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                                                                      Abstract 

Continuous covariates in a logistic regression model have been often divided into 

categories to avoid a potential non-linearity, especially when covariates do not 

follow normal distributions. However, categorization may lead a considerable loss 

of power depending on the covariate distribution shape. Therefore, we investigate 

the impact of the covariate distribution characteristics on the power in logistic 

regression models when continuous covariates are converted to categorical 

covariates. 
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We consider the uniform, bell-shaped, right-skewed, and left-skewed distributions 

and assume that the relationship between the original continuous covariate and the 

corresponding logit outcome is linear. Continuous covariates are categorized into 

quantiles (median, quartile, or quintiles). The statistical power and regression 

coefficients are estimated using simulations for continuous covariates and 

categorical covariates.  

When continuous covariates were converted to categorical covariates, the power 

decreased for any covariate distribution shape. In particular, the increase in the 

number of categorized groups led to a decrease in power. However, the ranking 

order of powers among the four distributions were not changed owing to 

categorization.  

Although the power decreases because of categorization, the impact of covariate 

distribution characteristics on the power in logistic regression models may not be 

changed by categorization. 

  

Mathematics Subject Classification: 62E99 

Keywords: Categorization; Logistic regression model; Power; Distribution shape; 

Wald test 

 

 

1  Introduction  

1.1 Background  

Binary logistic regression models are commonly used to assess the 

association between outcomes and covariates in the field of clinical and 

epidemiological studies and represent a powerful class of tools to adjust for the 

effect of multiple confounding factors [1, 2]. Categorization has been frequently 

applied to a continuous covariate to avoid a potential non-linearity, particularly 
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when the continuous covariates do not follow a normal (Gaussian) distribution 

among the individuals with events and also without events. It is more customary to 

group continuous covariates into quantiles—most often tertiles, quartiles, or 

quintiles [3 - 4]. However, categorization may lead to a considerable loss of power 

depending on the covariate distribution shape. Therefore, we aimed to clarify the 

impact of the covariate distribution characteristics on the power in logistic 

regression models when continuous covariates are changed to categorical 

covariates using quintiles. In this study, we considered four typical distributions: 

the uniform distribution, bell-shaped distribution, right-skewed distribution, and 

left-skewed distribution. We used some representative percentile-based 

categorizations by median, quartiles, and quintiles. The powers and regression 

coefficients were estimated using Monte Carlo simulations and were compared 

among the four distributions. 

 

 

1.2 Methods 
A Monte Carlo simulation was performed to assess the influence on the 

estimated coefficients, size and power when a continuous covariate was converted 

to a categorical covariate. We focused on logistic regression models with a single 

covariate and a dichotomous outcome. 

 

1.2.1 Original logistic regression model for generating simulation data 

The logistic regression model considered in this study is expressed as 

follows [5]: 
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where Y is an outcome variable, x is an observational value of the continuous 

covariate of X, and βh (h = 0,1) is an unknown parameter. The continuous 
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covariate X is categorized into a categorical covariate with k categories using (k – 

1) quantiles, and this is referred to as a design variable. Here, a reference group 

forms the lowest category. In this study, we set k = 1, 2, 4, and 6, where k = 1 

means the original continuous covariate. The design variable is denoted as Dj, and 

the corresponding coefficient is denoted as βj,  j = 1, 2 ,…, (k – 1). The logistic 

regression model with the design variables can then be represented by the 

following formula [5]: 
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The log odds, or logit, are defined in terms of π(Dj) as follows: 
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1.2.2 Data generation 

Table 1 summarizes input parameters, notations, and possible values of the 

simulation.  

The continuous covariate X motivates from the number of cigarettes smoked 

per day, the length of hospital stay, and the amount of daily alcohol consumption. 

Values of X were created by the following procedure. We first assumed that X 

follows one of the four distributions shown in Figure 1 and categorized the 

interval (0, 60) into the three groups consisting of (0, 20), (20, 40), and (40, 60). 

Then, the numerical numbers with the frequencies n1, n2, and n3 designated in 

Figure 1 were generated according to a uniform distribution in each group. Figure 

1 illustrates the four distribution types.  

For the uniform distribution, the same sample sizes were assigned to all 

groups, as shown in Figure 1-(a). For the centralized-shaped distribution (a bell-

shaped distribution), the middle interval was assigned the largest sample size. The 
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ratio of the sample sizes in each sub-group was set to 3:9:3, as shown in Figure 1-

(b). For the declining distribution (a left-skewed distribution), the lowest interval 

was assigned the largest sample size, and the highest interval was assigned the 

smallest sample size. The ratio of sample sizes in each group was set to 10:4:1 

from the lowest to the highest interval, as shown in Figure 1-(c). For the uprising 

distribution (a right-skewed distribution), the ratio of sample sizes in each group 

was inversely set to 1:4:10 from the lowest to the highest interval, as shown in 

Figure 1-(d).  

Then, with yi and xi (i = 1,…, n) denoting independent observations, the 

binary outcome Y of individuals with X = xi was generated using π(xi) and a 

random number from the uniform distribution on the interval (0, 1). If π(xi) was 

less than the corresponding random number, then  yi = 1, (the event occurred); 

otherwise, yi = 0 (the event did not occur). 

