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A note on finding geodesic equation of two 

parameter Weibull distribution 
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Abstract 

The Weibull distribution has received a great deal of attention since 1970. In 

Russian statistical literature, this distribution is often referred to as the Weibull-

Gnedenko distribution. It has been applied to model a wide range of data secured 

from problems such as the yield strength of Bofors’ steel, the fiber strength of 

Indian cotton, the fatigue life of ST-37 steel, the statures of adult males born in the 

British Isles, and breadth of beans of Phaseolus vulgaris. Many authors used this 

distribution in their reliability and quality control work. Instead of using the 

classical approach by solving a pair of differential equations, in this paper, we 

adopt the well-known Darboux Theory by solving a partial differential equation to 

find the geodesic equation of two parameter Weibull distributions. 
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1  Introduction 

Swedish physicist, Waloddi Weibull, [2,3] used the Weibull Distribution to 

describe the breaking strength of material. By 1951[4], there were a variety of 

other applications. Several basic examples of how to apply the Weibull 

Distribution were presented in the abstract. In Russian statistical literature this 

distribution is often referred to as the Weibull-Gnedenko distribution. It is one of 

the three types of limit distribution for the sample maximum established by 

Gnedenko [5]. As his special, the Weibull distribution may also include the 

exponential or the Rayleigh distribution. When the shape parameter is less than 1, 

the hazard function of the Weibull Distribution is a decreasing function. When the 

shape parameter equals 1, it is a constant. When the shape parameter is greater 

than 1, it is an increasing function. Many authors have used this situation in 

reliability and quality control work such as Weibull[4], Kao[6,7] , and Berretoni 

[8]. The Weibull Distribution received the most attention in 1970. This is evident 

from the large number of references that can be found from the book of Johnson 

N.L. Kotz S, and Balakrishnan N [9]. Since Rao C.R. [10] published his first 

paper, linking statistics with geometrical properties, numerous authors have  

expanded upon this area. For example, Lauritzen S.L. [11] derived the Gaussian 

Curvature, Geodesic Equation of Gamma Manifold and Inverse Gaussian 

Manifold. Chen W. [12] using the Darboux Theory derived a completed version of 

the Gamma Geodesic Equation. Chen W. [13] has successfully generalized the 

formula to compute the Gaussian Curvature and clarify its intricate mathematical 

concept. Uwe Jensen [14] has reviewed the derivation, calculation and simulation 

results of Rao Distance, applying it to the portfolio theory. In this paper, we 
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adopted the Darboux Theorem to solve a partial differential equation. We found 

this approach would be easier than the classical method. 

 

 

2  Darboux theory and geodesic equation  

In general, the distance between two points P and Q on a curve of two-

manifold can be expressed as 

            2 2 2 2   ds E du Fdu dv G dv= + +                                                               (2.1) 

However, if we can transform the distance function (2.1) to the following 

simplified form    

            2 2 2 2
1ds dz dzσ= +                                                                                     (2.2) 

it could help us to find the Geodesic Equation more easily. The task of 

transforming equation (2.2) is equivalent to asking how we can determine two 

independent functions, ),(z  and ),,( 11 vuzvuzz == , such that equation (2.1) can 

be transformed into equation (2.2). Since z(u,v) is a function of (u,v),  we know 

from calculus that  

             
        .)()(2)(

,
222222 dvzGdudvzzFduzEdzds

dvzduzdz

vvuu

vu

−+−+−=−

+=
         (2.3) 

If we assume that (2.2) is valid, then it would be necessary for either the right 

hand side of (2.3) to be a perfect square, or for the determinant of (2.3) to be equal 

to zero. That is, 

                             2 2 2( ) ( )( ) 0.u v u vF z z E z g z− − − − =                                           (2.4) 

Equation (2.4) can be rewritten as 

                                          
2 2

2

2 1v u v vEz Fz z Gz
EG F
− +

=
−

.                                            (2.5) 

For convenience, we usually write the left hand side of (2.5) as .1=∇Z Now, if 

we could find an arbitrary solution to (2.5), then we could rewrite (2.3) in the 

following form: 
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                                          2 2 2( ( , ) ( , ) ) ,ds dz m u v du n u v dv− = +                          (2.6) 

where both  ,m n  are some known function of  u  and v . 

