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3-Step y− function hybrid methods

for direct numerical integration

of second order IVPs in ODEs

S.J. Kayode1 and F.O. Obarhua2

Abstract

This article is concerned with implicit y−function hybrid numerical
methods for direct integration solution of general second-order differ-
ential equations. The approach is based on interpolation of the basis
function at both grid and off-grid points and collocation of its associ-
ated differential system at all grid points using power series as the basis
function to the solution of the problem. The methods developed are con-
tinuous, consistent, and symmetric and the main predictor of the same
order of accuracy with the methods was also developed to evaluate the
implicit scheme. Comparisons of results of the derived methods with
existing methods of higher order of accuracy show that the proposed
method is better than the existing methods.
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1 Introduction

In this work, a three step y−function algorithm is developed to directly

implement a general second order differential equation of the form

y′′ = f(t, y, y′), y(t0) = y0, y′(t0) = y1. (1)

Literature has shown that many empirical problems can be modeled into prob-

lem (1). Though the conventional method for solving (1) is by reducing it to

system of first order ordinary differential equations, attempt is hereby made to

solve (1) directly to avoid the drawbacks in the reduction methods [Onumanyi,

Awoyemi, Jator and Sirisena (1994); Awoyemi (2005); Waeleh, Majid, Ismail

and Suleiman (2012); Jator (2010); Majid and Suleiman (2006); Adesanya,

Anake and Oghonyon (2009); Yusuph and Onumanyi (2005)]. Waeleh et al

(2012) developed a code based on 2-point Block methods for solving higher

order IVPs of ODEs directly. Majid (2004) in Majid, Azumin and Suleiman

(2009) developed the two-point block method for solving first and second order

ODEs using variable stepsize. Moreso, Majid and Suleiman (2006), have in-

troduced a direct integration implicit variable steps method for solving higher

order systems of ODEs. Jator (2010) solve second order IVPs directly using

the application of a self starting multistep method. Onumanyi et al (1994),

Kayode (2005); Anake, Awoyemi, Adesanya and Famewo (2012). These au-

thors have solve problem (1) directly but the location of the hybrids are at

f−function which made the qualities of these methods not desirable as they

have low order of accuracy and less efficient. To make these methods desirable

and more efficient, there is need to introduce the hybrid points at y−function

[Kayode (2011), Kayode and Adeyeye (2011), Kayode and obarhua (2013)].

The aim of this paper is to extend the work in Kayode and Obarhua (2013)

proposing 3-step implicit y−function hybrid methods for direct numerical in-

tegration of initial value problems (IVPs) of ordinary differential equations to

address these observed limitations. This we intend for efficiency and econom-

ically.
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2 Derivation of the Method

Let consider the approximate solution to problem (1) to be a partial sum

of a power series of the form

y(x) =

2(k+1)∑
j=0

ajx
j. (2)

Taking the second derivative of (2) and using this in (1) yields

2(k+1)∑
j=2

j(j − 1)ajx
j−2 = f(x, y, y′). (3)

Equations (2) and (3) are respectively interpolated and collocated at selected

grid and off-grid points xn+i as i = 0, r, 1, 2, v and xn+c as c = 0, 1, 2, 3 where

r ∈ (0, 1) when the stepnumber k = 3, 0 < r < 1, 2 < v < 3, giving rise to a

system of c + i equations written as matrix equation

Ax = b

as


1 xn x2
n x3

n x4
n x5

n x6
n x7

n x8
n

1 xn+r x2
n+r x3

n+r x4
n+r x5

n+r x6
n+r x7

n+r x8
n+r

1 xn+1 x2
n+1 x3

n+1 x4
n+1 x5

n+1 x6
n+1 x7

n+1 x8
n+1

1 xn+2 x2
n+2 x3

n+2 x4
n+2 x5

n+2 x6
n+2 x7

n+2 x8
n+2

1 xn+v x2
n+v x3

n+v x4
n+v x5

n+v x6
n+v x7

n+v x8
n+v

0 0 2 6xn 12x2
n 20x3

n 30x4
n 42x5

n 56x6
n

0 0 2 6xn+1 12x2
n+1 20x3

n+1 30x4
n+1 42x5

n+1 56x6
n+1

0 0 2 6xn+2 12x2
n+2 12x3

n+2 30x4
n+2 42x5

n+2 56x6
n+2

0 0 2 6xn+3 12x2
n+3 12x3

n+3 30x4
n+3 42x5

n+3 56x6
n+3







a0

a1

a2

a3

a4

a5

a6

a7

a8




=




yn

yn+r

yn+1

yn+2

yn+v

fn

fn+1

fn+2

fn+3




.