 

 

1.3 Simulation 

The continuous covariate X that follows the uniform, centralized-shaped, 

declining, or  uprising distribution was artificially divided into k categories (k = 2, 

4, 6) using (k – 1) quantiles. Logistic regression analysis was performed for a 

model that includes a continuous covariate or a set of design variables. The Wald 

test was performed for the null hypothesis of β = 0. This process was repeated 

10,000 times. The proportion of tests in which the p values were less than 0.05 is 

defined as the power when β1 = 0.025; otherwise, it is defined as the size when β1 

= 0.000. 

There is an incidence of no occurrences of convergence. If the data are 

completely or partially separated, convergence does not occur because one or 

more parameters in the model become theoretically infinite, and it may not be 

possible to obtain reliable maximum likelihood estimates [6]. The problem of non-

convergence was solved by simply ignoring a sample that produced an occurrence 
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of no convergence. All simulations were carried out using SAS software 

Ver.9.1.3. 

 

 

2 Results  

2.1 Size 

The average values of the regression coefficient, standard error, and 

estimated size for various conditions are summarized in Table 2. We summarize 

the detailed results of the simulation for only N=300 in Table 2.  

When k = 1, the sizes were nearly equal to 0.05 for all conditions, and their 

coefficients were also shown to have true values of 0.00. On the other hand, 

excessive categorization  (k = 6) led to a slight decrease in size for any P, N and 

distribution shape of X. Particularly, the size is less than 0.02 for almost all 

distribution shapes when P = 0.9 or 0.1 and N = 300. There were no differences 

that depended on the distributions shape. Overall, no inflations of type I errors 

were observed.  

 

 

2.2 Power 

Simulations were performed to estimate the powers under a fixed regression 

coefficient β1 = 0.025 with P = 0.1, 0.2, 0.5, 0.8, or 0.9, and N = 300, 600, or 900. 

The detailed results of these simulations are summarized in Tables 3-1, 3-2, and 3-

3. 

The average coefficient values were correctly estimated for all k, P, and N. 

The powers differed for each of the four distributions of X. When k = 1, Tables 3-

1, 3-2, and 3-3 exhibited power characteristics relating the covariate distribution 

shapes and P. When P = 0.1 and 0.2, the order of the distributions from highest to 

lowest power was the uniform, declining, centralized-shaped, and uprising 
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distributions. When P = 0.5, the order was the uniform, centralized-shaped, 

declining, and uprising distributions. When P = 0.8 and 0.9, the uniform 

distribution exhibited the highest power, followed by the uprising, centralized-

shaped, and declining distributions, in that order. All four distributions exhibited 

an increased power from P = 0.1 to P = 0.5, but this then decreased from P = 0.5 to 

P = 0.9. More precisely, the powers of the uniform and centralized distributions 

exhibited the same changes in power, and they exhibited almost the same power 

for P and (1 – P). For example, the powers of the uniform distribution for P = 0.2 

and P = 0.8 were 0.8456 and 0.8447, respectively, and the powers of the 

centralized-shaped distribution for P = 0.1 and P = 0.9 were 0.4351 and 0.4393, 

respectively, as listed in Table 3-1. The declining and uprising distributions 

exhibited almost an identical power for P = 0.5, and the power of the declining 

distribution for P and that of the uprising distribution for (1 – P) were almost the 

same. As a result, the ranks of the declining and uprising distributions were 

exchanged when P < 0.5 and P > 0.5. For example, the power of the declining 

distribution for P = 0.9 and the power of the uprising distribution for P = 0.1 were 

0.3148 and 0.3193, respectively. The power of the declining distribution for P = 

0.8 and the power of the uprising distribution for P = 0.2 were 0.5742 and 0.5665, 

respectively. These trends were also observed for k = 2, 4, and 6. The ranking 

order of powers among the four distributions were not changed owing to 

categorization. 

 

 

3  Discussion 

Our study has identified the power characteristics relating the covariate 

distribution shapes and event proportions. When the logit outcome and covariates 

are linearly associated, symmetric distributions have the same power for both P 

and (1 – P). Furthermore, if the left- and right-skewed asymmetric distributions 
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are perfect mirror images of one another, the power of the left-skewed distribution 

for P is the same as that of the right-skewed distribution for (1 – P). Moreover, the 

right-skewed distribution has a smaller power than the left-skewed distribution for 

P < 0.5 when the logit outcome and covariates are positively associated. 

Conversely, for P > 0.5, the left-skewed distribution produces a smaller power 

than the right-skewed distribution. These characteristics are applicable for both 

continuous covariates and categorical covariates. These suggest that sample size 
from the formulas based on normal distributions may be over- or under-estimated for 

skewed distributions, nonetheless the general sample-size formulas or criteria for 

logistic regression models assume that continuous covariates follow a normal 

distribution [7−9].  

When k = 1, the coefficients of all distributions are approximately 0.025. 

