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Cartesian and Polar Coordinates for the
N-Dimensional Elliptope
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Abstract

Based on explicit recursive closed form correlation bounds for positive
semi-definite correlation matrices, we derive simple Cartesian and polar

coordinates for them.
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1 Introduction

The algorithmic generation of valid (i.e. positive semi-definite) correlation
matrices is an interesting problem with many applications. The author derives in
[4], Theorem 3.1, explicit recursively defined generic closed form correlation
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2 Elliptope

bounds. Based on a new and more appropriate variant of this result, we construct
simple Cartesian and polar coordinates for the space of all valid correlation
matrices.

A positive semi-definite matrix whose diagonal entries are equal to one is
called a correlation matrix. The convex set of nxn correlation matrices

R=(r;),1<i,j<n, is called elliptope (stands for ellipsoid and polytope), a

terminology coined by Laurent and Poljak [5]. It is a particular instance of a
spectrahedron, whose study is at the interface between optimization, convexity,
real algebraic geometry, statistics and combinatorics (see Vinzant [8]). Clearly,

the elliptope is uniquely determined by the set of Z(n—1)n upper diagonal
elements r=(r;),1<i<j<n,denoted by E, . Inthe main Theorem 3.1, we

construct an explicit parameterization of the elliptope, which maps bijectively any

(n-Dn

x=(x;)e[-11] to r=(r;) e E,. These so-called Cartesian coordinates

depend very simply on x;, as well as on products Xx;X, and sums of

ij?
products, which additionally involve the functional quantities
Vie = Vi (61 %;,) =/ 0= X0 (A=) (1.0)

The notation (1.1) will be used throughout without further mention.

2 Determinantal identities for correlations and partial

correlations

For fixed n=>2 let R=(r),1<i,j<n be an nxn correlation
matrix. For each me{2,..,n} and any index set s™ =(s,s,,..,s,) With
1<s, <n,i=1...,m, consider the mxm sub-correlation matrix

R™ =(r, ). 1<i,j<m,
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which is uniquely determined by
r™ =(r, ) 1<i<j<m.

It is convenient to use own notations.

Definitions 2.1 (Determinant, partial correlation and d-scaled partial correlation)

The determinant of the matrix R™ s denoted by
A" (s™) = A"(s,,S,,...,S,,) = det(R™). (2.1)

For n>m>3 and an index set s™ the partial correlation of (s,,s,)

with respectto  (s;,...,S,,) Is recursively defined and denoted by

r... —r... I ..
_ $152:83:05m-1 S15m;iS3,Sm-1 S25m;SgsSm-1 (2 2)

I . = I
5152383104 Sm ] 2 ]
\/( $151 1534 ) ( stm S35 Sm-1 )

where for m=2 the quantities used on the right hand side of (2.2) are by

convention the correlations r.  ,r., ,r, . . The transformed partial correlation
defined and denoted by

N™(s™)=N"(s,,S,;.... ;)

= Toiss -\/Am’l(sl,sa,...,sm)-A”"l(sz,s3,...,sm)

is called d-scaled (determinant scaled) partial correlation, with N?(s,,s,) =r.

§Sp *

(2.3)

Recall the product representation (e.g. Hurlimann [3], formula (2.10))

A"(1,2,...,n)
n-1 n- n- - ) 2.4
:H(l_rir?)'l_{z(l_riﬁ1;n)'_1_[:(1 Fin- 2:n 1n) U{ lik[ (1 rln K:n—k+1 n)} ( )

where an empty product is set equal to one. We need a new variant of Proposition

2.1 in Harlimann [4], which by the way must be corrected for misprints.
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Proposition 2.1 (Recursive relation for d-scaled partial correlations) For all

i=1..,n—-k, k=4,.,n-1 n=>5,one has the identity

N¥G,n—k+Ln—k+3..,n)-A%n-k+4,..,n)
=N“'(i,n-k+Ln-k+4,..,n)-A?(n-k+3,..,n) (2.5)
N“'(i,n—k+3;n—k+4,..,n)
_{ Nk‘l(n—k+1,n—k+3;n—k+4,...,n)}
Proof This is shown by induction. For k =4 one has by the defining recursion
(2.2) that
r