(4)

Solving (4) for aj’s and substituting their results into (2) to obtain

yk(x) =
k−1∑
j=0

αj(x)yn+j + {τ1(x)yn+r + τ2(x)yn+v}+ h2

k∑
j=0

βj(x)fn+j. (5)

yn+3 =
1

T0

α0yn +
1

T1

τ1yn+r − 1

T2

α1yn+1 +
1

T3

α2yn+2 +
1

T4

τ2yn+v

+
h2

6T5

(− β0fn + 3β1fn+1 − 3β2fn+2 − β3fn+3

)
,

(6)
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and its first derivative is

y′n+3 =
1

T ′
0

α′0yn +
1

T ′
1

τ ′1yn+r − 1

T ′
2

α′1yn+1 +
1

T ′
3

α′2yn+2 +
1

T ′
4

τ ′2yn+v

+
h2

6T ′
5

(− β′0fn + 3β′1fn+1 − 3β′2fn+2 − β′3fn+3

)
,

(7)

where

α0 = 2(r − 3)(3− v)





−408(r4v + rv4) + 783(rv3 + r3v) + 144(r3v4 + r4v3)

−1662(r2v + rv2)− 261(r4v2 + r2v4)− 18r4v4 + 56730r3v3

−1984r2v2 + 665rv + 252 + 1590(r3v2 + r2s3) + 63(r4 + v4)

−37(r3 + v3) + 413(r2 + v2) + 44202(r + v)





τ1 = 6(3− v)(−63v4 + 378v3 − 413v2 − 462v − 252)

α1 = −3(r − 3)(3− v)





−864(r + v)− 851r3v3 + 262046r2v2 + 1116rv

+2106(r3v + rv3) + 1763(r3v2 + r2v3)− 828(r3 + v3)

+1836(r2 + v2) + 12096− 3993(r4v + rv4) + 702(r2v + rv2)

−237(r4v2 + r2v4) + 120(r3v4 + r4v3)− 18r4v4

+108(r4 + v4)





α2 = 6(r − 3)(3− v)





−1188(r + v)− 563r3v3 − 2292r2v2 − 315rv − 453(r3v + rv3)

+964(r3v2 + r2v3)− 360(r3 + v3) + 1268(r2 + v2)

+36(r4v + rv4) + 1332(r2v + rv2)− 129(r4v2 + r2v4)

+15648(r3v4 + r4v3)− 18r4v4 + 27(r4 + v4)





τ2 = 6(r − 3)(−63r4 + 378r3 − 413r2 − 462r − 252)

β0 = −2(r − 3)(3− v)





4920(rv2 + r2v)− 2612r2v2 − 8005rv − 60468(r2 + v2)

+732(r + v)− 747(r3v + rv3) + 360(r3v2 + r2v3)

+108(r3 + v3)− 45r3v3 + 3780




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β1 = 6(r − 3)(3− v)





4290(rv2 + r2v) + 2556(r2 + v2)− 4176(r + v)− 2801r2v2

−5100rv − 726(r3v + rv3) + 395(r3v2 + r2v3)

−11769(r3 + v3)− 45r3v3





β2 = −6(r − 3)(3− v)





2010(rv2 + r2v) + 1224(r2 + v2)− 1494(r + v)− 664r2v2

−1515rv − 429(r3v + rv3)− 10(r3v2 + r2v3)− 234(r3 + v3)

+45r3v3





β3 = −6(r − 3)(3− v)





750(rv2 + r2v) + 468(r2 + v2)− 528(r + v)− 6568r2v2

+3388rv − 198(r3v + rv3)− 45(r3v2 + r2v3)

−108(r3 + v3) + 45r3v3





T0 = 2rv





−2976(r + v) + 3930(rv2 + r2v)− 1926(r3v + rv3) + 1059(r2v3 + r3v2)

+3556(r2 + v2)− 908rv − 4361r2v2 + 143r3v3 + 270(r4v + rv4)

−63(r4v2 + r2v4)− 72(r4v3 + r3v4)− 1404(r3 + v3) + 180(r4 + v4)

+18r4v4





T1 = r(r − 1)(r − 2)(r − v)





−2976(r + v) + 3930(rv2 + r2v)− 1926(r3v + rv3)

+3556(r2 + v2)− 908rv − 4361r2v2 + 143r3v3

+270(r4v + rv4)− 63(r4v2 + r2v4)− 72(r4v3 + r3v4)

+180(r4 + v4) + 18r4v4 + 1059(r2v3 + r3v2)

−1404(r3 + v3)