The coefficients in the logistic regression model with a maximum likelihood 

estimate are properly estimated for all covariate distribution shapes. Therefore, 

these power characteristics are related to the variance of the Wald test. The 

mechanism of power loss is clarified in the appendix. These characteristics were 

also observed for k = 2, 4, and 6. This may be due to our percentile-based 

categorization—an area in which many observations were concentrated was 

narrowly divided and produced many estimates. This follows the characteristics of 

the continuous distribution of X. Therefore, we supposed that the tendency of the 

changes in power would be similar to the continuous case. 

When continuous covariates were converted to categorical covariates, the 

power decreased for any covariate distribution shapes. In particular, increasing the 

number of categorized groups led to a decrease in power for all distributions. This 

is due to the reduction in sample size for a categorized group.  
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3.1 Limitations of this study 

A limitation of the present study is that our investigation only considered 

Wald statistics. Three general statistical analyses are available: the likelihood-ratio 

test, score test, and Wald test. Although these approaches would produce different 

values of the power, the characteristic of power loss may well be the same as with 

the Wald statistics. We applied the Wald test to estimate the power because it is 

routinely used as a significance test for the logistic regression coefficients. We 

examined only a single covariate to clarify the impact of the covariate distribution 

characteristics on the power in the logistic regression model. Although we need to 

examine more than one covariate, these characteristics between shapes of 

covariates distributions and P may be applicable to the existence of many 

independent covariates. 

 

 

4 Conclusions 

We clarified the characteristics of the power in terms of the relationship 

between their statistical power and the covariate distribution shapes in a logistic 

regression analysis. Both continuous and categorical variables may have the same 

characteristics. We specifically caution against for the sample size obtained from 

formulae based on normal distributions when a continuous covariate has skewed 

distributions. It is recommended to adjust sample-size, accounting for 

characteristics between shapes of covariates distributions and event proportions.  
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Appendix 

Suppose we have a sample of n independent observations of the pair (xi, 

yi), i = 1, 2, … , n, where xi and yi denote the values of the independent variable 

for the ith subject of the continuous covariate and the dichotomous outcome 

variable, 0 or 1, respectively. The contribution to the likelihood function is  

for those pairs (xi, yi), where yi  = 1, and the contribution to the likelihood function 

is 1 –  for those pairs where yi  = 0, where the quantity  is defined in Eq. 

(1). A convenient way to express the contribution to the likelihood function for the 

pair (xi, yi) is  

Then, the logarithm of the likelihood function is  

0 1
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In particular, we test the hypothesis H0 : β1 = 0 concerning the significance 

of a single continuous coefficient by calculating the ratio of the estimate to its 

standard error. 
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Figures legends 

Figure 1 – Four types of distributions for the simulation. 

 

 

 

Tables 

Table 1 Simulation conditions  

Table 2 Estimated size of the Wald test for β1 = 0.000 and N = 300  

Table 3-1 Estimated power of the Wald test for β1= 0.025 and N = 300  

Table 3-2 Estimated power of the Wald test for β1 = 0.025 and N = 600  

Table 3-3 Estimated power of the Wald test for β1 = 0.025 and N = 900 
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Table 1 Simulation conditions 

Input parameters   Notations Possible values     

Sample size    N 300,  600,  900   

Ratio of sample-size of sub-group   Uniform Distribution  5:5:5 

(0, 20):(20,40): (40,60)    Centralized-shaped Distribution 3:9:3 

     Declining Distribution  10:4:1 

Uprising Distribution  1:4:10 

Event proportion     P 0.1, 0.2, 0.5, 0.8, 0.9 

Number of categories    k 1 (continuous), 2, 4, 6 

Regression coefficients (covariate)  β1 0.000 0.025     

 

 

 

 

 

 

 

 



154                          The impact of covariate distribution characteristics on the power… 

Table 2: Estimated size of the Wald test for β1 = 0.000 and N = 300 

Event proportion Uniform   Centralized-shaped  Declining   Uprising   

 k coefficient SE Size coefficient SE Size coefficient SE Size coefficient SE
 Size  

0.1 1 0.0001 0.0114 0.0491 0.0001 0.0141 0.0505 -0.0009 0.0147 0.0485 0.0010 0.0147 0.0490 

 2 0.0023 0.3966 0.0448 -0.0006 0.3961 0.0467 0.0084 0.3958 0.0451 -0.0048 0.3960 0.0441 

 4 0.0048 0.5796 0.0251 -0.0013 0.5783 0.0272 0.0099 0.5797 0.0273 -0.0035 0.5786 0.0291 

  0.0015 0.5797  -0.0012 0.5786  0.0169 0.5789  -0.0065 0.5789  

  0.0076 0.5793  -0.0017 0.5787  0.0102 0.5799  -0.0073 0.5789  

 6 0.0054 0.7315 0.0169 0.0047 0.7290 0.0168 0.0086 0.7315 0.0170 0.0005 0.7287 0.0162 