—r -r

in-3;n in-1;n  "n-3n-1;n .
fin-gin-1n = ; ; ——, with
\/(1_ rir?—l;n) ) ((1_ rnz,gn,l;n ))
3 1 i a
Font:n N (s.n-Ln) s=i,n-3, Fin-3;n N"(i,n-3n)

:\/Az(s,n).AZ(n—l,n)’ :\/Az(i,n)-Az(n—e,,n)'

Using these relations and the defining relation (2.3) for the d-scaled partial

correlation one obtains

NG,n=-3n-1n)=r, 5, 4 A (@,n-1n)-A*(n-3,n-1,n)
N3(@,n—-3;n)-A*(n-1,n)—N3@i,n-Ln)-N*(n-3,n-1n)
A?(n—1,n)-y/A%(i,n) - A*(n—3,n)
.\/A?’(i,n—l, n)-A*(n-3,n-1,n)
Va=10) (@1 00)

From (2.4) for n=3 with index set s® =(s,,s,,s,) =(s,n—1,n) one gets
A’(s,n-1,n) =A*(s,n)-A*(n-1,n)-(1-r;_.,), s=i,n—-3. Inserted into the

preceding relation shows the result for k =4. It remains to show that if (2.5)
holds for the index k then it holds for the index k +1. Proceeding similarly

one notes that

)

rin—k;n—k+2 ..... =

with
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B N (s,n—k+2;n—k+3,...,n)
" A s n—k+3,..n) A (n—k+2,n—k+3,...,n)
_ N Gi,n—k;n—k+3,...,n)
AN n—k+3,...n)- A (n—k,n—K+3,...,n)

r

sn—k+2;n—-k+3

Inserting these relations into (2.3) one obtains
N*@G,n—k;n—k+2,..,n) _
JAGn—K+2,n)- A (—kn—k+2,.,n)
N“G,n—k;n—=k+3,...n)-A"(n—k+2,...n)
NN =K+ 2,000) A (i, N~k +3,.,0) - AN (N —k,n— K +3,...,N)

N G,n—k+2;n-k+3,...,n)-N(n—=k,n—k+2;n—k +3,...,n)
AFN=K+2,,..,0) /A (i,n =K +3,..,n) - A (n—k,n—k +3,...,n)

Proposition 2.2 in Hirlimann [4] remains true when replacing the canonical
index set by any other index set. In particular (2.8) (loc. cit.) is valid for the index

set
s =(s,..8) » s, =sefi,n—k}, s,=n-k+2, s;=j,j=n—-k+3,..,n,
hence
A(s,n—k+2,..,n)-A*(n-k +3,...,n)

Inserted into the preceding relation shows (2.5) for the index Kk +1. 0

3 Cartesian and polar coordinates for the elliptope

As a main result, we derive the following canonical parameterization for
correlation matrices. The representation is canonical in the sense that it holds up to

a permutation matrix of order n.
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Theorem 3.1 (Cartesian coordinates of n-dimensional elliptope). There exists a

L(n-1)n

bijective mapping between the cube [-1,1]° and E_, which maps the

Cartesian coordinates  x=(x;) to r=(r;) such that

i=1..,n-1 n>2, (3.1)

in in?

Fins = XinXno1n + Xinoa Yinosns i=1..,n-2, n>3, (3.2)

in*n-1n
[ n
r-in—k = Xin Xn—kn + inn—j+1xn—kn—j+l H yin—k,/,
j=2 l=n—j+2
(3.3)
n
+ X I Yinwyr i=l.,n-k-1 k=2..n-2, nx4

(=n—-k+1

Corollary 3.1 (Polar coordinates of n-dimensional elliptope). There exists a

2(n-Dn

bijective mapping between the cube [-%,Z and E,, which maps the

polar coordinates @ =(p;) to r=(r;) suchthat

r, =sin(g,), i=1..,n-1 n>2, (3.4)
sin(e..)sin

1 = _(‘”'”) (@10) , i=1..,n-2, nx3, (3.5)
+ sm(¢in—1) COS((Dm ) Cos(gon—ln )

Sin(¢in)3in(¢n—kn)

kK. . n
Fox =1+ 2SIN(@;,_ ;1) SIN(@, ;1) TICOS(g;,) cOS(9, )
j=2 {=n—j+2 (36)

n

+sin(p;,_.) T1cos(e;,)cos(p, )

r=n—-k+1

i=1..,n-k-1 k=2..n-2, n>4.

