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                                                                      Abstract 

 Every material contains particles. When a wave travels through a material, the 

oscillating field in the wave will set some of these particles into forced vibration, 

and the vibrating particles will generate new waves of their own. The initial 

energy of the propagating wave is attenuated due to absorption and scattering by 

the medium as it passes. The aim of the present study was to characterize the 

mechanism of Fourier transform technique in determining the energy attenuation 

profile of a carrier wave equation (CWE) as it propagates in a pipe containing a 

visco-elastic fluid. This study also provides a deductive method for determining 

the independent characteristics of two superposed waves whose initial 

characteristics were not known. We showed in this work that the interference of a 
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‘parasitic wave’ with a ‘host wave’ will results to a drastic reduction in the energy 

propagation time of the CWE and a narrow frequency bandwidth. 
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1  Introduction 
The term wave is often intuitively understood as referring to a transport of 

spatial disturbances that are generally not accompanied by a motion of the 

medium occupying this space as a whole. In a wave, the energy of a vibration is 

moving away from the source in the form of a disturbance within the surrounding 

medium [1]. However, this notion is problematic for a standing wave (for 

example, a wave on a string), where energy is moving in both directions equally, 

or for electromagnetic (e.g., light) waves in a vacuum, where the concept of 

medium does not apply and interaction with a target is the key to wave detection 

and practical applications. There are two velocities that are associated with waves, 

the phase velocity and the group velocity and to understand them, one must 

consider several types of waveform [2], [3].   

Although arbitrary wave shapes will propagate unchanged in lossless linear 

time-invariant systems, in the presence of dispersion the sine wave is the unique 

shape that will propagate unchanged but for phase and amplitude, making it easy 

to analyze [4]. Due to the Kramers-Kronig relations a linear medium with 

dispersion also exhibits loss, so the sine wave propagating in a dispersive medium 

is attenuated in certain frequency ranges that depend upon the medium [5]. The 

sine function is periodic, so the sine wave or sinusoid has a wavelength in space 

and a period in time [6]. 
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The sinusoid is defined for all times and distances, whereas in physical 

situations we usually deal with waves that exist for a limited span in space and 

duration in time. Fortunately, an arbitrary wave shape can be decomposed into an 

infinite set of sinusoidal waves by the use of Fourier analysis. As a result the 

simple case of a single sinusoidal wave can be applied to more general cases [7]. 

In particular, many media are linear, or nearly so, so the calculation of 

arbitrary wave behaviour can be found by adding up responses to individual 

sinusoidal waves using the superposition principle to find the solution for a 

general waveform. When a medium is nonlinear, the response to complex waves 

cannot be determined from a sine-wave decomposition [8].  

The superposition principle applies to any linear system, including algebraic 

equations, linear differential equations and systems of equations of those forms. 

The stimuli and response could be numbers, functions, vectors, vector fields, time-

varying signals, or any other object which satisfies certain axioms. Note that when 

vectors or vector fields are involved, a superposition is interpreted as a vector 

sum. For example, in Fourier analysis, the stimulus is written as the superposition 

of infinitely many sinusoids [9].  

Due to the superposition principle, each of these sinusoids can be analyzed 

separately, and its individual response can be computed. The response is itself a 

sinusoid, with the same frequency as the stimulus, but generally a different 

amplitude and phase. According to the superposition principle, the response to the 

original stimulus is the sum (or integral) of all the individual sinusoidal responses 

[10], [11].    

The phenomenon of interference between waves is based on the idea of 

superposition of waves. When two or more waves traverse the same space, the net 

amplitude at each point is the sum of the amplitudes of the individual waves. In 

some cases, the summed variation has smaller amplitude than the component 

variations; this is called destructive interference. In other cases, the summed 
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variation will have bigger amplitude than any of the components individually; this 

is called constructive interference [12].        

If a wave is to travel through a medium such as water, air, steel, or a stretched 

string, it must cause the particles of that medium to oscillate as it passes. For that 

to happen, the medium must possess both mass (so that there can be kinetic 

energy) and elasticity (so that there can be potential energy). Thus the medium’s 

mass and elasticity determines how fast the wave can travel in the medium [13]. 

Every material contains particles. When a wave travels through a material, the 

oscillating field in the wave will set some of these particles into forced vibration, 

and the vibrating particles will generate new waves of their own. If the 

participating particles are sufficiently close together, they will be driven 

coherently, with quite different results. In this case, the scattered waves can be 

superposed with the direct wave, giving rise to a new disturbance which will be 

the wave in the material.  

Any actively defined physical system carries along with it an inbuilt 

attenuating factor such that even in the absence of any external influence the 

system will eventually come to rest after a specified time. This accounts for the 

non-permanent nature of any physical system. A ‘parasitic wave’ as the name 

implies, has the ability of destroying or transforming the intrinsic constituents of 

the ‘host wave’ to its form after a sufficiently long time. It contains an inbuilt 

multiplier λ  which is capable of raising the intrinsic parameters of the ‘parasitic 

wave’ to become equal to those of the ‘host wave’. Consequently, once this 

equality is achieved, then all the active components of the host wave would have 

been completely eroded and it ceases to exist. 

This paper is outlined as follows. Section 1, illustrates the basic concept of the 

work under study. The mathematical theory is presented in Section 2. The results 

obtained are shown in Section 3. While in section 4, we present the analytical 

discussion of the results obtained. The conclusion of this work is shown in section 
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5. This is immediately followed by appendix of some useful identities and a list of 

references.  

 

 

2  Mathematical Theory 

2.1 Dynamical Theory of Superposition of Two Incoherent Waves 

Let us consider two incoherent waves defined by the non-stationary 

displacement vectors 

               ( )1( , ) cos .y r t a k r n tβ β β ε β= − −


                                                     (2.1) 

              ( )2 ( , ) cos .y r t b k r n tλ λ λ ε λ′ ′ ′= − −


 

                                                   (2.2) 

               ( ) ( )
1 2( , ) ( , ) ( , )

cos . cos .

y r t y r t y r t

a k r n t b k r n tβ β β ε β λ λ λ ε λ

= +

′ ′ ′= − − + − −

  

 

 

      (2.3) 

where all the symbols have their usual wave related meaning. In this study, (2.1) is 

regarded as the ‘host wave’ whose propagation depends on the inbuilt raising 

multiplier β (= 0, 1, 2, . . ., maxβ ). While (2.2) represents a ‘parasitic wave’ with an 

inbuilt raising multiplier λ (= 0, 1, 2, . . ., maxλ ). The inbuilt multipliers are both 

dimensionless and as the name implies, they have the ability of gradually raising 

the basic intrinsic parameters of both waves respectively with time. We have 

established in a previous paper [14] that when (2.1) is superposed on (2.1) 

according to (2.3) we get after some algebra that 

( )

( ) ( ) ( )22 2 2

( , )

( ) 2 cos ( ) ( cos .

  2.4

( ) ( )

y r t

a b a b n n t k r n n t E tcλ λ λ ε ε λ λ

=

′ ′ ′− − − − − − − − −







                                                                                                                                         

Equation (2.4) is regarded as the carrier wave equation (CWE).  

On interpretation, ( )E t  represents total phase angle of the CWE and 

. ( )ck r k k rλ′= −


 

, is the coordinate of two dimensional (2D) position vector and 
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1β = , that means it is assumed as a constant in this work and leaves its variation 

for future study. By definition: ( )n n λ′−  the modulation angular frequency, the 

modulation propagation constant ( )k k λ′− , the phase difference δ  between the 

two interfering waves is ( )ε ε λ′−  the interference term is 

( ) ( )22 cos ( ) (a b n n tλ λ ε ε λ′ ′− − − − , while waves out of phase interfere 

destructively according to ( )2a bλ−  and waves in-phase interfere constructively 

according to ( )2a bλ+ . In the regions where the amplitude of the wave is greater 

than either of the amplitude of the individual wave, we have constructive 

interference that means the path difference is ( )ε ε λ′+ , otherwise, it is destructive 

in which case the path difference is ( )ε ε λ′− . If n n′= , then the average angular 

frequency say ( ) / 2n n λ′+  will be much more greater than the modulation angular 

frequency say ( ) / 2n n λ′−  and once this is achieved then we will have a slowly 

varying carrier wave with a rapidly oscillating phase. 