  0.0114 0.7305  -0.0022 0.7306  0.0138 0.7301  -0.0025 0.7291  

  0.0065 0.7310  0.0009 0.7300  0.0148 0.7301  -0.0074 0.7299  

  0.0103 0.7307  -0.0090 0.7319  0.0191 0.7297  0.0007 0.7286  

  0.0053 0.7318  0.0025 0.7301  0.0121 0.7309  -0.0114 0.7308  

0.2 1 0.0001 0.0085 0.0477 0.0001 0.0105 0.0500 -0.0004 0.0109 0.0459 0.0006 0.0109 0.0462 

 2 0.0060 0.2920 0.0508 0.0043 0.2921 0.0500 0.0035 0.2921 0.0464 0.0034 0.2923 0.0488 

 4 -0.0028 0.4181 0.0433 0.0049 0.4182 0.0390 -0.0022 0.4182 0.0388 0.0024 0.4183 0.0397 

  0.0090 0.4173  0.0079 0.4180  0.0037 0.4178  0.0041 0.4182  

  0.0007 0.4178  0.0065 0.4181  0.0014 0.4180  0.0051 0.4181  

 6 -0.0022 0.5180 0.0318 0.0049 0.5185 0.0301 0.0065 0.5186 0.0335 0.0063 0.5196 0.0327 

  -0.0064 0.5186  0.0017 0.5188  0.0006 0.5193  0.0042 0.5196  
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  0.0103 0.5172  0.0062 0.5186  0.0064 0.5185  0.0113 0.5188  

  0.0021 0.5176  0.0085 0.5182  0.0111 0.5183  0.0099 0.5190  

  -0.0033 0.5183  0.0054 0.5186  0.0009 0.5192  0.0025 0.5196  

0.5 1 -0.0001 0.0067 0.0489 0.0000 0.0084 0.0504 -0.0001 0.0105 0.0495 0.0001 0.0086 0.0487 

 2 -0.0045 0.2317 0.0481 0.0000 0.2317 0.0524 -0.0029 0.2920 0.0513 0.0018 0.2317 0.0511 

 4 -0.0027 0.3289 0.0463 -0.0018 0.3289 0.0477 0.0025 0.4177 0.0412 -0.0033 0.3288 0.0435 

  -0.0052 0.3289  -0.0028 0.3288  -0.0001 0.4176  0.0019 0.3289  

  -0.0067 0.3289  0.0008 0.3288  -0.0032 0.4174  -0.0015 0.3289  

 6 0.0009 0.4042 0.0407 -0.0005 0.4042 0.0447 -0.0020 0.5179 0.0346 0.0006 0.4042 0.0435 

  0.0015 0.4042  -0.0025 0.4042  0.0032 0.5185  -0.0004 0.4043  

  0.0004 0.4042  -0.0023 0.4042  0.0020 0.5184  0.0055 0.4043  

  -0.0028 0.4043  -0.0038 0.4042  -0.0025 0.5183  -0.0013 0.4043  

  -0.0091 0.4042  0.0028 0.4042  -0.0058 0.5178  0.0015 0.4043  

0.8 1 -0.0001 0.0085 0.0489 -0.0001 0.0105 0.0495 0.0007 0.0109 0.0483 -0.0005 0.0108 0.0484 

 2 -0.0028 0.2922 0.0502 -0.0029 0.2920 0.0513 0.0066 0.2923 0.0457 0.0014 0.2919 0.5050 

 4 -0.0042 0.4182 0.0385 0.0025 0.4177 0.0412 0.0006 0.4176 0.0418 -0.0017 0.4173 0.4000 

  -0.0016 0.4185  -0.0001 0.4176  0.0061 0.4180  -0.0023 0.4173  

  -0.0084 0.4180  -0.0032 0.4174  0.0080 0.4182  0.0041 0.4177  

 6 -0.0077 0.5190 0.0309 -0.0020 0.5179 0.0346 0.0020 0.5181 0.0298 -0.0041 0.5182 0.0336 

  -0.0061 0.5190  0.0032 0.5185  0.0034 0.5177  -0.0063 0.5177  

  -0.0062 0.5192  0.0020 0.5184  0.0087 0.5185  -0.0049 0.5180  
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  -0.0032 0.5196  -0.0025 0.5183  0.0082 0.5185  0.0007 0.5185  

  -0.0120 0.5187  -0.0058 0.5178  0.0097 0.5187  -0.0020 0.5183  

0.9 1 0.0002 0.0114 0.0472 0.0001 0.0141 0.0490 0.0010 0.0147 0.0460 -0.0010 0.0147 0.0466 

 2 0.0047 0.3956 0.0417 0.0049 0.3960 0.0449 -0.0025 0.3955 0.0437 0.0006 0.3958 0.0452 

 4 0.0070 0.5777 0.0265 0.0033 0.5782 0.0269 0.0032 0.5781 0.0257 -0.0020 0.5784 0.0277 

  0.0055 0.5776  0.0101 0.5790  0.0010 0.5779  -0.0013 0.5787  

  0.0091 0.5780  0.0026 0.5782  -0.0027 0.5774  0.0006 0.5790  

 6 0.0072 0.7283 0.0171 0.0044 0.7290 0.0174 -0.0042 0.7292 0.0156 0.0062 0.7286 0.0156 