Proof Set x; =sin(g;) inthe formulas of Theorem 3.1. 0

Remarks 3.1
(i) Researchers in Applied Mathematics often report the difficulty to generate
valid correlation (covariance) matrices. For example Hirschberger et al. [2] “were

not able to generate a single valid 50x50 covariance matrix by assigning random
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numbers in 800 tries” and state that “sizes of 1000x1000 are not uncommon” in
portfolio selection. Theorem 3.1 solves this practical problem from an algebraic
viewpoint. To generate a valid random correlation matrix, it suffices to choose

3(n=2n  uniform [-1,1] random numbers x;,1<i< j<n,and apply the

formulas (3.1)-(3.3).

(i)  Another different but less general trigonometric approach to correlation
matrices than Corollary 3.1 is the hyper-sphere decomposition by Rebonato [6]
(see also Brigo [1] and Rebonato [7]).

The derivation of the explicit coordinates (3.1)-(3.3) relies on the following
new and more appropriate variant of Theorem 3.1 in Hurlimann [4]. Note the
misprint in the denominator of formula (3.4) (loc. cit.), which should be

A*(n=k +1,...,n) asin (3.10) below.

Theorem 3.2 (Recursive generation of valid correlation matrices) A correlation

matrix parameterized by r=(r;),1<i<j<n in E_, is positive semi-definite

n?

if, and only if, the following bounds are fulfilled:

r,e[-11] i=1..,n-1 nx>2, (3.7)
r.,elr .l 1=1.,n-2, n>3
1 1 1 (3.8)
rii—l = r-in rn—ln * \/(l_ r-ir?)(]-_ rnz—ln)
r,elf ., i=1.,n=3, n>4
3¢/ 1 . 3 _ 1
ot o+ N°(i,n-1; ni Nz(n 2,n-1n) (3.9)
—-r

n-1n
N \/A?’(i,n -1,n)-A*(n-2,n-1,n)
- 1_rn2—1n




8 Elliptope

Fo €Ny, 1=1..,n-k-1, k=3..,n-2, n>5
e, =r.r

in " n—kn

KNI Gin—j+Ln—j+2,..,n)-N"*"n-kn-j+Ln-j+2..,n)

+ | . 3.10
,gz Ar'n=j+2,..n)-Al(n=j+1..,n) (3.10)

N A=K +1,..,mA“ (N —k,n—k +1,...,n)

B A(n=k+1,...,n)

Proof A correlation matrix is positive semi-definite if, and only if, all correlations
and partial correlations in the product expansion (2.4) belong to the interval

[-1,1] (e.g. Lemma 2.1 in Hurlimann [3]). The bounds are derived in two steps.

Step 1. derivation of (3.7)-(3.9)
From the first product one gets immediately the bounds (3.7). The partial
correlations in the second product satisfy the condition

r.,—nr

in-1 in"n-1n c [_1’1]
e

ln -1;n

if, and only if, one has

lina € [Nt ri:-l]

with r,=r.r _\/(1 r2)(L—r2,.), which shows the bounds (3.8). For the

in-1 —
partial correlations in the third product, one sees first that

ro . —r . 5 .
r _ in-2;n in-1;n "n-2n-1;n c [_1’1]

in-2;n-1,n
\/(1 r|n—ln)(1 n 2n—1n)

if, and only if, one has
N
rin—2n € [rm 2n’r|n 2n]

with

rerZn:rmlnnann—\/(l r-|n1n)(1 rn 2n1n)'

Since
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., —rT

in in"'n-2n

\/(1_ rln)(l rn Zn)

this condition is fulfilled if, and only if, one has

|n2n_

linz €[Nz ri:—z]

with

rii—z = rin r-n—2n + rIE 2; n\/(l_ rir?)(l_ rn2 2n)
= rin r-n—2n +{rin—1;nrn 2n-1;n —\/(1 rln—ln)(l n 2n—ln)}\/(1 rln)(l rn Zn)'