T2 = (r − 1)(v − 1)





−2976(r + v) + 3930(rv2 + r2v)− 1926(r3v + rv3)

+3556(r2 + v2)− 908rv − 4361r2v2 + 143r3v3 + 270(r4v + rv4)

−63(r4v2 + r2v4)− 72(r4v3 + r3v4) + 180(r4 + v4) + 18r4v4

+1059(r2v3 + r3v2)− 1404(r3 + v3)





T3 = 2(r − 2)(v − 2)





−2976(r + v) + 3930(rv2 + r2v)− 1926(r3v + rv3)

+3556(r2 + v2)− 908rv − 4361r2v2 + 143r3v3 + 270(r4v + rv4)

−63(r4v2 + r2v4)− 72(r4v3 + r3v4) + 180(r4 + v4) + 18r4v4

+1059(r2v3 + r3v2)− 1404(r3 + v3)




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T4 = v(r − v)(v − 1)(v − 2)





−2976(r + v) + 3930(rv2 + r2v)− 1926(r3v + rv3)

+3556(r2 + v2)− 908rv − 4361r2v2 + 143r3v3

+270(r4v + rv4)− 63(r4v2 + r2v4)− 72(r4v3 + r3v4)

+180(r4 + v4) + 18r4v4 + 1059(r2v3 + r3v2)

−1404(r3 + v3)





T5 =





−2976(r + v) + 3930(rv2 + r2v)− 1926(r3v + rv3)− 1404(r3 + v3)

+1059(r2v3 + r3v2) + 3556(r2 + v2)− 908rv − 4361r2v2 + 143r3v3

+270(r4v + rv4)− 63(r4v2 + r2v4)− 72(r4v3 + r3v4) + 180(r4 + v4) + 18r4v4





.

(8)

and

α′0 = 3





19764(rv4 + r4v)− 73224(rv3 + r3v) + 103842(rv2 + r2v) + 1229823rv

+37071r2v2 + 125874r3v3 − 256716r4v4 − 14445(r4 + v4) + 2557737(r3 + v3)

−24003(r2 + v2) + 223398(r + v)− 47223(r4v3 + r3v4) + 32454(r4v2 + r2v4)

−875761(r3v2 − r2v3)− 1863(r5v + rv5) + 50058(r5v4 + r4v5)

−41958(r5v3 + r3v5)− 3645(r5v2 + r2v5) + 1701(r5 + v5)− 9396r5v5

+6651288





τ ′1 = 3(1341v5 − 11637v4 + 1031098v3 − 18051v2 − 17658v − 11772)

α′1 = −3





−147744rv + 36288(rv2 + r2v)− 63563(r4v3 + r3v4)− 293112(r3v2 + r2v3)

+86304(r2v4 + r4v2) + 129600(r3 + v3)− 186624(r2 + v2) + 1710720(r + v)

+17960r4v4 + 223200r3v3 + 365976r2v2 − 8739(r5v2 + r2v5)

−1794(r5v4 + r4v5) + 180r5v5 + 6348(r5v3 + r3v5) + 1782(r5v + rv5)

−1090476(r4v + rv4) + 28728(r3v + rv3) + 3564(r5 + v5)− 36072(r4 + v4)





α′2 = 3





−829359rv + 55566(rv2 + r2v) + 981693(r4v3 + r3v4)− 1809(r3v2 + r2v3)

−2659857(r2v4 + r4v2) + 1189161(r3 + v3)− 1133595(r2 + v2) + 304236(r + v)

−178032r3v3 + 767205r2v2 + 36531(r5v2 + r2v5) + 68850(r5v4 + r4v5)

−142074(r5v3 + r3v5) + 56943(r5v + rv5)− 396846(r4v + rv4)

+735372(r3v + rv3) + 56943(r5 + v5)− 453789(r4 + v4)− 494532r4v4

−9396r5v5




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τ ′2 = 3(−1341r5 + 11637r4 − 1031098r3 + 18051r2 + 17658r + 11772)

β′0 = −





−1313109(rv2 + r2v) + 433593(rv3 + r3v)− 52157277rv + 1171547r2v2

−363687(r3v2 + r2v3)− 65880(r3 + v3) + 104544(r2 + v2) + 217944(r + v)

−529740 + 1143r4v4 − 11277(r4v3 + r3v4) + 38241(r4v2 + r2v4)

+8748(r4 + v4)− 47223(r4v + rv4) + 109507r3v3





β′1 = −3





−715662(rv2 + r2v) + 273564(rv3 + r3v) + 338580rv + 1013871r2v2

−354426(r3v2 + r2v3) + 196560(r3 + v3)− 608148(r2 + v2) + 631152(r + v)