  0.0090 0.7286  0.0003 0.7283  0.0023 0.7310  0.0089 0.7293  

  0.0050 0.7281  0.0131 0.7305  -0.0010 0.7298  0.0002 0.7274  

  0.0155 0.7299  0.0025 0.7283  -0.0031 0.7297  0.0089 0.7295  

  0.0119 0.7293  0.0053 0.7299  -0.0076 0.7289  0.0054 0.7289  
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Table 3-1: Estimated power of the Wald test for β1 = 0.025 and N = 300  
Event prppotion Uniform   Centralized-shaped  Declining   Uprising   

 k coefficient SE Power coefficient SE Power coefficient SE Power coefficient SE Power   

0.1 1 0.0255 0.0116 0.6038 0.0255 0.0142 0.4351 0.0246 0.0131 0.4908 0.0269 0.0168 0.3193 

 2 0.7672 0.4050 0.4692 0.5639 0.3995 0.2724 0.5722 0.4007 0.2846 0.5153 0.3986 0.2413 

 4 0.3941 0.6983 0.3228 0.3608 0.6622 0.1819 0.2070 0.6603 0.2258 0.4694 0.6624 0.1383 

  0.7964 0.653  0.5732 0.6382  0.4314 0.6316  0.6869 0.6389  

  1.1854 0.6235  0.9465 0.6054  0.9202 0.5879  0.8850 0.6215  

 6 0.2244 0.9088 0.1945 0.3201 0.8683 0.1164 0.1269 0.8488 0.1441 0.3616 0.8743 0.0732 

  0.4694 0.8665  0.4709 0.8436  0.2526 0.8272  0.5828 0.8407  

  0.7354 0.8288  0.6071 0.824  0.3909 0.8043  0.7185 0.8221  

  1.0073 0.7975  0.7690 0.8032  0.6227 0.7735  0.8633 0.8044  

  1.2663 0.7755  1.1251 0.7670  1.0424 0.7304  0.9847 0.7921  

0.2 1 0.0254 0.0087 0.8456 0.0253 0.0107 0.6590 0.0249 0.0102 0.6914 0.0259 0.0122 0.5665 

 2 0.7546 0.2980 0.7319 0.5530 0.2949 0.4703 0.5463 0.2949 0.4593 0.5126 0.2940 0.4167 

 4 0.3922 0.4818 0.6436 0.3431 0.4625 0.4078 0.1970 0.4586 0.4277 0.4547 0.4617 0.3352 

  0.7781 0.4588  0.5596 0.4493  0.4068 0.4447  0.6702 0.4494  

  1.1599 0.4440  0.9126 0.4334  0.8775 0.4228  0.8581 0.4409  

 6 0.2655 0.6334 0.5333 0.3467 0.6024 0.3323 0.1294 0.5865 0.3485 0.3993 0.6081 0.2421 

  0.5297 0.6070  0.4929 0.5894  0.2676 0.5731  0.6241 0.5889  

  0.7922 0.5873  0.6446 0.5780  0.3939 0.5621  0.7653 0.5791  
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  1.0556 0.5725  0.7875 0.5686  0.6321 0.5452  0.8877 0.5716  

  1.3078 0.5623  1.1343 0.5516  1.0247 0.5259  1.0209 0.5647  

0.5 1 0.0252 0.0070 0.9574 0.0252 0.0087 0.8358 0.0254 0.0090 0.8193 0.0253 0.0090 0.8148 

 2 0.7466 0.2358 0.8896 0.5433 0.2339 0.6404 0.5199 0.2337 0.6045 0.5190 0.2337 0.6006 

 4 0.3712 0.3365 0.8499 0.3431 0.3334 0.6109 0.1901 0.3322 0.5842 0.4548 0.3339 0.5798 

  0.7554 0.3365  0.5529 0.3334  0.3958 0.3316  0.6614 0.3345  

  1.1329 0.3425  0.8923 0.3373  0.8492 0.3366  0.8467 0.3366  

 6 0.2563 0.4188 0.7879 0.3273 0.4135 0.5478 0.1346 0.4103 0.5116 0.3836 0.4148 0.5097 

  0.5010 0.4155  0.4792 0.4123  0.2562 0.4089  0.6108 0.4137  

  0.7649 0.4156  0.6218 0.4124  0.3845 0.4084  0.7373 0.4142  

  1.0173 0.4188  0.7597 0.4134  0.6067 0.4095  0.8620 0.4155  

  1.2713 0.4257  1.0963 0.4201  0.9978 0.4178  0.9902 0.4177  

0.8 1 0.0252 0.0087 0.8447 0.0254 0.0107 0.6640 0.0260 0.0122 0.5742 0.0250 0.0102 0.6937 

 2 0.7497 0.2979 0.7239 0.5536 0.2945 0.4713 0.5137 0.2941 0.4144 0.5474 0.2946 0.4611 

 4 0.3805 0.3770 0.6410 0.3560 0.3860 0.4013 0.1876 0.3864 0.3397 0.4731 0.3889 0.4298 