But, one has

Mo — Finl f

in"n-1n n-2n-1 n-2n"n-1n
\/(1_ r-m )(1 f —ln) \/(1_ rn2—2n )(1_ rn2—ln)

which implies by definition of the d-scaled partial correlations that

-r T

Fin_1n n-2n-L;n —

N3(@,n-1n)-N*(n-2,n— 1n)

rin—l;n rn—2n—l;n \/(l_ rir? )(l_ rn2—2n ) -

1- r_ln
Furthermore, one has
rr, - A*(i,n-1,n) ot - As(n 2,n-1,n) |
(S (VR AN R To-rh)a -,

By inserting both expressions into the above, one obtains the bounds (3.9).
Step 2: derivation of (3.10)
For each fixed k=3,..,n—2 the curly bracket in the last product of (3.11)

satisfies the conditions

r .. —-T. : | ST .
r __ Jin=k;n—k+2,..,n in—k+1;n—-k+2,...,n " n—kn—-k+1;,n-k+2,...,n E[—l 1] |:1,...,n—k—1,

in—k;n-k+1,n —

if' and Only If' one haS r|n k;n—-k+2,...,n € [rln k;n—-k+2,...,n? I’lrﬁl— k;n—k+2 n] Wlth

...............

Since
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with

= rin rn—2n +{rin—k+l;n—k+2 ..... n rn—kn—k+1;n—k+2 ..... n

..........

Fok =T Mook + 27 2 > >
i=2]. H\/(l_ r-infs+l;n—s+2 ..... n) ’ (1_ rnfkn—s+1;n—s+2 ..... n) (311)

s=2

One must show that (3.11) coincides with (3.10). For j=2 one has by
Definition (2.3)

N3(i,n-1n)
ey

i=1...,n-k, hence

rin—l;n

N3G, n-1n)-N3(n=k,n=1n
rin—l;n rn—kn—l;n \/(1_ rirzl)(l_ r-nz—kn) = ( i rz( ) !
~ Tn-1n

which coincides with the term for  j=2 in the second sum of (3.10). Similarly,
for j=3,...,k one has by Definition (2.3)
N™@Gn—j+Ln—j+2,..,n)

" A Gn-j+2,n)-A(n-j+Ln—j+2...n) (3.12)
i=1..n-Kk.

r

in—j+Ln—-j+2,..,

On the other hand, from a general version of (2.4) with arbitrary index set, one
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obtains for j=3,...,k+1 the recursive relationships

""" (3.13)
i=1..,n-—j+1.

If one combines (3.12) and (3.13), one sees that the terms for j=3,...,k
in the second sum of (3.11) coincide with the corresponding terms in (3.10).
Finally, using (3.13) for j=k+1 shows that the last term in (3.11) coincides

with the last term in (3.10). The result is shown. 0

Before entering into the proof of Theorem 3.1, it is necessary to explain how

the coordinates  x; €[-1,1] are actually defined. Clearly, the formulas

(3.1)-(3.2) are restatements of the bounds (3.7)-(3.8) and show how

Xins Xiny €[-1,1] are chosen. Similarly, to satisfy the bounds (3.9)-(3.10) it

in?

suffices to define .

in—k

through these formulas by multiplying the square root
terms with  x,, €[-1,1], where i=1..,n-3 when k=2,n>4, and

i=1..,n—-k-1 when k=3..n-2,n>k+2.This settles uniquely the choice

(n-1)n

of x=(xij)e[—1,l]% . Now, the derivation of the Cartesian coordinates

depends upon the following main auxiliary identity, whose proof is postponed to

Section 4.

Lemma3.lForall i=1..n-k, k=2..n-2 n>4, onehastheidentity

NKY N —K+Ln—K+2,.,0) =X, s -y A (=K +2,..,n)- AX(N—K +1,...,n).

Corollary 3.1 Forall i=1,..,n-k, k=2,.,n—2, n>4, one has the identity

AYGin—K+1..,n) = A (N—k +1,...n)- [1(L—-x2).