If we can further find an integration factor 1
σ

,   such that 

1 ( , )   ( , )    ,m u v du n u v dv dzσ+ =  

then the distance function 2ds  could be transformed into the form (2.2). 

Summarizing the above procedures, we conclude that in order to find the Geodesic 

Equation, two steps must be completed : 

Step 1: we must find an arbitrary solution of the partial differential equation (2.5);  

Step 2: we must find an integration factor of equation (2.6). Darboux has proposed 

an improved method to combine the two steps into one step; that method is stated 

as a theorem. 

Theorem 1: Assume the given partial differential equation 1=∇Z  has found an 

arbitrary solution Z=Z(u,v,a), where a is an arbitrary constant. Then 

tcons
a

avuZ tan);,(
=

∂
∂  

is the required Geodesic Equation. 

Proof:  Assume the distance between two points P and Q on a curve of two-

manifold has the simplified form (2.2). The total differential at a point (u,v) can be 

written as: 

                                   
1 1 1

,u v

u v

dz z du z dv
dz z du z dv

= +
= +

                                                           (2.7) 

Furthermore, if we take the partial derivative with respect to the constant a for the 

above two equations and we get 

                                 

2 2

2 2
1 1 1

,

,     

z z zd du dv
a u a v a
z z zd du dv
a u a v a

∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂

= +
∂ ∂ ∂ ∂ ∂

                     

and                                                                                                                       (2.8) 
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                                 1
1 1   zzdz d dz dz d

a a a
σσ σ ∂∂ ∂ = − + ∂ ∂ ∂ 

 

If (2.8) were true, then from the third equation of (2.8) we can conclude that 1dz  

must divide evenly on .
a
zd 
∂
∂dz  This means that 1dz  can divide either dz or 

a
zd
∂
∂  

evenly. Concerning the first situation that 1dz  can divide dz evenly, then from 

(2.7) we have 

                                                  
1 1

0u v

u v

z z
z z

=                                                       (2.9) 

But this means that z and 1z  are functionally dependent. This contradicts equation 

(2.2), which assumes that z and 1z  are independent . Hence, the only case that can 

possibly be valid is that 1dz  can divide 
a
zd
∂
∂  evenly. This means that 

tcons
a
zandz tan constant  1 =
∂
∂

=  are curves in the same families. This proves 

that the equation tcons
a
z tan=
∂
∂  is the required geodesic equation. 

 

 

3  Finding the Geodesic Equation of the Weibull bution 

From section 4, we have calculated  

1
2   CE

u
=  

we sometimes also write 
2 2

1 ,C a b= +  

where  

                                                     1 ,   and .
6

a b πγ= − =                                                             
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                                                    0.5772157γ =  

is known as Euler's constant. 

                                        2 ,CF
v

=     in this case 2 ,C a= −                                (3.1) 

2

2   .uG
v

=  

Then Z  1 becomes∇ =  
2 2

2 2 2 2 2
2( ) 2 .

6v u v u
va b z avz z u z
u

π
+ + + =  

In order to find one of the solutions of equation (3.1), we make a transformation 

from  ( , )u v  to 1 1( , )u v as follow: 

11
1 ,   .vu u v e−−= =  

Then, through the chain rule,  we get  

1 1

2 2
1 u 1 1

1 1 1

v 1
1 1 1

z ,   or  z ,
u
z ,     z
v

u u

v v
v v

z u z v u z u z
u u v u
z u z v e z or e z
u v v v

−

−

∂ ∂ ∂ ∂ ∂
= + = − = −

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

= + = − = −
∂ ∂ ∂ ∂ ∂

 

  (3.2)                                                           ,
6

2)(a          

be out to  turns(3.1)equation  aldifferenti partialgiven  The

2
1

2
2
111

2
1

22 −=+++ uzzazzb uvuv
π

Next, consider making another transformation to polar coordinates: 

1 1cos ,   sin ;u r v rθ θ= =  

then, through the chain rule, we can find the following relation: 

1 1
1 1  sin  cos  ,            cos sin  v r u rz z z z z z
r rθ θθ θ θ θ= + = −  

 After substituting 1 1,v uz z   into equation (3.2), recalling the term and simplifying, 

we summarize our results as follows: 

rThe  coefficients of z :zθ  
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2 2