  0.7631 0.4040  0.5686 0.4008  0.4023 0.4003  0.6828 0.4045  

  1.1536 0.4436  0.9172 0.4326  0.8620 0.4415  0.8795 0.4223  

 6 0.2593 0.4503 0.5261 0.3430 0.4642 0.3285 0.1232 0.4689 0.2405 0.3976 0.4618 0.3531 

  0.5090 0.4676  0.4918 0.4756  0.2571 0.4784  0.6343 0.4814  

  0.7736 0.4917  0.6353 0.4886  0.3914 0.4896  0.7617 0.4935  

  1.0361 0.5226  0.7973 0.5054  0.6225 0.5123  0.8982 0.5092  
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  1.3065 0.5622  1.1323 0.5499  1.0209 0.5655  1.0314 0.5261  

0.9 1 0.0257 0.0117 0.6066 0.0256 0.0142 0.4393 0.0270 0.0168 0.3148 0.0250 0.0131 0.5046 

 2 0.7701 0.4061 0.4727 0.5692 0.3997 0.2855 0.5211 0.3986 0.2415 0.5683 0.4002 0.2794 

 4 0.3972 0.4945 0.3230 0.3730 0.5133 0.1928 0.1913 0.5137 0.1340 0.5080 0.5200 0.2240 

  0.7964 0.5506  0.5926 0.5438  0.4188 0.5427  0.7171 0.5508  

  1.1926 0.6256  0.9545 0.6062  0.8815 0.6210  0.9276 0.5875  

 6 0.2649 0.5850 0.0200 0.3527 0.6157 0.1158 0.1311 0.6283 0.0734 0.4287 0.6118 0.1376 

  0.5391 0.6251  0.5177 0.6410  0.2553 0.6464  0.6713 0.6519  

  0.7980 0.6716  0.6570 0.6666  0.4035 0.6706  0.7954 0.6755  

  1.0617 0.7273  0.8073 0.6954  0.6272 0.7120  0.9226 0.7013  

  1.2676 0.7759  1.1254 0.7657  0.9761 0.7881  1.0561 0.7312   
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Table 3-2: Estimated power of the Wald test for β1 = 0.025 and N = 600 
Event prppotion Uniform   Centralized-shaped  Declining   Uprising   

 k coefficient SE Power coefficient SE Power coefficient SE Power coefficient SE Power  

0.1 1 0.0253 0.0081 0.8947 0.0252 0.0099 0.7286 0.0249 0.0091 0.7726 0.0258 0.0116 0.6063 

 2 0.7600 0.2824 0.7818 0.5549 0.2782 0.5209 0.5590 0.2786 0.5182 0.5006 0.2774 0.4317 

 4 0.3845 0.4731 0.7086 0.3490 0.4493 0.4577 0.1972 0.4460 0.5052 0.4656 0.4481 0.3666 

  0.7806 0.4443  0.5624 0.4334  0.4111 0.4287  0.6681 0.4342  

  1.1589 0.4251  0.9197 0.4128  0.8898 0.4003  0.8552 0.4232  

 6 0.2644 0.6308 0.6007 0.3542 0.5935 0.3784 0.1313 0.5751 0.4271 0.4053 0.5997 0.2616 

  0.5278 0.6003  0.5063 0.5771  0.2653 0.5596  0.6394 0.5764  

  0.7992 0.5753  0.6472 0.5643  0.4024 0.5453  0.7632 0.5660  

  1.0544 0.5573  0.7980 0.5519  0.6283 0.5255  0.8913 0.5562  

  1.3147 0.5429  1.1474 0.5297  1.0392 0.4987  1.0185 0.5476  

0.2 1 0.0252 0.0061 0.9895 0.0251 0.0075 0.9219 0.0251 0.0072 0.9364 0.0254 0.0085 0.8728 

 2 0.7484 0.2096 0.9558 0.5483 0.2073 0.7577 0.5436 0.2073 0.7524 0.5061 0.2067 0.6938 

 4 0.3818 0.3341 0.9393 0.3397 0.3214 0.7412 0.1871 0.3191 0.7747 0.4451 0.3206 0.6700 

  0.7612 0.3187  0.5493 0.3127  0.3926 0.3098  0.6541 0.3126  

  1.1383 0.3087  0.8998 0.3019  0.8674 0.2947  0.8397 0.3068  

 6 0.2649 0.4326 0.9065 0.3294 0.4127 0.6891 0.1296 0.4025 0.7229 0.3841 0.4162 0.5806 

  0.5205 0.4163  0.4802 0.4038  0.2523 0.3947  0.6079 0.4038  

  0.7755 0.4036  0.6180 0.3968  0.3772 0.3876  0.7379 0.3978  
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  1.0262 0.3942  0.7694 0.3902  0.6101 0.3766  0.8642 0.3927  

  1.2828 0.3871  1.1032 0.3792  1.0097 0.3633  0.9880 0.3883  

0.5 1 0.0251 0.0049 0.9996 0.0252 0.0061 0.9889 0.0251 0.0063 0.9851 0.0251 0.0063 0.9818 

 2 0.7429 0.1664 0.9939 0.5480 0.1651 0.9153 0.5197 0.1650 0.8819 0.5199 0.1650 0.8841 

