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Abstract 

One of the commonly used second order methods for the minimization of 

quadratic functionals is the Newton’s method. However, for nonquadratic 

functionals, the Newton’s iterative scheme may not converge to the optimum 

minimum point. This paper is based on a second order method derived from the 

Newton’s iterative scheme by incorporating a minimizing step length in the 

Newton’s formula. The second order iterative scheme used in this paper 

minimizes both quadratic and nonquadratic functionals in one iteration. This 

makes it more efficient than other methods of minimization.   
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1   Introduction   

A second order method is a method that uses the second derivatives of the 

objective function for the minimization of functionals. The Newton’s method is a 

well-known second order method for minimizing quadratic functionals. But if f(x) 

is a non-quadratic function, the Newton’s method may converge to saddle points, 

relative maxima or it may diverge.  

Many researchers have worked on minimization of functionals, David and Oregon 

(2010) considered the minimization of nonlinear problems in optimization using 

modified conjugate gradient method. Fletcher and Freeman (1977) worked on a 

modified Newton method for minimization. Anderson (2010) looked at 

minimization of constrained problems in optimization while Ramesh and Craven 

(2009) worked on computational methods for minimizing some engineering 

problems to mention a few. None of these researchers worked on methods that 

converge for both quadratic and nonquadratic functionals in one iteration. The 

second order method used in this paper converges to minimum points in one 

iteration for both quadratic and non-quadratic functionals. 

 

 

2   Materials and Methods 

  The Newton’s iterative scheme for minimizing unconstrained optimization 

problem is giving by the formula 

1

1i i i i i iX X D X A g

                                                                                         (1) 

where  

ig   is the gradient of the given function at point iX . 

iA  is a non-singular Hessian matrix of the function evaluated at point iX , Rao 

(1977) and Polak (1971). 
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The sequence of points generated from the iterative scheme in (1) converges to the 

optimum minimum point *X  from any initial starting point 1X   that is close to the 

solution for all quadratic functionals, Rao (1977) and Polak (1971). However, for 

nonquadratic functionals, the Newton’s iterative scheme in (1) may not converge 

to the minimum point *X , Rao (1977). Therefore, there is the need to modify the 

Newton’s iterative scheme to find the minimum of both quadratic and 

nonquadratic functionals. 

This paper is based on a second order method derived from the Newton’s iterative 

scheme in (1) by incorporating a minimizing step length in the direction of iD . 

The modified Newton’s method will now be in the form 

* * 1

1i i i i i i i iX X D X A g  

                                                                                 (2) 

where *

i  is the minimizing step length in the direction 1

i i iD A g  . With this 

modification in (2), both quadratic and nonquadratic functionals will converge to 

the optimum minimum point in lesser number of iterations compared to the 

conjugate gradient and the Newton’s method. 

 

 

3   Results and Discussion 
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The matrix of second order partial derivative of the function )x,x(f 21  is given by 
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and 
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The matrix of second order partial derivative of the function )x,x(f 21  is given by 















2x4

x42x4x6
A

1

121
 

At point 1X , 









0

2
g1  and 











20

02
A1 , 










5.00

05.0
A 1

1 , 









0

1
gA 1

1

1  

The direction of search 







 

0

1
gAD i

1

ii  

From the modified iterative scheme, we have 









 

0
gAXDXX

1

1

1

1111112  



70             A Second Order Method for Minimizing Unconstrained Optimization Problems 

 

12)DX(f)X(f 1

2

1

3

11112   

223
f

1

2

1

1





, 

0
f

1





 implies that 

548537.01  or 2152504.1  

Substituting the value of 1  in 2X , we have 











0

5485837.0
X 2  or 









0

2152504.1
 

The gradient 









0

0
g 2  at these two values of X this indicates that the two values of 

X represents minimum points for the given function. Optimumf  for these two values 

are 0.3688695 and 3.1126118 respectively. 

 

Example 3: Minimize 121

2

2

2

121 x8xx5x3x4)x,x(f   

from the starting point 









0

0
X1  

The gradient  of the function )x,x(f 21  is given by 















12

21

x5x6

8x5x8
g . At point 1X , 










0

8
g1  

The matrix of second order partial derivative of the function )x,x(f 21   is given by 















65

58
AA 1 , 










347826087.0217391304.0

217391304.0260869565.0
A 1

1 ,  















739130435.1

086956522.2
gA 1

1

1  

 



M.O. Oke                                                                                                                            71 
 

 

The direction of search 
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The first and second examples are on nonquadratic functionals while the third and 

fourth examples are on quadratic functionals. From the results, we can easily see 

that that the minimum points were obtained for all the functionals in one iteration. 

 

 

4   Conclusion 

The second order method in this paper has been used to minimize both 

quadratic and nonquadratic functionals. The iterative scheme converges to the 

optimum minimum point in one iteration for all the functionals considered. This 

now makes this second order method to be more efficient than the conjugate 
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gradient method, the Newton’s method and  the Quasi-Newton’s method that are 

well known for minimizing unconstrained optimization problems. 
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