(=n—-Kk+1
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Proof This is shown by induction. For k =2, n >4, one has

3, 2 2 2
A (|, n-1, n) =1- Fint = Xin = Xpoan 2rin 1 Xin Xp_1p -

Since (3.2) is just a restatement of the bounds (3.8), one has

ling = XinXpogn T Xinflyin,l’n, hence

Ag(' n- 1n) l X|n nln 2Xinxn—lnxinflyin—ln_ in 1(1 Xln)(l Xn 1n)

— X2 = X2+ 2X2X2 42X X

in n 1n in*n-1n |n 1y|n -1,n

:(1 X) Xln(l ann) Xinl(l X )(1 ann)
= (@-x2,,) T10-%2) =22 (n-1n)- [1A-%2),

(=n-1 (=n-1
as should be. Now, assume the identity holds for the index k-1 and show it
for the index k. From Proposition 2.2 in Hirlimann [4] one borrows the identity
A Gi,n=k+1,...,n)- A (n=k +2,...,n)
=A@i,n-k+2..,n)-AM-K+L.,n)—=N“"G(,n-k+Ln-k+2,..,n)°.
With the Lemma 3.1 this can be rewritten as
A=K +1..,n)-@A-x2, ) -AG,n—Kk+2,...,n),

which by induction assumption is equal to

AM=k+Loin)-A=x2 1) - A=k +2,..,0) [T(L-x2).

(=n—k+2
Dividing both sides of the identity by A**(n—k+2,...,n) shows the desired
identity for the index k. Corollary 3.1 is shown. 0

Proof of Theorem 3.1 As already made clear, the formulas (3.1)-(3.2) are
restatements of the bounds (3.7)-(3.8). In a first step, one shows the validity of
(3.3) for k=2,i=1..,n—-3,n>4. From the bounds (3.9) one has for some

X, €[-1,1] the identity
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N3(@i,n=Ln)-N3(n-2,n-1n)

rin— :rinrn— n
? ? 1_rn2—1n
A(i,n-1,n)-A*(n—=2,n-1n
ox VA1) A% )

1- rn2—1n
Clearly, the first term coincides with  x, X, ,,. For the middle term, use Lemma

3.1 to see that

N3 (i,n—1n) = X, - L—X2)(L—X2,,)

N 3(n - 2! n _1! n) = Xn_2na \/(1_ Xr?—Zn)(l_ er—ln) )
which implies that
N°(G,n-Ln)-N°(n-2,n-Ln)

1_ rz - Xin—an—Zn—lyin—Z,n '

n-1n

On the other hand, Corollary 3.1 shows that

AGn-1n) = (1-x2,) TTL-x2),

=Nn—.

An-2n-1n)=0-x,) [10-%,,).

(=N—

Inserted into the third term yields

A(i,n=1,n)-A*(n-2,n-1,n n n
\/ ( 1)_r2( ) = 11 \/(1_Xi2€)(1_xr?—2€) = Hlyin—z,/z-

in r=n-1 (=n-

Together, this shows (3.3) for k=2,n>4 . Now, let
i=1..,n-k-1k=3,..,n—-2,n>5. From the bounds (3.10) one has for some

Xinx €[-1,1] the identity

rin—k = rin rn—kn
+iNj+l(i,n—j+l;n—j+2,...,n)~Nj+1(n—k,n—j+l;n—j+2,...,n)
o Ar(n=j+2,...,n)-A(n=j+1..,n)
VA i, n =K +1,..., M)A (n—k,n—K +1,...,n)
+ X, :

A(n=k +1,...,n)

One argues similarly to the above. The first term coincides with ~ x. X For the

in*n—kn *
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summands of the middle term one has with Lemma 3.1 that

N™M@Gn=j+Ln—-j+2..n)

= Xin—j+l \/AJ (i,n— J +2|---ln)'Aj (n_ J +1""’n)’
N™m-k,n-—j+Ln-j+2,..,n)

A (N=k,n—j+2,.,n)- Al (n— j+1,..,n),

=X

n—-kn—j+1
which implies that

N™(Gn—j+Ln-j+2,..,n)-N"(n-kn-j+Ln-j+2..n)
A= j+2,.,n)-Al(n=j+1..,n)

JA (i,n—j+2,..n)A (n—k,n— j+1,...,n)
i A= j+2,.,n) '

=X X

in—j+1
Through application of Corollary 3.1 one obtains further

Ain=j+2..,n)=A(n=j+2,..n)- [10-x2),

(=n—j+2

A(n-kn-j+2..,n)=An-j+2..,n) TIA-x2,).