 4 0.3731 0.2370 0.9943 0.3411 0.2348 0.9241 0.1839 0.2340 0.9033 0.4486 0.2353 0.9011 

  0.7502 0.2370  0.5544 0.2348  0.3913 0.2336  0.6571 0.2357  

  1.1268 0.2411  0.8946 0.2376  0.8433 0.2371  0.8427 0.2371  

 6 0.2516 0.2941 0.9884 0.3318 0.2906 0.9014 0.1232 0.2884 0.8623 0.3811 0.2915 0.8651 

  0.5021 0.2919  0.4740 0.2899  0.2474 0.2874  0.6031 0.2908  

  0.7574 0.2919  0.6197 0.2899  0.3771 0.2871  0.7328 0.2911  

  1.0051 0.2941  0.7656 0.2906  0.5963 0.2878  0.8543 0.2920  

  1.2589 0.2987  1.0939 0.2952  0.9825 0.2935  0.9828 0.2935  

0.8 1 0.0251 0.0061 0.9887 0.0251 0.0075 0.9217 0.0255 0.0085 0.8741 0.0249 0.0072 0.9335 

 2 0.7469 0.2095 0.9532 0.5509 0.2073 0.7604 0.5065 0.2068 0.6921 0.5393 0.2073 0.7426 

 4 0.3724 0.2645 0.9400 0.3501 0.2710 0.7522 0.1893 0.2710 0.6673 0.4658 0.2729 0.7627 

  0.7517 0.2826  0.5642 0.2812  0.3960 0.2801  0.6706 0.2833  

  1.1355 0.3086  0.8995 0.3017  0.8435 0.3071  0.8606 0.2949  

 6 0.2515 0.3150 0.9056 0.3358 0.3245 0.6902 0.1289 0.3277 0.5790 0.4035 0.3235 0.7091 

  0.5033 0.3267  0.4814 0.3321  0.2546 0.3337  0.6220 0.3355  

  0.7579 0.3420  0.6291 0.3410  0.3829 0.3407  0.7498 0.3438  

  1.0139 0.3615  0.7751 0.3511  0.6100 0.3556  0.8777 0.3530  
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  1.2767 0.3866  1.1017 0.3789  0.9899 0.3881  1.0014 0.3630  

0.9 1 0.0254 0.0081 0.8923 0.0253 0.0099 0.7246 0.0260 0.0117 0.6139 0.0247 0.0091 0.7713 

 2 0.7590 0.2824 0.7828 0.5585 0.2783 0.5191 0.5078 0.2774 0.4460 0.5572 0.2782 0.5195 

 4 0.3819 0.3417 0.7096 0.3639 0.3546 0.4620 0.1969 0.3551 0.3727 0.4793 0.3575 0.5012 

  0.7655 0.3765  0.5776 0.3738  0.4061 0.3724  0.6929 0.3779  

  1.1700 0.4264  0.9238 0.4126  0.8610 0.4222  0.8855 0.3994  

 6 0.2593 0.4018 0.5975 0.3410 0.4209 0.3791 0.1313 0.4279 0.2603 0.4043 0.4181 0.4155 

  0.5127 0.4253  0.5028 0.4375  0.2663 0.4406  0.6357 0.4426  

  0.7753 0.4559  0.6450 0.4541  0.3962 0.4543  0.7691 0.4595  

  1.0509 0.4963  0.7958 0.4735  0.6263 0.4827  0.9065 0.4781  

  1.3199 0.5435  1.1454 0.5295  1.0207 0.5450  1.0348 0.4980   
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Table 3-3: Estimated power of the Wald test for β1 = 0.025 and N = 900 
Event prppotion Uniform   Centralized-shaped  Declining   Uprising   

 k coefficient SE Power coefficient SE Power coefficient SE Power coefficient SE Power  

0.1 1 0.0251 0.0066 0.9742 0.0250 0.0081 0.8780 0.0249 0.0074 0.9086 0.0258 0.0095 0.8075 

 2 0.7524 0.2293 0.9191 0.5528 0.2263 0.6927 0.5550 0.2263 0.6982 0.5078 0.2257 0.6212 

 4 0.3839 0.3799 0.8889 0.3393 0.3618 0.6641 0.1930 0.3591 0.7177 0.4536 0.3616 0.5720 

  0.7679 0.3578  0.5556 0.3490  0.3991 0.3458  0.6635 0.3500  

  1.1446 0.3425  0.9032 0.3329  0.8806 0.3229  0.8539 0.3412  

 6 0.2665 0.4997 0.8331 0.3326 0.4727 0.6040 0.1274 0.4585 0.6462 0.3880 0.4783 0.4673 

  0.5187 0.4771  0.4864 0.4597  0.2602 0.4465  0.6190 0.4600  

  0.7807 0.4584  0.6349 0.4490  0.3885 0.4361  0.7512 0.4511  

  1.0379 0.4440  0.7724 0.4403  0.6166 0.4203  0.8776 0.4437  

  1.2883 0.4331  1.1145 0.4229  1.0217 0.3994  1.0071 0.4369  

0.2 1 0.0252 0.0050 0.9993 0.0252 0.0061 0.9876 0.0251 0.0058 0.9892 0.0253 0.0069 0.9718 

