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On Linear Operators with Closed Range
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Abstract

Linear operators between Fréchet spaces such that the closedness of

range of an operator implies the closedness of range of another operator

are discussed when the operators are topologically dominated by each

other.
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1 Introduction

Let X and Y be normed spaces, B(X, Y ) will denote the normed space of

all continuous linear operators from X to Y . R(T ) and N(T ) will denote the

range and null spaces of a linear operator T respectively.

The Banach’s closed range theorem [5] reads as follows : If X and Y are

Banach spaces and if T ∈ B(X, Y ), then R(T ) is closed in Y if and only if R(T ∗)

is closed in X∗. Given a differential operator T defined on some subspace of

Lp(Ω), one may be interested in determining the family of functions y ∈ Lp(Ω)

for which Tf = y has a solution. It is well known that if T ∈ B(X, Y ) has

closed range, then the space of such y is the orthogonal complement of the

solutions to the homogeneous equation T ∗g = 0. There are many important
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applications of “closed range unbounded operators” in the spectral study of

differential operators and also in the context of perturbation theory (see e.g.

[1], [2]). In this paper, we deal with continuous linear operators between

Banach and Fréchet spaces.

2 Norm Equivalent Operators

A characterization of closed range bounded linear operator between two

Banach spaces is given in [3]. Using this characterization, we derive results

which have conclusions of having closed range of an operator when the other

operator has closed range. In this section we assume that the spaces are Banach

unless otherwise specified.

Theorem 2.1. [3] Let T ∈ B(X, Y ). Then R(T) is closed in Y if and only if

there is a constant c > 0 such that for given x ∈ X, there is a y ∈ X such that

(i) Tx = Ty and (ii) ||y|| ≤ c||Tx||.

Lemma 2.2. Let S, T ∈ B(X, Y ). If ||Sx|| ≤ k||Tx|| for all x ∈ X, for some

k > 0 and if S has closed range with N(T ) = N(S), then T has closed range.

Proof. Note that N(T ) ⊆ N(S). S and T are one-to-one on N(S)⊥. Let

U ′ be an open ball with center 0 in X. Find a neighborhood U of 0 in Y such

that for given Sx ∈ U, there is some x1 ∈ U ′ such that Sx1 = Sx. Find a

neighborhood V of 0 in Y such that T−1(V ) ⊆ S−1(U).

Fix Tx ∈ V with x ∈ N(S)⊥. Then Sx ∈ U and x ∈ N(S)⊥ and hence

x ∈ U ′, because S is one-to-one on N(S)⊥. Therefore T (N(S)⊥) is closed in Y

and hence T (X) = T (N(S)⊥) is closed.

Definition 2.3. Let S, T ∈ B(X, Y ). Two operators S and T are said to be

norm equivalent if there exist two positive real numbers k1 and k2 such that

k1||Sx|| ≤ ||Tx|| ≤ k2||Sx||, for all x ∈ X.

Remark 2.4. If S and T are norm equivalent, then N(T ) = N(S) and hence

S has closed range if and only if T has closed range.



P. Sam Johnson and S. Balaji 177

Lemma 2.5. Let S and T be continuous linear operators from a Hilbert space

X to Y . If S has closed range in Y with T (N(S)) ⊆ T (N(S)⊥) and ||Sx|| ≤

k||Tx|| for all x ∈ X, for some k > 0, then T has closed range in Y .

Proof. Let c > 0 be such that ||Sx|| ≥ c||x||, for all x ∈ N(S)⊥. Then

||Tx|| ≥ c
k
||x||, for all x ∈ N(S)⊥. Thus T (N(S)⊥) is closed in Y . Since

T (N(S)) ⊆ T (N(S)⊥), we have T (X) = T (N(S)⊥) and hence T (X) is closed

in Y .

Lemma 2.6. Let T be a one-to-one continuous linear operator from X to Y

and A be a compact linear operator from X to Z. If inf
x 6=0

||Tx||+k||Ax||
||x||

= γ > 0,

for some k > 0, then T is a homeomorphism of X with T (X), and hence T (X)

is closed in Y .

Proof. If T−1 : T (X) → X is not continuous, then there is a sequence

(xn)
∞
n=1 in X such that ||xn|| = 1 and Txn → 0. Then there is a subsequence

(yn)
∞
n=1 of (xn)

∞
n=1 such that Ayn → y for some y ∈ Z.

Then 0 ≤ γ||yn−ym|| ≤ ||Tyn−Tym||+k||Ayn−Aym|| → 0, as n,m → ∞.

Therefore (yn)
∞
n=1 is a Cauchy sequence. Let yn → x in X. Since ||yn|| = 1 for

all n, ||x|| = 1 and x 6= 0. But Tyn → 0 = Tx. Since T is one-to-one, x = 0.