l=n—j+2

Therefore, the preceding term coincides with

n

n 2 2
Xin_js1 Xnkn_jor = 11 \/(1_ Xi )= X0 4 ) = Xin i Xnkn_jor °

Yink,s -
l=n—j+2 l=n—j+2

Finally, for the last term, one obtains from Corollary 3.1 that

) \/Ak+1(i,n_k+1’_._’n)Ak+l(n—k,n—k+1,...,n)
in-k A“(n=K+1,...,n)

= Xin—x ﬁ \/(1_ Xizﬁ)(l_ er—k[) = Xinx ﬁ lyin—k,ﬁ'

r=n-k+1 (=n—k+

Together, this shows (3.3) for k =3,...,n—2,n>5. The proof is complete. 0

4 Derivation of the remaining main auxiliary identity

It remains to show the validity of Lemma 3.1. We show the following

slightly more general identity, which for s=-1 reduces to Lemma 3.1.
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Lemma4.l Forall i=1...n-k, k=2,..,n-2, s=-101..,k-3, n>4,
one has the identity

“li,n-k+Ln—-k+s+3,..,n)=A?(n-k+s+3,..,n)

S 0 (4.1)
: (z Xin—k+j+2Xn—k+ln—k+j+2 H i yln k+1,¢ + Xln k+1 H yln k+1/)
j=0 (=n—k+ j+3 (=n-k

Proof This is shown by forward induction on the index k (with arbitrary s)
and backward induction on the index s (with arbitrary k). If k=2 one
has necessarily s=-1. Then from (3.2) of Theorem 3.1 (that is trivially true as

already mentioned) one gets

N 3(i’ n _1’ n) =l — il = X \/(1_ Xii)(l_ Xr?—ln) .

Now, assume that (4.1) is true for all indices less than or equal to k-1 and

show it for the index k. In particular, Lemma 3.1 is true for the index k-1
and in virtue of the proof of Theorem 3.1, the identity (3.3) is also true for the
index k-1, a property which is used to settle the base case s =k —3. Indeed,

for this index the identity (4.1) follows from (3.3) with index k-1 because

N3(i N—K+Ln)=r 4y —Ff

in"n-k+1n

n J+1 n—-k+1n— j+l H yln k+1,¢ +X|n k+1 H yln k+1,7

=Nn—j+2 {=n—-k+2
n

n k+J+2 n—-k+1ln—k+j+2 H yin—k+l,1/, + Xin—k+1 H yin—k+l,ﬁ'
l=n—k+ j+3 l=n—k+2

"'Mx _Mw

Now, by Proposition 2.1 one has the identity
“i,n-k+Ln-k+s+3..n)-A*nh-k+s+4,..,n)
=N*“*"i,n—k+Ln-k+s+4,..n)-A"?(n—k+s+3,...,n)

N***(G,n-k+s+3n—k+s+4,..,n)
_{N"‘S‘l(n—k+1,n—k+s+3;n—k+s+4,...,n)}
By the backward induction assumption with index s+1 the identity (4.1)
yields
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N Gin-k+Ln-k+s+4,.,n)=A"3(n-k+s+4,.,n)

s+1 n n
: (z Xin—k+j+2xn—k+1n—k+j+2 H . yin—k+l,[ + Xin—k+l H yin—k+l,()'
j=0 (=n—-k+j+3 (=n-k+2

By the forward induction assumption the identity of Lemma 3.1 yields

N**(Gi,n-k+s+3n-k+s+4,..,n)

ATk S 44, n) - ANk ALK+ S+ 4,..1),

= X.

in—k+s+3
N *?(i,n—k+s+3;n—Kk+s+4,..,n)

A=K +s+4,.,0) - AT (N =k +Ln—K+5+4,...,n).

in—k+s+3

Inserted into the above one gets

N**@i,n—k+Ln—-k+s+3,..,n)-A3(n-k+s+4,..,n)
=A?(n-k+5+3,...,n)-A*(n=k +s+4,..,n)

n

s n
’ (z Xin—k+j+2xn—k+ln—k+j+2 H . yin—k+1,( + Xin—k+l H yin—k+1,/f )
j=0 (=n—k+j+3 (=n-k+2

Divide by A**?*(n—k+s+4,..,n) toobtain the desired expression (4.1). ¢
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