Driving forces in antiphase ( )ε ε π′− = ±  provide full destructive 

superposition and the minimum possible amplitude; driving forces in phase 

( )ε ε ′=  provide full constructive superposition and the maximum possible 

amplitude. However, in one dimensional (1D) representation we can recast (2.4) 

as  

( )

( ) ( ) ( )22 2 2

( , )

( ) 2 cos ( ) ( cos (

  .5

) ( )

2y x t

a b a b n n t k x n n t E tcλ λ λ ε ε λ λ

=

′ ′ ′− − − − − − − − −
                                                   

                            ( )
( )

1 sin sin ( )
( ) tan

cos cos ( )
a b n n t

E t
a b n n t

ε λ ε λ λ
ε λ ε λ λ

−  ′ ′+ − −
=   ′ ′+ − − 

                   (2.6) 

The variation of the total phase angle with respect to time gives the characteristic 

angular velocity ( )Z t . That is  

  
( )

( )

2 2

2 2 2

cos ( ) ( )( ) ( ) ( )
2 cos ( ) ( )

b ab n n tdE t Z t n n
dt a b ab n n t

λ λ ε ε λ λ
λ

λ λ ε ε λ λ
 ′ ′+ − + −

′= − = − −   ′ ′+ + − + − 
     (2.7) 
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Note that . ( )ck x k k xλ′= −


. We can decompose the carrier wave equation CWE 

into two functions; function of the oscillating amplitude ( )f A  and the function of 

the spatial oscillating phase ( )f θ  , where 

                   ( ) ( )22 2 2( ) ( ) 2 cos ( ) (f A a b a b n n tλ λ λ ε ε λ′ ′= − − − − − −            (2.8) 

                                     ( )( ) cos ( ) ( )cf k x n n t E tθ λ′= − − −


                               (2.9) 

 

 

2.2 Differentio-Binomial Expansion of the Carrier Wave 

Equation     (CWE) 
It will not be very easy to expand (2.8) using Fourier series technique. As a 

result, there is need for us to obtain a comprehensively valid approximate solution 

to it before applying Fourier series expansion. Hence to make it valid for the 

application of Fourier series expansion, we first minimize it using Binomial 

expansion and thereafter the resulting equation is differentiated with respect to the 

variable time t . Consequently, if we differentiate the result of the Binomial 

expansion with respect to time, the resulting oscillating amplitude will be 

converted from the usual dimension of length which is meters (m) to angular 

velocity whose unit is radian per second (rad./s) or velocity which is m/s. We can 

further rearrange (2.8) for the purpose of the approximation as follows. 

            

( ) ( )
2

2 2 2
2 2 2

2
( ) 1 cos ( ) ( )

( )
a b

f A a b n n t
a b

λ
λ λ ε ε λ

λ
−

′ ′= − − − − −
−

 
  
   

      
(2.10) 

 

( ) ( )
2

2 2 2
2 2 2( ) ( ) 1 cos ( ) ( )

( )
a bdf A a b n n t

dt a b
λ

λ λ ε ε λ
λ

 − ′ ′= − − − − − + −  
       (2.11)

 

( ) ( )
2

2 2 2
2 2 2

( )
( ) ( ) sin ( ) ( )

( )
a b n n

f A a b n n t
a b
λ λ

λ λ ε ε λ
λ

 ′− − ′ ′= − − − − + −  
       (2.12) 

( ){ }( ) ( )sin ( ) ( )f A D n n n n tλ λ ε ε λ′ ′ ′= − − − −                                                (2.13) 
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where for clarity of purpose we have set 2 2 2 2( ) / ( )D a b a bλ λ= − − .       

 

                                                            

2.3 Fourier Series Expansion of the Oscillating Amplitude f(A) 

of the Carrier Wave Equation (CWE) 
Now, by expanding the oscillating term of (2.13) in terms of Fourier series we 

get 

[ ] ( ){ } ( ){ }
( ){ }

( ){ } ( )

0 1 2

3

( ) sin ( ) ( ) sin 2( ) ( )

sin 3( ) ( )

sin ( ) 2.1) 4(

F f A C C n n t C n n t

C n n t

C n n tβ

λ ε ε λ λ ε ε λ

λ ε ε λ

β λ ε ε λ

′ ′ ′ ′= + − − − + − − −

′ ′+ − − −

′ ′+ + − − −

 
                    

[ ] ( ){ }02
1

( ) sin ( ) ( )CF f A C n n tβ
β

β λ ε ε λ
∞

=

= ′ ′+ − − −∑                 (2.15) 

Thus (2.15) represents the Fourier series expansion of the oscillating 

amplitude for only one phase described by the sine (odd) function. It is however 

not always convenient to specify amplitude and phase [15] we can express each 

term in the form 

                      
( ){ }

( ) ( )
sin ( ) ( )

cos ( ) sin ( )

C n n t

A n n t B n n t
β

β β

β λ ε ε λ

β λ β λ

′ ′− − −

′ ′= − + −
                 (2.16) 

where 

                   

cos( )
cos( )

A C
B C
β β

β β

ε ε λ

ε ε λ

′= − 
′= − − 

    ⇒       2 2C A Bβ β β= +                           (2.17) 

The negative sign indicates complex conjugate of the real part and the inclusions 

will make the dynamic components of the phase angle real. Thus (2.17) represents 

the amplitude of the nth harmonic. Where β  is the Fourier index. From (2.16) if  

0β =  then;         

                   ( ){ }0 0sin ( )C Aε ε λ′− − =     ⇒    
0

0 sin ( )
AC
ε ε λ

= −
′−

                    (2.18) 
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Thus the series expansion given by (2.15) can be rewritten using (2.16) and (2.18) 

as 

             [ ] ( ) ( )02
1

( ) cos ( ) sin ( )F f A C A n n t B n n tβ β
β

β λ β λ
∞

=

= ′ ′+ − + −∑         (2.19) 

where 0A , Aβ  and Bβ  are the Fourier coefficients of the series expansion of the 

CWE. Thus (2.19) represents simultaneously the Fourier series expansion for both 

the cosine (even) and sine (odd) functions. However, (2.15) and (2.19) is 

applicable to the study of wave interference, but in this study we shall utilize 

(2.19) for assumed convergence of both the cosine (even) and sine (odd) functions 

for maximum Fourier index β .  

 

 

2.4 Determination of the Fourier Coefficients of the Fourier 

Series Expansion of the CWE 

The Fourier components of [ ]2
( )F f A  in (2.15) and (2.19) are given by the 

Euler formulas 

               
( )0

0 0

1 1( ) ( )sin ( ) ( )A f A dt D n n n n t dt
τ τ

λ λ ε ε λ
τ τ

′ ′ ′= = − − − −  ∫ ∫        (2.20) 

 
              

( )

( ){ } ( )

0

0

1 ( ) cos ( )

1 sin ( ) ( ) cos ( )

A f A n n t dt

D n n t n n t dt

τ

β

τ

β λ
τ

λ ε ε λ β λ
τ

′= −

′ ′ ′= − − − −

∫

∫  
          (2.21) 

        
( )

( ){ } ( )

0

0

1 ( )sin ( )

1 ( )sin ( ) ( ) sin ( )

B f A n n t dt

D n n n n t n n t dt

τ

β

τ

β λ
τ

λ λ ε ε λ β λ
τ

′= −

′ ′ ′ ′= − − − − −

∫

∫
       (2.22) 

      
( ) ( ){ }0 cos ( ) ( ) cos ( )DA n n λ τ ε ε λ ε ε λ

τ
′ ′ ′= − − − − − − −                            (2.23) 
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( ) ( ){ }

2

0 2 2 2

( ) ( ) cos 2 ( ) cos ( )
2 ( )
a b n nA

a b
λ λ π ε ε λ ε ε λ

π λ

′− − ′ ′= − − − −
−

                  (2.24) 

     
( )( )2

0 2 2 2

( ) ( ) sin( )sin ( )

( )

a b n n
A

a b

λ λ π π ε ε λ

π λ

′ ′− − − −
= −

−
                                (2.25) 

         

( )( )2

0 2 2 2

( ) ( ) sin( )sin ( )

( ) sin ( )

a b n n
C

a b

λ λ π π ε ε λ

π λ ε ε λ

′ ′− − − −
=

′− −
                                  (2.26) 

In which case ( ) 2n nτ λ π′− =  is the period of the CWE. Thus (2.26) gives the 

dimension of 0C  as radian per second (rad./s) or m/s. However, we are going to 

adopt m/s in this study. Please see the appendix for the identities we have used to 

get these results. 

 
( )

( )

0

0

( ){ sin (1 ) ( ) ( )
2

sin (1 ) ( ) ( ) }

D n nA n n t dt

n n t dt

τ

β

τ

λ β λ ε ε λ
τ

β λ ε ε λ

′− ′ ′= + − − −

′ ′+ − − − −

∫

∫    
                         (2.27) 

 

( ) ( )

( ) ( )

cos (1 ) ( ) ( ) cos ( )( ){ }
2 (1 ) ( )

cos (1 ) ( ) ( ) cos ( )( ){ }
2 (1 ) ( )

n nD n nA
n n

n nD n n
n n

β

β λ τ ε ε λ ε ε λλ
τ β λ

β λ τ ε ε λ ε ε λλ
τ β λ

′ ′ ′+ − − − − − −′−
= −

′+ −
′ ′ ′− − − − − − −′−

−
′− −

      (2.28) 

The second term on the right side of (2.28) is ignored since if 1β = , then 

according to the summation rule the expression in the parenthesis is infinite and it 

will not produce intended result. Hence 

   

( ) ( )2

2 2 2

cos 2(1 ) ( ) cos ( )( ) ( ){ }
(1 )4 ( )

a b n nA
a b

β

β π ε ε λ ε ε λλ λ
βπ λ

′ ′+ − − − −′− −
= −

+−     
(2.29) 

   

( ) ( )2

2 2 2

sin (1 ) sin (1 ) ( )( ) ( ){ }
(1 )2 ( )

a b n nA
a b

β

β π β π ε ε λλ λ
βπ λ

′+ + − −′− −
=

+−
           (2.30) 