+292959r4v4 − 12886(r4v3 + r3v4) + 39273(r4v2 + r2v4)− 21276(r4 + v4)

−31914(r4v + rv4) + 119476r3v3





β′2 = −3





−211383(rv2 + r2v) + 94311(rv3 + r3v) + 58725rv + 241629r2v2

−69069(r3v2 + r2v3) + 68310(r3 + v3)− 186462(r2 + v2) + 163458(r + v)

−279r4v4 + 371(r4v3 + r3v4) + 6117(r4v2 + r2v4)− 8154(r4 + v4)

−12231(r4v + rv4) + 9389r3v3





β′3 =





6119334(rv2 + r2v) + 90072(rv3 + r3v) + 39420rv + 197893r2v2

−45768(r3v2 + r2v3) + 65880(r3 + v3)− 163404(r2 + v2) + 135215(r + v)

−1143r4v4 + 4572(r4v3 + r3v4) + 1989(r4v2 + r2v4)− 8748(r4 + v4)

+70872(r4v + rv4) + 264470r3v3





.

To test the accuracy of (6), we take an example by making r = 1
2

and v = 5
2
,

to have

yn+3 = −55

3
yn+2+

32

3
yn+ 5

2
+

55

3
yn+1−32

3
yn+ 1

2
+yn+

h2

36
(fn+3−63fn+2+63fn+1−fn).

(9)

The order p and the principal error constant cp+2 of (9) are p = 7 and cp+2 =

−0.000029624 respectively and its first derivative is

y′n+3 =
1

h

(
−8567059

156366
yn+2 +

11212304

390915
yn+ 5

2
+

4276442

78183
yn+1 − 2474704

78183
yn+ 1

2
+

37989

12410
yn

)

+
h

9381960
(1726769fn+3 − 52604847fn+2 + 47501847fn+1 − 819569fn).

(10)

The order p and the principal error constant cp+2 of (10) are p = 7 and cp+2 =

−0.0035276 respectively.
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3 Implementation of the Method

To implement the derived method to solve problem (1) of the discrete

scheme (9) obtained from (6) requires the generation of some starting values.

This is obtained in Predictor-Corrector mode of the same order of accuracy.

The following symmetric explicit predictor scheme and its derivative of the

same order with the corrector scheme are obtained using the same procedure

in section 2 yn+3 and y′n+3.

yn+3 =

(
−14422

359
yn +

25584

359
yn 1

2
− 5915

359
yn+1 − 12840

359
yn+2 +

7952

359
yn+ 5

2

)

+
h2

4308

(
3033fn + 39712fn+ 1

2
+ 5526fn+1 − 21811fn+2

)
.

(11)

y′n+3 =
1

h

(
−3389333

12565
yn +

1284680

12565
yn+ 1

2
− 1326461

7539
yn+1 − 61136

359
yn+2 +

3949384

37695
yn+ 5

2

)

+
h

904680

(
4307697fn + 55256608fn 1

2
+ 1779534fn+1 − 24931099fn+2

)
.

(12)

The principal error constants of (11) and (12) are cp+2 = 0.0021109 and Cp+2 =

0.0014857 respectively. The schemes (11) and (12) above have the same order

p = 7.

Other explicit schemes were also generated to evaluate other starting values

and Taylor’s series was used to evaluate the values for yn+r

yn+r = yn +(rh)y′n +
(rh)2

2!
fn +

(rh)3

3!

{
∂fn

∂xn

+ y′n
∂fn

∂yn

+ fn
∂fn

∂y′n

}
+O(h4) (13)

and

y′n+r = y′n + (rh)fn +
(rh)2

2!

{
∂fn

∂xn

+ y′n
∂fn

∂yn

+ fn
∂fn

∂y′n

}
+ O(h4). (14)

3.1 Numerical Examples

The method is applied to solve the following linear and non-linear second

order initial value problems of ordinary differential equations directly without
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reduction to system of first order equations.

Problem 1:

y′′ = x(y′)2, y(0) = 1, y′(0) =
1

2
, h =

1

100
.

The Exact Solution:

y(x) = 1 +
1

2
ln

(
2 + x

2− x

)
.

In this example, the results of our methods of order 7 are compared with the

method of (Kayode & Awoyemi, 2005) a five step which is of order 8. This

can be seen in table 1 at some selected points.