This is a contradiction. Therefore T−1 : T (X) → X is continuous.

Theorem 2.7. Let S, T ∈ B(X, Y ). Then k1|f(Tx)| ≤ |f(Sx)| ≤ k2|f(Tx)|,

for all x ∈ X, for all f ∈ Y ∗ and for some k1 > 0, k2 > 0 if and only if S is a

constant multiple of T , S = αT , for some scalar α.

Proof. The first part is trivial by taking k1 = k2 =
1

|α|
.

To prove the second part, without loss of generality assume that S and T

are one-to-one, by passing to X/N(S). Suppose x 6= 0 so that Sx 6= 0 6= Tx. If

Sx and Tx are linearly independent, then to each positive integer n, there is

a fn ∈ Y ∗ such that fn(Sx) = n and fn(Tx) = 0. This is impossible, because

|fn(Sx)| ≤ k|fn(Tx)|. Write Sx = αxTx. For y 6= 0 such that x and y are

linearly independent, we have S(x+ y) = αx+yT (x+ y) = αxTx+αyTy. Since

Tx and Ty are linearly independent, αx+y = αx = αy. Thus S is a constant

multiple of T.
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Corollary 2.8. Let S, T ∈ B(X, Y ). If k1|f(Tx)| ≤ |f(Sx)| ≤ k2|f(Tx)|, for

all x ∈ X, for all f ∈ Y ∗ and for some k1 > 0, k2 > 0, then S has closed range

if and only if T has closed range.

Theorem 2.9. Let S and T be continuous linear operators from a Hilbert

space X into a normed space Y . Let P be the projection of X onto N(T )⊥.

If there is some k1 > 0 such that k1|f(Tx)| ≤ |f(Sx)|, for all x ∈ X, for all

f ∈ Y ∗, then T = αSP, for some scalar α.

Proof. Let us first establish that T = αS on N(T )⊥. Note that k1||Tx|| ≤

||Sx||, for all x ∈ X, and N(S) ⊆ N(T ). S and T are one-to-one on N(T )⊥.

Suppose x 6= 0 in N(T )⊥ so that Sx 6= 0 6= Tx.

If Sx and Tx are linearly independent, then to each positive integer n,

there is a fn ∈ Y ∗ such that fn(Tx) = n and fn(Sx) = 0. This is impossible.

Then αSx = Tx, for all x ∈ N(T )⊥ as it was established in the proof of the

previous theorem. Thus αS = T on N(T )⊥.

Let x ∈ H. Write x = x′ + x′′ with x′ ∈ N(T ) and x′′ ∈ N(T )⊥. Then

Tx′′ = αSx′′ = αSPx and Tx′′ = Tx′ + Tx′′ = Tx so that Tx = αSPx. Thus

T = αSP on X.

Corollary 2.10. Let S and T be continuous linear operators from a Hilbert

space X into a normed space Y . If S has closed range in Y and k1|f(Tx)| ≤

|f(Sx)|, for all x ∈ X, for all f ∈ Y ∗ and for some k1 > 0, then T has closed

range in Y.

Proof. S−1(0) + R(P ) = N(S) + N(T )⊥ is closed in X, because N(S) ⊆

N(T ). Moreover S has closed range in Y. Therefore SP has closed range in Y .

Thus T has closed range in Y .

Corollary 2.11. Let S and T be continuous linear operators from a Hilbert

space X into a normed space Y . If k1|f(Tx)| ≤ |f(Sx)|, for all x ∈ X, f ∈ Y ∗

and for some k1 > 0, then k1||Tx|| ≤ ||Sx||, for all x ∈ X. Hence if T has

closed range in Y and S(N(T )) ⊆ S(N(T )⊥), then S has closed range in Y.

Proof. It follows from Lemma 2.5.
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3 Topologically Dominated Operators

A characterization for closed range operators between F -spaces has given

in [3]. Using this characterization, we compare two continuous linear operators

S and T between F -spaces such that closedness of R(S) implies the closedness

of R(T ). An F -space is a complete metrizable topological vector space and

Fréchet space is a locally convex F -space [4].

Theorem 3.1. [3] Let T be a continuous linear operator from an F -space X

into an F -space Y . Then T has closed range in Y if and only if for every

sequence (yn)
∞
n=1 in T (X) which converges to 0, there is a sequence (xn)

∞
n=1 in

X which also converges to 0 such that Txn = yn for every n.

Definition 3.2. Let X and Y be topological vector spaces. Let S and T be

linear operators from X into Y. We say that S is topologically dominated by T

if the following condition holds : For given neighborhood U of 0 in Y, there is

a neighborhood V of 0 in Y such that T−1(V ) ⊆ S−1(U).

We say that S is topologically equivalent to T if S is topologically dominated

by T and T is topologically dominated by S.