By following the same arithmetic procedure that led to (2.30) we then have for Bβ  

that 
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( )

( )

0

0

( ){ cos (1 ) ( ) ( )
2

cos (1 ) ( ) ( ) }

D n nB n n t dt

n n t dt

τ

β

τ

λ β λ ε ε λ
τ

β λ ε ε λ

′− ′ ′= − − − −

′ ′− + − − −

∫

∫
                        

        
(2.31) 

 

( ) ( )

( ) ( )

sin (1 ) ( ) ( ) sin ( )( ){ }
2 (1 ) ( )

sin (1 ) ( ) ( ) sin ( )( ){ }
2 (1 ) ( )

n nD n nB
n n

n nD n n
n n

β

β λ τ ε ε λ ε ε λλ
τ β λ

β λ τ ε ε λ ε ε λλ
τ β λ

′ ′ ′− − − − − − −′−
=

′− −
′ ′ ′+ − − − − − −′−

−
′+ −

         (2.32) 

 

( ) ( )2

2 2 2

sin 2(1 ) ( ) sin ( )( ) ( ){ }
(1 )4 ( )

a b n nB
a b

β

β π ε ε λ ε ε λλ λ
βπ λ

′ ′+ − − + −′− −
= −

+−     
    (2.33) 

 

( ) ( )2

2 2 2

sin (1 ) cos (1 ) ( )( ) ( ){ }
(1 )2 ( )

a b n nB
a b

β

β π β π ε ε λλ λ
βπ λ

′+ + − −′− −
= −

+−             
(2.34) 

Upon the substitution of (2.30) and (2.34) into (2.19) we realize 

[ ] ( )( )

( ) ( ) ( )

( ) ( )

2

2 2 2 2

2

2 2 2
1

2

2 2 2

( ) ( ) sin( )sin ( )
( )

( ) sin ( )
sin (1 ) sin (1 ) ( )( ) ( ) cos ( )

(1 )2 ( )
sin (1 ) sin (1 ) ( )( ) ( ) s in (

(1 )2 ( )

a b n n
F f A

a b

a b n n n n t
a b

a b n n n n
a b

β

λ λ π π ε ε λ

π λ ε ε λ

β π β π ε ε λλ λ β λ
βπ λ

β π β π ε ε λλ λ β
βπ λ

∞

=

′ ′− − − −
= +

′− −

′+ + − −′− − ′+ −
+−

′+ + − −′− − ′− −
+−

∑

( )
1

)t
β

λ
∞

=
∑

 

[ ] ( )( )

( ) ( )
( ) ( )

2

2 2 2 2

2

2 2 2
1

( ) ( ) sin( )sin ( )
( )

( ) sin ( )

( ) ( ) sin(1 )
(1 )2 ( )

{sin (1 ) ( ) cos ( )

cos (1 ) ( ) sin ( ) }

a b n n
F f A

a b

a b n n
a b

n n t

n n t

β

λ λ π π ε ε λ

π λ ε ε λ

λ λ β π
βπ λ

β π ε ε λ β λ

β π ε ε λ β λ

∞

=

′ ′− − − −
= +

′− −

′− − +
+ ×

+−

′ ′× + − − − −

′ ′− + − − −

∑                        (2.35)                    

Since (2.35) represents the velocity of the oscillating amplitude of the CWE when 

the oscillating phase is assumed equal to one, it is also the equation of the 

maximum velocity mv  of the oscillating amplitude. That is,  
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[ ]
( )

( )

2
2

2 2 2

2

2 2 2
1

( )

( ) ( )sin( )sin ( )

( ) sin ( )

( ) ( ) sin(1 ) sin (1 ) ( ) ( )
(1 )2 ( )

mv F f A

a b n n

a b

a b n n n n t
a b β

λ λ π π ε ε λ

π λ ε ε λ

λ λ β π β π β λ ε ε λ
βπ λ

∞

=

=

′ ′− − − −
= +

′− −

′− − + ′ ′+ + − − − −
+−

∑

 (2.36)                              

Thus (2.36) represents the Fourier transform of the maximum velocity of the 

oscillating amplitude of the CWE.  

However, in the absence of the .parasitic wave’ in which case 0λ = , the 

maximum velocity mv  becomes 

[ ]

( )

3

1

( )

sin( )sin ( ) sin(1 ) sin (1 )
sin ( ) 2 (1 )

mv F f A

a n an nt
β

π π ε β π β π β ε
π ε π β

∞

=

=

− +
= + + − −

+∑           (2.37)     

 

 

2.5 Minimization of the Oscillating Amplitude f(A) of the CWE 

with respect to the Phase Angle 

The motivation for the minimization of the oscillating amplitude ( )f A  of the 

CWE with respect to the phase angle is that we want to make the oscillating 

amplitude invariant with respect to dimension, that is, the oscillating amplitude of 

the displacement vector y shall still retain its initial dimension as length. Now  

      ( ) ( )
2

2 2 2
2 2 2

2
( ) ( ) 1 cos ( ) ( )

( )
a b

y f A a b n n t
a b

λ
λ λ ε ε λ

λ
−

′ ′= = − − − − −
−

         (2.38) 

    ( ) ( )
2

2 2 2
2 2 2

( )

( ) {1 cos ( ) ( ) }
( )

y f A

a bda b n n t
d a b

λ
λ λ ε ε λ

ϕ λ

=

−
′ ′= − − − − − +

−


         (2.39) 

     
( ) ( )

2
2 2 2

2 2 2( ) ( ){ sin ( ) ( ) }
( )

a b
y f A a b n n t

a b
λ

λ λ ε ε λ
λ

−
′ ′= = − − − − − +

−


   
   (2.40) 
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     ( ){ }4 2( ) sin ( ) ( )y f A D n n tλ ε ε λ′ ′= = − − −                                                  (2.41) 

where for clarity of purpose we have set; 2 2 2 2
2 ( ) / ( )D a b a bλ λ= − − − . 

 

 

2.6 Fourier Series Expansion of the Oscillating Amplitude  

          y = f(A)4 of the CWE 
We can now expand (2.41) in terms of Fourier series. 

                        

[ ] ( )
( )
( )

( )

0 14

2

3

( ) {sin ( ) ( ) }

{sin 2( ) ( ) }

{sin 3( ) ( ) }

{sin ( ) ( ) }

F f A C C n n t

C n n t

C n n t

C n n tβ

λ ε ε λ

λ ε ε λ

λ ε ε λ

β λ ε ε λ

′ ′= + − − −

′ ′+ − − −

′ ′+ − − −

′ ′+ + − − −

                 (2.42) 

                [ ] ( ){ }05
1

( ) sin ( ) ( )F f A C C n n tβ
β

β λ ε ε λ
∞

=

′ ′= + − − −∑                       (2.43) 

Accordingly, it is not always convenient to specify amplitude and phase, we can 

express each term in the form 

              
( ){ }

( ) ( )
sin ( ) ( )

cos ( ) sin ( )

C n n t

A n n t B n n t
β

β β

β λ ε ε λ

β λ β λ

′ ′− − −

′ ′= − + −
                       (2.44) 

                      

cos( )
sin( )

A C
B C
β β

β β

ε ε λ

ε ε λ

′= − 
′= − − 

   ⇒  2 2C A Bβ β β= +                               (2.45) 

 From (2.44);   if  0β = , then  

                           ( ){ } 0
0 0 0sin ( )

sin ( )
AC A Cε ε λ
ε ε λ

′− − = ⇒ = −
′−

                   (2.46) 

Thus the series expansion given by (2.43) can be rewritten using (2.44) and (2.46) 

as 

          [ ] ( ) ( )06
1

( ) { cos ( ) sin ( ) }F f A C A n n t B n n tβ β
β

β λ β λ
∞

=

′ ′= + − + −∑         (2.47) 

The Fourier components of [ ]5( )F f A  in (2.47) are given by the Euler formulas 
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( )0 3

0 0

1 1( ) { sin ( ) ( ) }A f A dt D n n t dt
τ τ

λ ε ε λ
τ τ

′ ′= = − − −∫ ∫                  (2.48) 

                   
( )

( ) ( )

3
0

0

1 ( ) cos ( )

1 { sin ( ) ( ) }cos ( )

A f A n n t dt

D n n t n n t dt

τ

β

τ

β λ
τ

λ ε ε λ β λ
τ

′= −

′ ′ ′= − − − −

∫

∫
        (2.49) 

                   
( )

( ) ( )

3
0

0

1 ( ) s in ( )

1 { sin ( ) ( ) }s in ( )

B f A n n t dt

D n n t n n t dt

τ

β

τ

β λ
τ

λ ε ε λ β λ
τ

′= −

′ ′ ′= − − − −

∫

∫
        (2.50) 

           
( ) ( ){ }0 cos ( ) ( ) cos ( )

( )
DA n n

n n
λ τ ε ε λ ε ε λ

τ λ
′ ′ ′= − − − − − − −

′−
         (2.51) 