 2 0.7485 0.1707 0.9943 0.5510 0.1689 0.9085 0.5457 0.1690 0.8995 0.5058 0.1685 0.8583 

 4 0.3819 0.2712 0.9931 0.3398 0.2612 0.9122 0.1882 0.2595 0.9242 0.4448 0.2606 0.8605 

  0.7597 0.2589  0.5524 0.2540  0.3986 0.2519  0.6519 0.2542  

  1.1358 0.2508  0.8996 0.2454  0.8647 0.2399  0.8384 0.2495  

 6 0.2538 0.3492 0.9866 0.3352 0.3341 0.8895 0.1286 0.3266 0.8999 0.3849 0.3366 0.8005 

  0.5100 0.3361  0.4794 0.3274  0.2556 0.3200  0.6027 0.3269  

  0.7640 0.3260  0.6247 0.3215  0.3880 0.3141  0.7359 0.3220  
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  1.0163 0.3183  0.7689 0.3165  0.6075 0.3058  0.8572 0.3181  

  1.2681 0.3127  1.1021 0.3076  1.0048 0.2951  0.9817 0.3145  

0.5 1 0.0250 0.0040 1.0000 0.0252 0.0050 0.9989 0.0251 0.0052 0.9990 0.0251 0.0052 0.9986 

 2 0.7402 0.1358 0.9990 0.5455 0.1347 0.9826 0.5189 0.1346 0.9689 0.5180 0.1346 0.9699 

 4 0.3740 0.1932 0.9999 0.3436 0.1915 0.9982 0.1888 0.1909 0.9852 0.4538 0.1918 0.9838 

  0.7477 0.1932  0.5533 0.1915  0.3927 0.1905  0.6571 0.1922  

  1.1230 0.1965  0.8916 0.1937  0.8439 0.1933  0.8426 0.1933  

 6 0.2500 0.2396 0.9998 0.3309 0.2368 0.9832 0.1265 0.2350 0.9733 0.3838 0.2376 0.9746 

  0.4990 0.2378  0.4772 0.2362  0.2535 0.2342  0.6060 0.2369  

  0.7508 0.2378  0.6184 0.2362  0.3776 0.2340  0.7300 0.2372  

  1.0007 0.2396  0.7619 0.2368  0.5990 0.2346  0.8562 0.2379  

  1.2515 0.2433  1.0894 0.2405  0.9824 0.2391  0.9798 0.2391  

0.8 1 0.0251 0.0050 0.9994 0.0252 0.0061 0.9858 0.0253 0.0069 0.9707 0.0250 0.0058 0.9873 

 2 0.7475 0.1708 0.9939 0.5504 0.1689 0.9112 0.5052 0.1685 0.8607 0.5424 0.1690 0.8999 

 4 0.3767 0.2154 0.9921 0.3516 0.2206 0.9164 0.1884 0.2207 0.8577 0.4668 0.2221 0.9208 

  0.7527 0.2300  0.5621 0.2286  0.3939 0.2280  0.6733 0.2306  

  1.1357 0.2509  0.8995 0.2453  0.8386 0.2495  0.8623 0.2399  

 6 0.2514 0.2564 0.9849 0.3397 0.2640 0.8983 0.1245 0.2665 0.8058 0.3950 0.2629 0.8947 

  0.5002 0.2657  0.4805 0.2699  0.2509 0.2714  0.6178 0.2727  

  0.7562 0.2780  0.6249 0.2768  0.3794 0.2770  0.7446 0.2792  

  1.0100 0.2935  0.7715 0.2849  0.6003 0.2885  0.8746 0.2868  
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  1.2680 0.3130  1.1016 0.3073  0.9808 0.3144  0.9989 0.2949   

0.9 1 0.0252 0.0066 0.9732 0.0252 0.0081 0.8817 0.0256 0.0095 0.7965 0.0250 0.0074 0.9072 

 2 0.7524 0.2291 0.9168 0.5584 0.2265 0.7030 0.5028 0.2257 0.6078 0.5581 0.2264 0.6998 

 4 0.3797 0.2773 0.8928 0.3512 0.2874 0.6686 0.1910 0.2884 0.5620 0.4773 0.2900 0.7128 

  0.7599 0.3047  0.5695 0.3030  0.3966 0.3020  0.6917 0.3063  

   1.1477 0.3422  0.9131 0.3334  0.8468 0.3409  0.8798 0.3230  

 6 0.2535 0.3251 0.8355 0.3388 0.3410 0.6094 0.1344 0.3468 0.4548 0.4037 0.3380 0.6549 

  0.5094 0.3440  0.4838 0.3525  0.2565 0.3559  0.6380 0.3577  

  0.7660 0.3674  0.6367 0.3665  0.3906 0.3670  0.7708 0.3707  

  1.0268 0.3966  0.7823 0.3813  0.6089 0.3881  0.8962 0.3842  

  1.2928 0.4331  1.1245 0.4238  1.0025 0.4364  1.0248 0.3996   
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