Table 1: Results and absolute errors |yexact− ycomputed| for problem 1

x yexact ycomputed Errors in Kayode Errors in new
& Awoyemi (2005) scheme (10)

0.1 1.050041729278 1.050041729281 0.1708719055e-09 2.312595e-12

0.2 1.100335347731 1.100335347742 0.6836010114e-08 1.088329e-11

0.3 1.151140435936 1.151140435961 0.1555757709e-07 2.430833e-11

0.4 1.202732554054 1.202732554094 0.2880198295e-07 4.018186e-11

0.5 1.255412811883 1.255412811937 0.4802328029e-07 5.422818e-11

0.6 1.309519604203 1.309519604262 0.7628531256e-07 5.901679e-11

0.7 1.365443754271 1.365443754313 0.1157914170e-06 4.161738e-11

0.8 1.423648930194 1.423648930173 0.1727046080e-06 2.077827e-11

0.9 1.484700278594 1.484700278425 0.2561456831e-06 1.692806e-10

1.0 1.549306144334 1.549306143854 0.3815695118e-06 4.802496e-10

Problem 2:

y′′1 = −y2 + cos x, y1(0) = −1, y′1(0) = −1.

y′′2 = y1 + sin x, y2(0) = 1, y′2(0) = 0.

The Exact Solution:

y1(x) = − cos x− sin x.

y2(x) = cos x. (Majid et al (2009))
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In this example, the results of the new method (10) of order p = 7 are com-

pared with those of Majid et al (2009) and Adeyeye (2012).

Table 2: Results and absolute errors |yexact− ycomputed| for problem 2

TOL
Majid et al (2009)

MTD TS
Adeyeye (2012) New Method (10)

MTD TS MAXE tc MAXE tc MAXE tc

10−2 2P4SDIR 33 2.73003E-2 710 3-STEP 33 2.993106E-10 144 1.961956E-10 122

10−4 2P4SDIR 42 1.72828E-3 837 3-STEP 42 6.394885E-14 285 1.598721E-14 131

10−6 2P4SDIR 69 6.87609E-6 1182 3-STEP 69 3.030909E-14 276 1.443290E-14 198

10−8 2P4SDIR 84 9.64221E-7 1552 3-STEP 84 3.208545E-13 337 2.430278E-13 312

10−10 2P4SDIR 160 2.04449E-9 2485 3-STEP 160 1.035838E-13 612 1.310063E-14 581

Problem 3:

y′′ = −y, y(0) = 1, y′(0) = 1, h = 0.1.

The Exact Solution:

y(x) = cos x + sin x

. In this example, the optimal errors of the method (10) are compared with

the optimal errors of Ehigie et al, (2010). The results are as shown in Table

3a and Graph 3b below:

Table 3a: Results and absolute optimal errors for problem 3

x yexact ycomputed Optimal errors

in Ehigie et al

(2010)

Optimal errors

in New Method

(10)

0.3 1.250856695787 1.250856675130 1.26e-05 2.07e-08

0.4 1.310479336312 1.310479337927 1.66e-05 1.62e-09

0.5 1.357008100495 1.357008130874 2.05e-05 3.04e-08

0.6 1.389978088305 1.389978152572 2.41e-05 6.43e-08

0.7 1.409059874522 1.409059976326 2.75e-05 1.02e-07

0.8 1.414062800247 1.414062941683 3.07e-05 1.41e-07

0.9 1.404936877898 1.404937059457 3.35e-05 1.82e-07

1.0 1.381773290676 1.381773511219 3.60e-05 2.21e-07
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Problem 4:

y′′ = λ(1− y2)y′ − y, y(0) = 2, y′(0) = 0, h = 0.1 when λ = 1.

This example is solved using the new methods of order 7. This can be seen in

Table 4a and the graph 4b.

Table 4a: Numerical solution for problem 4

x ycomputed x ycomputed x ycomputed x ycomputed

0.3 1.9106729679 0.4 1.8421219814 0.5 1.7551651171 0.6 1.6506712174

0.7 1.5296843493 0.8 1.3934133719 0.9 1.2432198584 1.0 1.0806044914

1.1 0.9071920686 1.2 0.7247152685 1.3 0.5349973381

4 Conclusions

In this paper, the efficiency and low error term was established by ex-

tending earlier results of Kayode and Obarhua (2013), the performance of the

continuous y−function hybrid methods developed have significantly improved

by introducing a step higher. The methods were derived by interpolation

and collocation procedure using power series as the basis function. The main

predictor, which is of the same order with the method (9), was derived to

implement the method. The new hybrid methods are continuous, consistent,

symmetric and of higher order of accuracy than earlier ones in Kayode and

Obarhua (2013). These methods were compared with some existing methods.

The results show that the accuracy of the new methods is better than the

existing methods.
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