           
( ) ( ){ }

2

0 2 2 2

( ) cos 2 ( ) cos ( )
2 ( )

a bA
a b

λ π ε ε λ ε ε λ
π λ

− ′ ′= − − − −
−

       

        (2.52)

 

          
( )( )2

0 2 2 2

( ) sin( )sin ( )

( )

a b
A

a b

λ π π ε ε λ

π λ

′− − −
= −

−
 

                                           (2.53) 

                    

( )( )2

0 2 2 2

( ) sin( )sin ( )

( ) sin ( )

a b
C

a b

λ π π ε ε λ

π λ ε ε λ

′− − −
=

′− −
                    

                (2.54) 

Hence, 0C  has the dimension of meters (m). Also when we substitute (2.41) into 

(2.49), we have 

            

( )

( )

0

0

sin (1 ) ( ) ( )
2

sin (1 ) ( ) ( )
2

DA n n t dt

D n n t dt

τ

β

τ

β λ ε ε λ
τ

β λ ε ε λ
τ

′ ′= + − − −

′ ′+ − − − −

∫

∫        
                            (2.55)      

            

( ) ( )

( ) ( )

cos (1 ) ( ) ( ) cos ( )
{ }

2 (1 ) ( )
cos (1 ) ( ) ( ) cos ( )

{ }
2 (1 ) ( )

n nDA
n n

n nD
n n

β

β λ τ ε ε λ ε ε λ
τ β λ

β λ τ ε ε λ ε ε λ
τ β λ

′ ′ ′+ − − − − − −
= − −

′+ −
′ ′ ′− − − − − − −

−
′− −

   (2.56) 
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The second term on the right side of (2.56) is ignored since if 1β =   according to 

the summation rule the expression in the parenthesis is infinite and will not be 

useful. Hence 

          

( ) ( )2

2 2 2

cos 2(1 ) ( ) cos ( )( ) { }
(1 )4 ( )

a bA
a b

β

β π ε ε λ ε ε λλ
βπ λ

′ ′+ − − − −−
=

+−   
  (2.57) 

         

( ) ( )2

2 2 2

sin (1 ) sin (1 ) ( )( ) { }
(1 )2 ( )

a bA
a b

β

β π β π ε ε λλ
βπ λ

′+ + − −−
= −

+−   
    (2.58) 

Finally, after careful substitution and simplification as the steps taken to arrive at 

(2.58) we have for Bβ  that   

                        

( )

( )

0

0

cos (1 ) ( ) ( )
2

cos (1 ) ( ) ( )
2

DB n n t dt

D n n t dt

τ

β

τ

β λ ε ε λ
τ

β λ ε ε λ
τ

′ ′= − − − −

′ ′− + − − −

∫

∫
                        (2.59) 

       

( ) ( )2

2 2 2

sin 2(1 ) ( ) sin ( )( ) { }
(1 )4 ( )

a bB
a b

β

β π ε ε λ ε ε λλ
βπ λ

′ ′+ − − + −−
= −

+−
     (2.60) 

       

( ) ( )2

2 2 2

sin (1 ) cos (1 ) ( )( ) { }
(1 )2 ( )

a bB
a b

β

β π β π ε ε λλ
βπ λ

′+ + − −−
= −

+−
        (2.61) 

Also the substitution of (2.54), (2.58) and (2.61) into (2.47) we realize 

     

[ ] ( )

( ) ( )

( )
( ) ( )

( )

2

6 2 2 2

2

2 2 2
1

2

2 2 2
1

( ) sin( )sin ( )
( )

( ) sin ( )
sin (1 ) sin (1 ) ( )( )

(1 )2 ( )
cos ( )

sin (1 ) cos (1 ) ( )( )
(1 )2 ( )

s in ( )

m

a b
y F f A

a b

a b
a b

n n t

a b
a b

n n t

β

β

λ π π ε ε λ

π λ ε ε λ

β π β π ε ε λλ
βπ λ

β λ

β π β π ε ε λλ
βπ λ

β λ

∞

=

∞

=

′− − −
= = −

′− −

′+ + − −−
− ×

+−

′× −

′+ + − −−
− ×

+−

′× −

∑

∑

           (2.62) 

However, since (2.62) represents the stationary oscillating amplitude when the 

oscillating phase is assumed equal to one, then it is also the equation of the 
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maximum displacement my  of the oscillating amplitude of the CWE. Hence, we 

can write after simplification that  

[ ]
( ) ( )

( )

6
2

2 2 2

2

2 2 2
1

2.

( )

( ) sin( )sin ( )

( ) sin ( )

( ) sin (1 ) sin (1 ) ( ) ( ) .
(1 )2 (

63

)

my F f A

a b

a b

a b n n t
a b β

λ π π ε ε λ

π λ ε ε λ

λ β π β π β λ ε ε λ
βπ λ

∞

=

=

′− − −
=

′− −

− + ′ ′− + − − − −
+−

∑

Generally, [ ]6( )my F f A=   has the space dimension which is meter m  and it is 

slightly different from (2.36). However, in the absence of the .parasitic wave’ in 

which case 0λ =  the maximum displacement my  becomes 

    
[ ]

( )

7

1

( )

sin( )sin ( ) sin (1 ) sin (1 )
sin ( ) 2 (1 )

my F f A

a a nt
β

π π ε β π β π β ε
π ε π β

∞

=

=

− +
= − + − −

+∑
     (2.64)         

 

   

2.7 Fourier Series Expansion of the Spatial Oscillating Phase 

f(θ) of the CWE 

Now the Fourier series expansion of the spatial oscillating phase given by 

(2.9) as a function of time is given by 

[ ] ( )( )
( )( ) ( )( )

( )( ) ( )

0 1

2 3

( ) cos . ( )

cos . 2 ( ) cos . 3

   2.6

( )

cos ) 5. (

F f C C k x n n t E

C k x n n t E C k x n n t E

C k x n n t Eβ

θ λ

λ λ

β λ

′= + − − − +

′ ′+ − − − + − − −

′+ + − − −



 





 

   [ ] ( )( )01
1

( ) cos . ( )F f C C k x n n t Eβ
β

θ β λ
∞

=

′= + − − −∑


                                  (2.66) 

However, there is need to separate the function in the summation sign into two 

components, space and time. 
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( )( )

( )( ) ( )( )
cos . ( )

cos ( ) sin ( )

C k x n n t E

A n n t E B n n t E

β

β β

β λ

β λ β λ

′− − −

′ ′= − − + − −



        (2.67) 

With assumption that 

                          

( )
( )

cos

sin

A C k x

B C k x

β β

β β

= 


= − 





   ⇒  
2 2C A Bβ β β= +                              (2.68) 

From (2.67);   if  0β = , then  

                                                  
( )0 0
1

cos c

C A
k x

=


                                           (2.69) 

Consequently the series given by (2.66) can be rewritten more completely because 

of the additional modification, that is, after the substitution of (2.67) and (2.69) 

into (2.66) as 

   

[ ] ( )
( )( ) ( )( ){ }

02

1

1( )
cos

cos ( ) sin ( )

c

F f A
k x

A n n t E B n n t Eβ β
β

θ

β λ β λ
∞

=

= +

′ ′+ − − + − −∑



  (2.70)                                

Usually, the Fourier components of [ ]2
( )F f θ  in (2.70) are given by the Euler 

formulas 

             
( )0

0 0

1 1( ) cos ( )cA f dt k x n n t E dt
τ τ

θ λ
τ τ

′= = − − −∫ ∫


                               (2.71) 

            
( )( )

( ) ( )( )
0

0

1 ( ) cos ( ) ( )

1 cos ( ) ( ) cos ( ) ( )c

A f n n t E t dt

k x n n t E t n n t E t dt

τ

β

τ

θ β λ
τ

λ β λ
τ

′= − −

′ ′= − − − − −

∫

∫


  
     

(2.72)  

           
( )( )

( ) ( )( )
0

0

1 ( )s in ( ) ( )

1 sin ( ) ( ) sin ( ) ( )c

B f n n t E t dt

k x n n t E t n n t E t dt

τ

β

τ

θ β λ
τ

λ β λ
τ

′= − −

′ ′= − − − − −

∫

∫


         
 
(2.73) 
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( )

( )

0
1 1{ sin( ( ) ( ))

( ) ( )
1 sin( (0))}

( ) (0)

c

c

A k x n n E
n n Z

k x E
n n Z

λ τ τ
τ λ τ

λ

′= − − − − −
′− −

− −
′− −





                    (2.74)
 

     ( ) ( )0
sin( (0)) sin( ( ) ( ))( ){ }

2 ( ) (0) ( ) ( )
c ck x E k x n n En nA

n n Z n n Z
λ τ τλ

π λ λ τ
′′ − − − −−

= −
′ ′− − − −

 

               (2.75) 

     ( ) ( )0
sin ( (0)) sin ( ( ) ( ))( ) { }
( ) (0) ( ) ( )2 cos( )

c c

c

k x E k x n n En nC
n n Z n n Zk x

λ τ τλ
λ λ τπ

′′ − − − −−
= −

′ ′− − − −

 

          (2.76) 