Lemma 3.3. Let X and Y be F -spaces. Let S and T be continuous linear

operators from X into Y such that N(S) = N(T ). If S has closed range and

S is topologically dominated by T, then T has closed range.

Proof. Fix a neighborhood U ′ of 0 in X. Find a neighborhood U of 0 in

Y such that for given Sx ∈ U, there is an element x′ ∈ U ′ such that Sx = Sx′.

For this U, find a neighborhood V of 0 in Y such that T−1(V ) ⊆ S−1(U). For

a given Tx ∈ V, we have Sx ∈ U, and there is an x′ ∈ U ′ such that Sx = Sx′.

Then x− x′ ∈ N(S) and hence x− x′ ∈ N(T ) so that Tx = Tx′ with x′ ∈ U ′.

This proves that T has closed range in Y.

Remark 3.4. If S and T are topologically equivalent, then N(T ) = N(S) and

hence S has closed range if and only if T has closed range.
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Lemma 3.5. Let S and T be continuous linear operators from a Hilbert space

X into an F -space Y. Let S be topologically dominated by T. If S has closed

range in Y with T (N(S)) ⊆ T (N(S)⊥), then T has closed range in Y.

Proof. Note that N(T ) ⊆ N(S). S and T are one-to-one on N(S)⊥. Let

U ′ be an open ball with center 0 in X. Find a neighborhood U of 0 in Y such

that for given Sx ∈ U, there is some x1 ∈ U ′ such that Sx1 = Sx. Find a

neighborhood V of 0 in Y such that T−1(V ) ⊆ S−1(U).

Fix Tx ∈ V with x ∈ N(S)⊥. Then Sx ∈ U and x ∈ N(S)⊥ and hence

x ∈ U ′, because S is one-to-one on N(S)⊥. Therefore T (N(S)⊥) is closed in Y

and hence T (X) = T (N(S)⊥) is closed.

Lemma 3.6. Let X be a Banach space, and Y, Z be Fréchet spaces. Let

S : X → Y be an injective continuous linear operator and B : X → Z be

a compact operator. Let (pn)
∞
n=1 be a family of seminorms which define the

topology on Y. Let (qm)
∞
m=1 be a family of seminorms which define the topology

on Z.

Suppose inf
x 6=0

pn(Sx) + kqm(Bx)

||x||
= γ > 0, for some k > 0, for some pn and for

some qm. Then S is a homeomorphism of X with S(X) and hence S(X) is

closed in Y.

Proof. If S−1 : S(X) → X is not continuous, then there is a sequence

(xn)
∞
n=1 in X such that ||xn|| = 1 and Sxn → 0. Find a subsequence (yn)

∞
n=1 of

(xn)
∞
n=1 such that Byn → y for some y ∈ Y.

Then (yn)
∞
n=1 is Cauchy and let yn → x in X. Then ||x|| = 1 so that x 6= 0.

But Syn → Sx = 0 so that x = 0, because S is one-to-one. This contradiction

proves that S−1 is continuous on S(X).

Theorem 3.7. Let X be an F -space and Y be a Fréchet space and S, T be

continuous linear operators from X to Y . Then

k1|f(Tx)| ≤ |f(Sx)| ≤ k2|f(Tx)|,

for all f ∈ Y ∗, for all x ∈ X and for some k1 > 0, k2 > 0 if and only if S is a

constant multiple of T.

Moreover S has closed range if and only if T has closed range.
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Proof. The proof follows from the arguments of the proof of Theorem 2.7

and Corollary 2.8.

Theorem 3.8. Let X be a Hilbert space and Y be a Fréchet space. Let S, T

be continuous linear operators from X into Y and for some k1 > 0,

k1|f(Tx)| ≤ |f(Sx)|,

for all x ∈ X, for all f ∈ Y ∗. Let P be the projection of X onto N(T )⊥. Then

T = αSP,

for some scalar α.

If S has closed range in Y, then T has closed range in Y.

Moreover kp(Tx) ≤ p(Sx), for all x ∈ X, for any continuous seminorm p on

X.

Proof. The proof follows from the arguments of the proofs of Theorem 2.9

and Corollary 2.10.

Corollary 3.9. Let X be a Hilbert space, (Y, (pn)
∞
n=1) be a Fréchet space and

S, T be continuous linear operators from X into Y . Let k1|f(Tx)| ≤ |f(Sx)|,

for all x ∈ X, for all f ∈ Y ∗ and for some k1 > 0. Then k1pn(Tx) ≤ pn(Sx),

for all x ∈ X, for the seminorms pn on Y , n = 1, 2, . . . . Hence if T has closed

range in Y and S(N(T )) ⊆ S(N(T )⊥), then S has closed range in Y.
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