Fixed points for mappings

satisfying cyclic contractive conditions, Fixed Point Theory, 4, (2003),

79-89.

[5] J. Maria Joseph and M. Marudai, Some Results on Existence and Conver-

gence of Best Proximity Points, Far East J. Mathematical Sciences, 66,

(2012), 197-212.

[6] H.K. Nashine, P. Kumam and C. Vetro, Best Proximity Point theorems

for rational proximal contractions, Fixed Point Theory and Applications,

(2013), 1-11.

[7] S.S. Sadiq Basha, N.Shahzad, Best Proximity Point theorems for general-

ized proximal contractions, Fixed Point Theory and Applications, (2012),

1-9.