                 0

0

1 { cos( (1 )(( ) ))
2

cos ( (1 )(( ) )) }

c

c

A k x n n t E dt

k x n n t E dt

τ

β

τ

β λ
τ

β λ

′= − − − −

′+ − + − −

∫

∫





                       (2.77) 

( )
( ) ( )

( )
( ) ( ) ( )

sin ( (1 ) ( ) ( ) ) sin( (0))1 { }
2 (1 ) ( ) ( ) (1 ) ( ) (0)

sin ( (1 ) ( ) ( ) ) sin( (0))1 { }
2 (1 ) ( ) ( ) (1 ) ( ) (

2.
)

78
0

c c

c c

k x n n E k x EA
n n Z n n Z

k x n n E k x E
n n Z n n Z

β

β λ τ τ
τ β λ τ β λ

β λ τ τ
τ β λ τ β λ

′− − − − −
= − −

′ ′− − − − − −

′− + − − −
+ − −

′ ′+ − − + − −









 
    

     (2.78) 

The first term on the right side of (2.78) is ignored since it becomes infinite if 

1β = . As a result, 

  ( )
( )

( )
sin( (1 ) 2 ( ) )sin( (0))( ){ }

4 (1 ) ( ) (0) (1 ) ( ) ( )
cc k x Ek x En nA

n n Z n n Zβ

β π τλ
π β λ β λ τ

− + −′ −−
= −

′ ′+ − − + − −





    
(2.79)  

By following the same procedure that led to (2.79) we obtain the equation for Bβ   

from (2.73) as 

                        0

0

1 { sin( (1 )( ) )
2

sin ( (1 )( ) ) }

c

c

B k x n n t E dt

k x n n t E dt

τ

β

τ

β λ
τ

β λ

′= − − − −

′− − + − −

∫

∫





                   (2.80) 

 ( )
( )

( )
cos ( (1 ) 2 ( ) )cos( (0))( ){ }

4 (1 ) ( ) (0) (1 ) ( ) ( )
cc k x Ek x En nB

n n Z n n Zβ

β π τλ
π β λ β λ τ

− + −′ −−
= −

′ ′+ − − + − −





    (2.81) 
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Now upon the substitution of (2.76), (2.79) and (2.81) into (2.70) we get  

[ ]

( ) ( )

( )
( )

( )

2

1

( )( )
2 cos(( ) )

sin (( ) (0)) sin (( ) 2 ( )){ }
( ) (0) ( ) ( )

( ) sin (( ) (0)){
4 (1 ) ( ) (0)

sin(( ) (1 ) 2 ( ) )
}

(1 ) ( ) ( )
cos

n nF f
k k x

k k x E k k x E
n n Z n n Z

n n k k x E
n n Z

k k x E
n n Z

β

λθ
π λ

λ λ π τ
λ λ τ

λ λ
π β λ

λ β π τ
β λ τ

∞

=

′−
= ×

′−
′ ′− − − − −

× − +
′ ′− − − −

′ ′− − −
+ −

′+ − −

′− − + −
− ×

′+ − −

×

∑

( )
( )

( )

1

( (( ) ( )))
( ) cos (( ) (0)){

4 (1 ) ( ) (0)

cos(( ) (1 ) 2 ( ) )
}

(1 ) ( ) ( )
sin( (( ) ( ))) (2.82)

n n t E t
n n k k x E

n n Z

k k x E
n n Z

n n t E t

β

β λ
λ λ

π β λ

λ β π τ
β λ τ

β λ

∞

=

′− −
′ ′− − −

+ −
′+ − −

′− − + −
− ×

′+ − −

′× − −

∑

                 

[ ]

( ) ( )

( )( )
( ) ( )

2

1

( )( )
2 cos(( ) )

sin (( ) (0)) sin (( ) 2 ( )){ }
( ) (0) ( ) ( )

( ) 1
4 ( ) (0) ( ) ( ) 1

{ ( ) ( ) sin(( ) ( ) ( ) (0))

( )

n nF f
k k x

k k x E k k x E
n n Z n n Z

n n
n n Z n n Z

n n Z k k x n n t E t E

n n Z

β

λθ
π λ

λ λ π τ
λ λ τ

λ
π λ λ τ β

λ τ λ β λ

λ

∞

=

′−
= ×

′−
′ ′− − − − −

× − +
′ ′− − − −

′−
+ ×

′ ′− − − − +

′ ′ ′× − − − + − − − −

′− − −

∑

( )
( ) ( )

(0)

sin(( ) ( ) ( ) (1 ) 2 ( ) )} (2.83)k k x n n t E t Eλ β λ β π τ

×

′ ′× − + − − − + −
 Thus (2.83) represents the Fourier transform of the spatial oscillating phase 

and it is dimensionless. The first term represents the fundamental spatial 

oscillating phase, while the rest terms are the overtones. It should be noted that we 

converged the results of both the cosine (even) and the sine (odd) functions of 

(2.82) instead of applying them separately.  
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2.8 Convolution Theory of the Fourier Transform of the 

Velocity of the   Oscillating Amplitude F[f(A)]2  and the 

Spatial Oscillating Phase F[f(θ)]2 of the   CWE  
Now that we have separately determined the Fourier transform of the 

oscillating amplitude [ ]2
( )F f A  and the spatial oscillating phase [ ]2

( )F f θ , the 

necessary requirement now is to convolute them in order to obtain a concise 

equation of the velocity of the CWE. Convolution here means multiplying (2.36) 

by (2.83) term by term. Let us represent the result of the convolution of these 

functions by H  and then with the same velocity vector v  which represents the 

velocity of the CWE. 

                    [ ] [ ]{ } [ ] [ ]22 2 2
( ) ; ( ) ( ) ( )v H F f A F f F f A F fθ θ= ≡ ⊗                (2.84) 

             

( )
( )

( )
( )

( )
( )

( )
( )

2 2

2 2 2 2

2 2

2 2 2 2

( ) ( ) sin( )sin ( )

2 ( ) cos ) sin ( )

sin ( ) (0) sin ( ) 2 ( )
{ }

( ) (0) ( ) ( )

( ) ( ) sin( )sin ( )

4 ( ) sin ( ) ( ) (0)

a b n n

a b k k x

k k x E k k x E
n n Z n n Z

a b n n

a b n n Z

λ λ π π ε ε λ
ν

π λ λ ε ε λ

λ λ π τ
λ λ τ

λ λ π π ε ε λ

π λ ε ε λ λ

′ ′− − − −
= ×

′ ′− − −

′ ′− − − − −
× − +

′ ′− − − −

′ ′− − − −
+

′ ′− − − − ( )

( ) ( )( ){
( )

( ) ( )( )

( )

1

2 2

2 2 2 2
1

( ) ( )

1
1

( ) ( ) sin ( ) ( ) ( ) (0)

( ) (0)

sin ( ) ( ) ( ) (1 ) 2 ( ) }

( ) ( ) sin(1 )
(1 )4 ( ) cos ( )

sin ( ) (
{

n n Z

n n Z k k x n n t E t E

n n Z

k k x n n t E t E

a b n n
a b k k x

k k x E

β

β

λ τ

β

λ τ λ β λ

λ

λ β λ β π τ

λ λ β π
βπ λ λ

λ

∞

=

∞

=

×
′− −

× ×
+

′ ′ ′× − − − + − − − −

′− − − ×

′ ′× − + − − − + − +

′− − +
+ ×

+′− −

′− −
×

∑

∑

( )
( )

( )
( )

( )

0) sin ( ) 2 ( )
}

( ) (0) ( ) ( )

sin (1 ) ( ) ( )

k k x E
n n Z n n Z

n n t

λ π τ
λ λ τ

β π β λ ε ε λ

′− − −
−

′ ′− − − −

′ ′× + − − − − +
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( )( )

( )

( ) ( )( ){
( )

( )

2 2

2 2 2 2

2
1

( ) ( )
8 ( ) ( ) (0) ( ) ( )

sin(1 ) sin (1 ) ( ) ( )
(1 )

( ) ( ) sin ( ) ( ) ( ) (0)

( ) (0)

sin ( ) ( ) ( ) (1 ) 2 (

a b n n
a b n n Z n n Z

n n t

n n Z k k x n n t E t E

n n Z

k k x n n t E t E

β

λ λ
π λ λ λ τ

β π β π β λ ε ε λ
β

λ τ λ β λ

λ

λ β λ β π τ

∞

=

′− −
+ ×

′ ′− − − − −

+ ′ ′× + − − − − ×
+

′ ′ ′× − − − + − − − −

′− − − ×

′ ′× − + − − − + −

∑

( )( ) ( )) } 2.85
Thus from (2.6) and (2.7) we realize  

             

1

1

sin sin ( 2 )( ) tan ;
cos cos ( 2 )

sin sin ( )(0) tan
cos cos ( )

a bE
a b

a bE
a b

ε λ ε λ πτ
ε λ ε λ π

ε λ ε λ
ε λ ε λ

−

−

′ + −
=  ′+ − 

′ +
=  ′+ 

                                          (2.86) 

                
( )

( )

2 2

2 2 2

2 2

2 2 2

cos ( )(0) ( ) ;
2 cos ( )

cos ( ) 2
( ) ( )

2 cos ( ) 2

b abZ n n
a b ab

b ab
Z n n
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λ λ ε ε λλ
λ λ ε ε λ

λ λ ε ε λ π
τ λ

λ λ ε ε λ π

′ + −′= −  ′+ + − 
 ′+ − +

′= −   ′+ + − + 

                 (2.87) 

Thus (2.85) represents the Fourier transform of the velocity attained by the CWE 

since it is the result of the multiplication of the maximum velocity of the 

oscillating amplitude and the spatial oscillating phase. The first term on the right 

hand side represents the fundamental velocity while the rest term represents the 

available overtones of the velocity. In the absence of ‘parasitic wave’, that is when 

0λ = , we realize the below equation. 