2 2

( ) tan 2   2 tan 2   0
2tan 2  1.026573416

1

a b a
a

a b

θ θ

θ

+ + − =
−

= = −
+ −

 

this means  

2 45.75124 ,    22.8756orθ θ= − = −  

  
821620836.0cossincos2sin)b(a  

:z oft coefficien The
2222

2
r

=+++ θθθθ a
 

The coefficient of  2zθ :  

2 2
2 2

2 2 2 2

1 1 2.002059825cos 2 ( cos sin ) sina b a
r r r r

θ θ θ θ+ −
+ + =  

After rotating  22.8756 ,  equation (3.2) becomes°−  
2 2 2 22.358453 2.436722 rr z z Aθ= − =  

We can separate the variables of r  and θ , then solve this partial differential 

equation as follows: 
2

2
2 ,  r

Az
r

=   so that    ln  .z A r= ±  

On the other hand, we can derive from 
2 22.358453 2.436722 z Aθ− =  

                                          
22.358453- ,

1.561
Az θ= ±  

we can now summarize the above two results and write one of the general 

solutions that we found  

                                            
22.358453- ln  

1.561
AZ A r θ= ± ±                            (3.3) 

From previous relations, we know that ( , )r θ  and 1 1( , )u v  are related to 

2 2 2
1 1u v r+ = , and 1

1

tan   v
u

θ = , hence, after substituting into equation (3.3) we get 
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2
2 2 1 1
1 1

1

2.358453- ln tan .
1.561

vAZ A u v
u

−= ± + ±  

Making a further substitution:  
1

1 ,u u−=      and     1 logv v= −  

we can then easily find that  

2 2 2 2
1 1 (log ) ,u v u v−+ = +     and       1

1

log uv v
u

−= . 

Finally, we find one of the general solution of equation (3.2) 
1 2

2 2 12 2.358453- ln  ( (log ) ) tan (log )
1.561

uAZ A u v v− − −= ± + ± . 

The Geodesic Equation of the Weibull Distribution can then be written as  

                                   ,Z B
A
∂

=
∂

 

or  

                                    
1

2 2

2

1 tan (log ) ln  ( (log ) )
2 1.561 2.358453

uA vu v B
A

− −
−± + ± =

−
. 

where ,A B  are arbitrary constants. 

 

 

4  List the fundamental tensor  

The probability density function for the Weibull Distribution is given by 
1

(0, )( :, , ) exp( ( ) ) ( );
u

u
u

ux xf x u v I x
v v

−

∞= −  

where  v   is the scale parameter and  u  is the shape parameter.                       (4.1) 

ln   ln  ( 1) ln    ln  ( ) .uxf u u x u v
v

= + − − −  

From equation (4.1), we derive the metric tensor components for the Weibull case 
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2 (2)

2 2

2 '

2 2

2 2

ln ( ) (2) 1( ) ,   

ln ( ) (2)( ) ,   

ln( )

f xE E
u u

f xF E
v u v

f uG E
v v

∂ Γ +
= − =

∂
∂ −Γ

= − =
∂ ∂

∂
= − =

∂
(2) ' ' 2

2

  (2)  (1)  1                                   (2) (2) ( (2))
          0.5772156649  1                             0.644934067 0.422784335
          0.422784335                      

ψ ψ ψ= + Γ = + Γ

= − + = +
=

'

(2) ' 2
1 2 3 1 2

                    0.823680661
          (2)                                       
   (2) 1 ;         (2)        1.644934067C C C C C

=

= Γ

= Γ + = −Γ = − =

 

In the above derivation, we applied the following integral results  

1 (2)( )2 2
2

0

(2)((ln( )) ( ) ) (ln ) ( )   ;
uxu

u u v
u

x x x x uxE e dx
v v v v v u

∞ − − Γ
= =∫  

                     
1 '( )

0

(2)((ln( ))( ) ) (ln )( )   
uxu

u u v
u

x x x x uxE e dx
v v v v v u

∞ − − Γ
= =∫  

we define the nth derivative of the gamma function :  

( ) 1

0

( ) (ln ) ,      0.n t x nx e t t dt x
∞

− −Γ = >∫  
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