( ) ( )

2

2

2

1

sin( )sin ( ) sin ( ) sin ( 2 ){ }
2 cos ( )sin ( )

sin ( )sin ( )
4 sin ( )
1 {sin ( ) sin ( ) (1 )(2 ) }

1

a n kx k x
k x n n

a n

k x nt k x nt
β

π π ε ε π εν
π ε

π π ε
π ε

β ε ε β ε β π ε
β

∞

=

− − − −
= × − +

−
+ ×

× + − − − + − − + −
+∑
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( )
( ) ( )
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2 2
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sinsin(1 ) sin ( 2 ){ }sin (1 ) ( )
(1 )
sin(1 ) sin (1 ) ( )

8 (1 )
{sin ( ) sin ( ) (1 2.)( ) } 82 8

a n
kx

k x k x nt
n n

a n nt

k x nt k x nt

β

β

π

εβ π π ε β π β ε
β

β π β π β ε
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β ε ε β ε β π ε

∞

=

∞

=

+ ×

−+ − −
× − + − − +

+

+
+ + − − ×

+
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∑

∑

 

 Consequently, in the absence of ‘parasitic wave’, in which case 0λ = , we 

realize that the values of the total phase angle and the characteristic angular 

velocity are; ( ) ( ) (0)E t E Eτ ε= = =  and ( ) ( ) (0) 0Z t Z Zτ= = = .  

Note that we have assumed the same constraint for the product of the two 

convoluting functions. The assumption is possible because the two functions we 

are convoluting are of the same source and they are not incoherent. We should 

also observe that the dimension of the velocity v of the CWE after the application 

of the Fourier transform is m/s and so we are not using rad/s. 

 

 

2.9 Evaluation of the Energy Attenuation Equation of the 

Carrier Wave Equation CWE 

In natural systems, we can rarely find pure wave which propagates free from 

energy-loss mechanisms. But if these losses are not too serious we can describe 

the total propagation in time by a given force law ( )f t . The propagating CWE in 

the pipe containing fluid is affected by three major factors: (i) the damping effect 

of the mass m of the surrounding fluid (ii) the damping effect of the dynamic 

viscosity of the fluid (η ) and (iii) the damping effect of the fluid elastic property 

(µ ). Then the force law equation governing the dissipation of the CWE in the 

pipe if the fluid is considered to be Newtonian is given by 



E.A. Edison, A. Erhieyovwe and D.A. Babaiwa                                                             119 
 

                            
2 2

2( ) y yf t m y
t dt

η µ∂ ∂
= + +

∂                                                    
(2.89) 

                          
2

2( ) 2y yf t V y y
t dt

ρ η µ∂ ∂
= + +

∂
                                              (2.90)                   

where 2V r xπ=  is the volume of fluid in the cylindrical pipe. The notation 𝑟 and 

x  are the radius and the length of the pipe respectively. In this work, we 

arbitrarily considered the radius  r = 0.04m, length x = 5000m, dynamic viscosity 

of the fluid η = 0.003kg/ms and the fluid elastic property µ = 6 x 10-7kg/s2. The 

influence of gravity on the propagation of the carrier wave equation CWE in the 

pipe is however neglected. 

                           ( ) 2y yf t V y y
t t t

ρ η µ∂ ∂ ∂ = + + ∂ ∂ ∂ 
                                         (2.91) 

                  
( ) 2y yf t dt V dt y dt ydt

t t t
ρ η µ∂ ∂ ∂   = + +   ∂ ∂ ∂   ∫ ∫ ∫ ∫                       (2.92) 

                             
2Im 2ypulse V y ydt

t
ρ η µ∂ = + + ∂  ∫                                 (2.93) 

                             
2Im 2pulse V v y ydtρ η µ= + + ∫                                        (2.94) 

We can now multiply through (2.94) by the velocity v  in order to convert the unit 

of impulse to energy which is Joules (J) or (kgm2/s2) or (Nm). 

                       vvelocitypulse ×Im = 2 22V v v y ydtρ η µ ν+ + ∫                          (2.95) 

                         
2 2( ) 2 yEnergy E V v v y y dt

t
ρ η µ ∂

= + +
∂∫                            (2.96) 

                               
2 2 2( ) 2Energy E V v vy yρ η µ= + +                                    (2.97) 

For the energy to be a maximum then the spatial oscillating part of the CWE must 

be equal to one and the CWE would only have the oscillating amplitude which 

will now be maximum also. The velocity of the CWE is also a maximum if the 

oscillating amplitude is a maximum.  Hence 

                                    
2 2 2( ) 2m m m mEnergy E V v v y yρ η µ= + +                         (2.98)  
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Although, if we are interested in the application of (2.97), which is the equation 

for the minimum energy of the CWE, then we must first convolute (2.63) and 

(2.83) before using the result of the convolution with (2.85) in (2.97). We should 

also note that since the maximum velocity mv  and the maximum displacement my  

of the CWE comprises of both the fundamental and the overtones or the nth 

harmonics, then the maximum energy mE  must also comprise of two parts; the 

fundamental,  the overtones or the nth harmonics. In this study, we are going to 

implement (2.98). We shall also investigate the energy spectrum of the 

propagating CWE for both the presence and in the absence of the ‘parasitic wave’ 

for maximum value of the Fourier index 505β = . However, in the avoidance of 

error and for clarity of purpose we shall state 2
mv  and 2

my  clearly from (2.36) and 

(2.63) respectively. Thus we have 

[ ] ( )

( )

( )

2
2

2 2
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4 2
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4 2

2
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( ) sin ( )
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Hence upon the application of (2.99) and (2.100) in (2.98), then the resulting 

energy attenuation equation will have two terms as we have noted before. Also in 

the absence of the ‘parasitic wave’ in which case 0λ = , we have from (2.37) and 

(2.64) that  

 

[ ]

( )

( )

2 2 2
2 2

23

1

22
2

1

sin( )sin ( ) sin( )sin ( )( )
sin ( ) sin ( )

sin(1 ) sin (1 )
(1 )

sin(1 ) sin (1 )
2 (1 )

m
a n a nv F f A

nt

an nt

β

β

π π ε π π ε
π ε π ε
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  (2.101) 
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∑

   (2.102) 

 

 

2.10 Determination of the ‘host wave’ parameters  (α, n, ε and k ) 

Let us now discuss the possibility of obtaining the parameters of the ‘host 

wave’ which were initially not known from the carrier wave equation CWE. This 

is a very crucial stage of the study since there was no previous knowledge of the 

values. Now from (2.8), by using the boundary conditions that at time 0t = , 

0λ = and  A a= , then 

                           ( )2 22 cos 1 2cos ( )A a a aε ε= − − = −                             (2.103) 

                       
1 01 2cos ( ) 1 cos (0) 90 (1.5708 .)radε ε −− = ⇒ = = =            (2.104) 
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Any slight variation in the combined amplitude A  to A Aδ+  of the CWE due to 

displacement with time t   to t tδ+  would invariably produce a negligible effect 

in the host amplitude a also under this situation 0λ ≈ . Hence we can write 

                                       0
lim( )

t

AA a
tδ

δ
δ→

+ =                                                       (2.105) 

     

( ) ( )
( )

2
2 2

2 20

sin ( )
lim( 2 cos ( ) )

2 cos ( )t

n a n t t
a a n t t a

a a n t tδ

δ ε
δ ε

δ ε→

+ −
− + − + =

− + −
    (2.106) 

                  

2
2 2

2 2

sin ( )2 cos ( )
2 cos ( )

n a nta a nt a
a a nt

εε
ε

=
−

− − +
− −

                     

 (2.107) 

        ( )2 2 2 2 22 cos ( ) sin ( ) 2 cos ( )a a nt n a nt a a a ntε ε ε− − + − = − −        (2.108) 

               1 2cos ( ) sin ( ) 1 2cos ( )nt n nt n tε ε ε− − + − = − −                         (2.109) 

At this point of our work, it may not be easy to produce a solution to the 

problem based on (2.109), this is due to the mixed sinusoidal wave functions. 

However, to get out of this complication we have implemented the below 

approximation technique to minimize the right hand side of (2.109). This 

approximation states that 

  

( )

( ) ( )2 3

1 ( )

( 1) ( 1)( 2)1 ( ) ( ) ( )
2! 3!

nf

d n n n n nn f f f
d

ξ ϕ

ξ ϕ ξ ϕ ξ ϕ
ϕ

±+

 − − −
= + + + + 

 


 (2.110) 

The general background of this approximation is the differentiation of the 

resulting binomial expansion of a given variable function. This approximation has 

the advantage of converging functions easily and also it produces intended 

applicable value of result. Hence (2.109) becomes  

                         1 2cos ( ) sin ( ) sin ( )nt n nt n ntε ε ε− − + − = −                       (2.111) 

 
1 0cos (0.5) 60 1.0472 . 2.6182 .

2.6182 ./
nt rad nt rad

n rad s
ε −− = = = ⇒ =

⇒ =                         (2.112) 

From (2.9), using the boundary conditions that for stationary state, that is, when 
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0,tδ = 0, ( ) 3.142 1.5708 1.5712 ,radλ θ π ε ε λ π ε′≈ = − − = − = − =
1.5708E radε= = ,  then  

 { }
0

lim cos ( ) cos ( ) sin ( ) ( ) 1
t

k k r k k r n n t t t E
δ

λ θ λ θ λ δ
→

′ ′ ′− + − − − + − =   
    

  (2.113) 

             ( )(cos sin ) 0k r r ntθ θ ε+ − − =       ( 1cos (1) 0− = )                        (2.114) 

             ( )(0.9996) 2.6182 1.5708 0k r − − =  

                 4.1907k r rad⇒ = 4.1907 /k rad m⇒ =                                     (2.115) 

The change in the resultant amplitude of the carrier wave is proportional to the 

frequency of oscillation of the spatial oscillating phase φ  multiplied by the 

product of the variation with time t  of the inverse of the oscillating phase with 

respect to the radial distance x  and the variation with time t  wave number 

( )k k λ′− . This condition would make us to write by using (2.8) and (2.9) that 

                 

( )
( )

2

2 2 2 2

( )( ) sin ( ) ( )

( ) 2( ) cos ( ) ( )

n n a b n n tdA
dt a b a b n n t

λ λ λ ε ε λ

λ λ λ ε ε λ

′ ′ ′− − − − −
=

′ ′− − − − − −
        (2.116)

 

( )( )(cos sin )sin ( ) (cos sin ) ( )

d
dr

k k k k r n n t E

ϕ

λ θ θ λ θ θ λ′ ′ ′= − − + − + − − −
  (2.117) 

 
( ) ( )( ) sin ( ) (cos sin ) ( )d n n Z k k r n n t E

dt
ϕ λ λ θ θ λ′ ′ ′= − + − + − − −

           
(2.118) 

( ) ( )
( )

(cos sin ) sin ( ) (cos sin ) ( )

d
d k k

r E k k r n n t E

ϕ
λ

θ θ λ θ θ λ
′−

′ ′= − + − − + − − −
 (2.119) 

                              

1 1
2 ( )

dA r f l
dt t r k k

ϕ ϕ
π ϕ λ

   ∂ ∂ ∂
= =   ′∂ ∂ ∂ −                  

   
      

(2.120) 

                                             A f l t=                                                              (2.121) 

That is the time rate of change of the resultant amplitude is equal to the frequency 

f   of the spatial oscillating phase multiplied by the length l  of the arc covered by 

the oscillating phase. Under this circumstance, we refer to A  as the instantaneous 

amplitude of oscillation. 
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The first term in the parenthesis of (2.120) is the frequency dependent term, while 

the combination of the rest two terms in the parenthesis represents the angular 

length or simply the length of an arc covered by the spatial oscillating phase. Note 

that the second term in the right hand side of (2.120) is the inverse of (2.117). 

With the usual implementation of the boundary conditions that at 0, 0,t λ= =  

( ) 3.142 1.5708 1.5712 radθ π ε ε λ π ε′= − − = − = − = , 1.5708 ,E radε= =  

/dA dt a= , we obtain the expression for the amplitude as 

                   

( )(cos sin )1 0.0217
2 sin (cos sin )

a m
k

θ θ ε
π ε θ θ

+ −  = − =   +     
                         (2.122) 

Note that cos( ) cosε ε− =  (even and symmetric function) and sin( ) sinε ε− = −   

(odd and screw symmetric function). Thus generally we have established that the 

basic constituents parameters of the ‘host wave are  

0.0217a m= , 2.6182 /n rad s= , 1.5708radε = , and 4.1907 /k rad m= .   (2.123) 

 

 

2.11 Determination of the ‘Parasitic Wave’ Parameters (b, n’, ε’ 

and k’ ) 
Also we can now determine the basic parameters of the ‘parasitic wave’ 

which were initially not known before the interference from the derived values of 

the ‘host wave’ using the below method. We know that gradual depletion in the 

physical parameters of the system under study would mean that after a sufficiently 

long period of time all the active constituents of the ‘host wave’ would have been 

completely attenuated by the destructive influence of the ‘parasitic wave’. On the 

basis of these arguments, we can now write as follows. 

                                  

0 0.0217
0 2.6182
0 1.5708
0 4.1907

a b b
n n n

k k k

λ λ
λ λ

ε ε λ ε λ
λ λ

− = ⇒ = 
′ ′− = ⇒ = 
′ ′− = ⇒ = 
′ ′− = ⇒ =                                         

 (2.124) 
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Upon dividing the sets of relations in (2.124) with one another with the view to 

eliminate λ  we get 

                                            

0.008288
0.013820
0.005178
1.6668
0.6248
0.3748

n b
b

k b
n

k n
k

ε

ε

ε

′ = 
′ = 

′ =
′ ′= 
′ ′=


′ ′= 

                                                (2.125) 

However, there are several possible values that each parameter would take 

according to (2.125). But for a gradual decay process, that is for a slow depletion 

in the constituents of the host parameters we choose the least values of the 

‘parasitic wave’ parameters. Thus a more realistic and applicable relation is when: 

0.008288 0.005178n k′ ′= . Based on simple ratio   

                              
0.00518 / 0.00829 /
0.00311 0.0000429

n rad s k rad m
rad b mε

′ ′= =
′ = =                 (2.126) 

Any of these values of the constituents of the ‘parasitic wave’ shall produce a 

corresponding approximate value of 505λ =  upon substituting it into (2.124). 

Hence we get the interval of the multiplier as 0 505λ≤ ≤ .  

 

 

2.12 Determination of the Attenuation Constant (η) of the CWE 

Attenuation is a decay process caused by absorption and scattering of the 

medium where a wave is propagating. It brings about a gradual reduction and 

weakening in the initial strength of the basic parameters of a given physical 

system which the wave describes.  In this study, the parameters are the amplitude 

( a ), phase angle (ε ), angular frequency ( n ) and the spatial frequency ( k ). The 

dimension of the attenuation constant (η ) is determined by the system under 

study. However, in this work, attenuation constant is the relative rate of fractional 

change (FC) in the basic parameters of the carrier wave. There are 4 (four) 



126                           Kinematics of one dimensional (1D) carrier wave propagating … 

attenuating parameters present in the CWE. Now, if , , ,a kη ε  represent the initial 

basic parameters of the ‘host wave’ that is present in the carrier wave and a bλ− , 

n n λ′− , ε ε λ′− , k k λ′−  represent the basic parameters of the ‘host wave’ that 

survives after a given time. Then, the FC is 

              

1
4

a b n n k k
a n k
λ ε ε λ λ λσ

ε
′ ′ ′ − − − −        = × + + +                

                (2.127) 

                

1 1

( ) ( )
i i i i

unit time s

FC FC

unit time s
λ λ σ ση = = + +

− −
= =

                          
                   (2.128) 

The dimension is per second ( 1s− ).  Thus (2.128) gives 1η −= 0.001978s  for all 

values of ( 0,1, 2, ,505 )iλ =  . 

 

 

2.13 Determination of the time (t) 
We used the information provided in section 2.9, to compute the various times 

taken for the carrier wave to attenuate to zero. The maximum time the carrier 

wave lasted as a function of the raising multiplier λ  is also calculated from the 

attenuation equation shown by (2.128). The reader should note that we have 

adopted a slowly varying regular interval for the raising multiplier since this 

would help to delineate clearly the physical parameter space accessible to our 

model. However, it is clear from the calculation that the different attenuating 

fractional changes contained in the carrier wave are approximately equal to one 

another. We can now apply the attenuation time equation given below. 

                                           
(2 ) /te

γ η λσ −=                                                 (2.129) 

                                                  
ln

2
t γ

λ σ
η

 
= − 

 
                                          (2.130) 

where γ  is the functional index of any physical system under study and here we 

assume 1γ = . The equation is statistical and not a deterministic law. It gives the 
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expected basic intrinsic parameters of the ‘host wave’ that survives after a given 

time t  . Clearly, we used (2.130) to calculate the exact value of the decay time as 

a function of the raising multiplier. In this work, we used table scientific calculator 

and Microsoft excel to compute our results. Also the GNUPLOT 3.7 version was 

used to plot the corresponding graphs.   

 

 

3  Presentation of Results 
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Figure 3.1: Represents λ  [0, 505] and time [0, 892180s] or time = 892180s or  

                  248 hrs (10 days), Fourier index 0β = . The fundamental velocity goes  

                  to zero after about 150000s or 42 hrs (1.8 days) 
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Figure 3.2: Represents the interval of the multiplier λ  [0, 250] and time [0, 

42705s] or time = 42705s (12hrs), Fourier index 505β =  
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Figure 3.3: Represents the interval of the multiplier λ  [250, 505] and time        

                  [42705s, 892180s] or time = 849475s or 236 hrs (10 days), Fourier  

                  index  505β = . The CWE attenuates to zero after about 300000s or  

                  83hrs (3.4 days). 
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Figure 3.4: Represents the multiplier 0λ =  and the interval in time [0, 892180s]  

                  or time 892180s = 248 hrs (10 days), Fourier index 0β =  

 

 

-2.5e-007

-2e-007

-1.5e-007

-1e-007

-5e-008

0

5e-008

1e-007

1.5e-007

2e-007

2.5e-007

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Mi
nim

um
 ve

loc
ity

 of
 C

WE
 (m

/s)

Time (s)  

Figure 3.5: Represents the interval of the multiplier 0λ =   and time [0, 42705] or      

                   time = 42705s (11.8 hrs), Fourier index 505β =  
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Figure 3.6: Represents the interval of the multiplier 0λ =  and  

                  time [42705s, 892180s] or time = 849475s or 236 hrs (10 days),  

                  Fourier index 505β =  
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Figure 3.7: Represents the interval of the multiplier λ =  [0, 505] and  

                  time [0, 892180s] or time = 892180s or 248 hrs (10 days),  

                 Fourier index 0β =  
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Figure 3.8: Represents the interval of the multiplier λ =  [0, 250] and  

                   time [0, 42705s] or time = 42705s or (12 hrs), Fourier index 505β =  
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Figure 3.9: Represents the interval of the multiplier λ =  [250, 505] and  

                  time [42705s, 892180s] or time = 849475s or 236 hrs (10 days),   

                  Fourier index 505β = . The energy of the CWE goes to zero after  

                  180000s or (50 hrs). 
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Figure 3.10: Represents the raising multiplier 0λ =  and the interval in  

                     time [0, 892180s] or time = 892180s or 248 hrs (10.3 days),  

                     Fourier index 0β =  
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Figure 3.11: Represents the raising multiplier 0λ =  and the interval in  

                    time [0, 42705s] or precise time = 42705s (11.8 hrs),  

                    Fourier index 505β =  
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Figure 3.12: Represents the multiplier 0λ =  and the interval in  time 

                    [42705s, 892180s] or precise time = 849475s or 236 hrs (10 days),  

                    Fourier index 505β =  

 

 

4  Discussion of Results 

Figure 3.1 – 3.3 shows the propagation of the CWE in a viscous fluid when 

the influence of the ‘parasitic wave’ is considered.  It is revealed in Figure 3.1 that 

the fundamental minimum velocity of the CWE fluctuates between 0 and -4.5 x 

10-11m/s. The negative velocity means repulsion and hence destructive 

interference between the two interfering waves. The wave form of the 

fundamental minimum velocity is sinusoidal between the time intervals of 0 – 

150000s or precisely 42 hrs (1.8 days) and thereafter it attenuate to zero. 

It should be noted that because of the numerous waveforms involved when 

the Fourier index β =505 for every value of the multiplier λ , these figures could 

not really reflect all the possible waveforms available to the  period of time that 

the CWE lasted, as a result, the figures almost displayed a straight line. 

Consequently, we classified our work based on the interval of the multiplier [0 – 

250] and [250 – 505].  Although, our work was also confined to only when the 
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Fourier index was 505, since we believe that this is the region of most relevant 

interest to our work. Note that Figure 3.1 which is the first term of equation (2.85) 

is the harmonic analysis of the velocity of the CWE and it does not contain the 

Fourier index ( 0β = ) while the other term of (2.85) is the nth term of the velocity 

component of the CWE. 

It should be observed that Figure 3.3 is a continuation of 3.2. We only 

separated them in order to unveil the embedded velocity waveform if it is jointly 

plotted. The velocity waveform of the CWE is somewhat sinusoidal and regular 

with attractive (constructive) and repulsive (destructive) phases of the minimum 

velocity. Consequently, positive velocity means attraction and hence constructive 

interference between the two interfering waves while negative velocity means 

repulsion and hence destructive interference between the two interfering waves. 

The minimum velocity attained by the propagation of the CWE attenuates to zero 

after about 300000s or 83 hrs (3.4 days).      

In the absence of the ‘parasitic wave’ in which case the multiplier 0λ =  the 

resulting fundamental minimum velocity of the CWE are clearly shown in Figures  

3.4 – 3.6. As shown in Figure 3.4 the fundamental minimum velocity does not 

change with time and hence the acceleration is zero. The graphs of the minimum 

velocity of the CWE are shown in Figure 3.5 and 3.6. These figures depict the 

propagation of only the ‘host wave’ ( 0λ = ). It is clearly revealed in these figures 

that the bandwidths of the spectrum of the minimum velocity of the CWE are 

wider than those of minimum velocity when the influence of the ‘parasitic wave’ 

is considered. This result can be compared with the graphs of Figure 3.2 and 3.3. 

The frequency of the minimum velocity attains by the CWE decreases after 

400000s of 111 hrs (4.6 days). 

The graphs of the energy possess by the CWE which is given by (2.98) as it 

propagates in the viscous fluid under the influence of the ‘parasitic wave’ 

( 0 505λ = − ) are shown in Figures 3.7 – 3.9. It is shown in Figure 3.7 that the 

decay process of the fundamental energy of the CWE is exponential and it is 
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brought to rest after about 50000s (14 hrs). We should also know that Figure 3.9 is 

a continuation of Figure 3.8. The spectrum of the energy attenuation is sinusoidal 

and initially the decay frequency is very high which decreases as the time 

progresses. The energy of the CWE is finally brought to rest after about 200000s 

or 56 hrs (2.3 days). 

The graphs of the energy of the CWE as it propagates in the viscous fluid 

when the ‘parasitic wave’ is not considered, in which case 0λ = , are represented 

by Figures 3.10 – 3.12. The fundamental energy ( 0λ = ) is constant with time and 

so the fundamental energy does not change as the ‘host wave’ propagates with 

time. This information is shown in fig. 3.10. The energy spectrum of the CWE 

( 0λ = ) initially has a very high frequency of propagation as shown in Figure 

3.11. However, from Figure 3.12 the frequency of the energy spectrum reduces 

after about 400000s or 111 hrs (4.6 days). The energy of the CWE finally 

attenuates to zero after 892180s or 248 hrs (10.3 days).  

Thus generally, in the absence of the ‘parasitic wave’ ( 0λ = ) the energy of 

the CWE was able to propagate for a period of 892180s when the Fourier index 

505β =  before it is finally attenuated to zero. However, when the influence of the 

‘parasitic wave’ is considered ( 0 505λ = − ) the energy of the CWE was able to 

propagate for a period of about 180000s when the Fourier index 505β =  before it 

finally goes to zero. This information is made clear when we compare Figure 3.9 

and Figure 3.12. Hence the interference of the ‘parasitic wave’ with the ‘host 

wave’ resulted to a drastic reduction in the energy propagation time of the CWE 

by 712180s which is about 80% reduction.    

 

 

5   Conclusion 

We have shown in this work that the process of energy attenuation in most 

physical systems does not obviously begin immediately. The characteristics of the 
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‘host wave’ which defines the activity and performance of most physical system is 

guided by some factors which  enables it to resist any internal or external 

interfering wave of a destructive tendency. The unsteady decay behaviour 

exhibited by the carrier wave equation during the energy damping process is due 

to the resistance pose by the characteristics of the ‘host wave’ in an attempt to 

annul the destructive effects of the interfering ‘parasitic wave’. It is evident from 

this work that when a carrier wave is undergoing energy attenuation, it does not 

steadily or consistently come to rest; rather it shows some resistance at some point 

in time during the damping process, before the carrier wave equation finally 

comes to rest.  

 

 

5.1 Suggestions for further work 

This study in theory and practice can be extended to investigate wave 

interference and propagation in two- and three- dimensional systems. The carrier 

wave equation we developed in this work can be utilized in the deductive and 

predictive study of wave attenuation in exploration geophysics and 

telecommunication engineering.  
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Appendix 

The following is the list of some useful identities which we implemented in the 

study. 

(1)  sin sin 2sin cos
2 2

x y x yx y + −
+ =           

(2) sin sin 2cos sin
2 2

x y x yx y + −
− =  

(3)  cos cos 2cos cos
2 2

x y x yx y + −
+ =             

(4) cos cos 2sin sin
2 2

x y x yx y + −
− = −  

(5) 2sin cos sin ( ) sin ( )x y x y x y= + + −          

(6) 2cos sin sin ( ) sin ( )x y x y x y= + − −  

(7) 2cos cos cos ( ) cos ( )x y x y x y= + + −         

(8) 2sin sin cos ( ) cos ( )x y x y x y= − − +  

(9) sin ( ) sin cos cos sinx y x y x y± = ±             

(10)      cos ( ) cos cos sin sinx y x y x y± =   

(11) sin 2 2sin cosx x x=                                   

(12)      sin ( ) sinx x− = −  (odd and antisymmetric function) 

 (13)     cos ( ) cosx x− =  (even and symmetric function) 

 
 


