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Abstract 

This paper compares the performances of five members of the Generalized Hyperbolic family of 

distributions (i.e., the Generalized Hyperbolic (GH), Hyperbolic (HYP), Normal Inverse Gaussian 

(NIG), Hyperbolic Skew Student’s t (SSt) and Variance-Gamma (VG) distributions) alongside the 

Gaussian as benchmark in fitting log returns of an Electricity Futures Contract. Using log 

likelihood (LLH) function and Akaike Information (AIC) as criteria for selection, the GH and NIG 

outperformed other models, having 49.8% and 49.6% weight of evidence in their favour 

respectively for being the two models that give the best prediction of the log returns. However, 

simulation results show that GH is the most consistent among the candidate distributions especially 

in large sample situations. The tails behaviour of these distributions show that the SSt 

overestimates while the HYP and VG underestimate the probability of rare events in the electricity 

market at both tails. Results show that these distributions have substantial heavy tails. 

Mathematics Subject Classification : 60G70, 62P05, 62F07, 62F10.  

Keywords: Class of generalized hyperbolic distributions; Model selection; AIC; LLH; 

Tail behaviour; Heavy tails; Log returns. 

1  Introduction  

Participants in commodity markets strongly focus on unexpected price changes 

which are fundamentally determined by supply and demand imbalances. Of 
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34                     Modeling Electricity Price Returns using GH Distributions 

interest to these participants is the probability distribution of returns of the prices 

of a commodity for appropriate pricing regime and especially in measuring the 

expected risk in such investment.  

The large price fluctuations frequently observed in energy markets lead to 

non-normal deviations from the long-term mean. Such fluctuations measured in 

terms of returns over short term intervals are known to be characterized by 

non-normality: more peaked and heavier tails. This violation of the normality 

hypothesis implied by geometric Brownian motion (see, for example, Fama [1], 

Mandelbrot [2]) necessitates the call for generalizations in modelling such large 

changes in prices.  

Barndorff-Nielsen [3] found a good fit in Generalized Hyperbolic (GH) 

distribution to Danish stock returns. One appealing feature of the GH is that they 

combine the characteristics of the normal and stable distributions especially those 

of the Levy processes of hyperbolic type to offer more flexibility in modeling 

financial time series data. The Hyperbolic distribution, a subclass of the GH 

distribution, which has in addition exponentially decreasing tails, was 

independently suggested as distribution of German stock returns represented in the 

stock index DAX by Eberlein and Keller [4] and Küchler et al. [5]. In 

corroborating their study, Cont [6] added that for a parametric distribution to 

reproduce the properties of the empirical distribution, it must have at least four 

parameters, for example, location, scale, a parameter describing the decay of the 

tails and that for asymmetry parameter. 

The Normal Inverse Gaussian (NIG) distribution was introduced in the last two 

decades or so see, e.g., Eberlein and Keller [4] and Prause [7] while modeling the 

time dynamics of financial markets by stochastic processes. Other 4-parameter 

distributions within this period are the Variance-Gamma (VG) by D. B. Madan 

and E. Seneta in 1990 (see, e.g., Madan and Seneta [8]) and the GH Student’s 
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t-distribution (SSt) as limiting cases of the GH distribtion have recorded different 

but appreciable amounts of success in modelling returns of time series data. As we 

shall see, the tail behaviour of the GH distributions ranges from Gaussian through 

exponential tails to the Student’s t-distribution power tails.  

The problem of testing whether some given observations follow one of the listed 

probability distribution functions is quite old in the statistics literature. Among 

these models, the effect of choosing a wrong model was originally discussed by 

Cox [9] in general and it has been demonstrated it nicely by a real data example. 

Due to increasing applications of the heavy tail distributions, special attention is 

now given to the discrimination among the family of GH distributions. In this 

study we discriminate among the five members of the GH distribution family for a 

log returns series of an Electricity Futures Contract and their fits compared 

especially against the Gaussian model. Using the tails behaviour we identify a 

candidate distribution that best approximate the empirical distribution. 

This paper is arranged as follows; a brief overview of the Generalized Hyperbolic 

distribution and its special and limiting cases are given in Section 2 while 

procedures for model selection are presented in Section 3. Implementation and 

simulation results are presented in Sections 4 and 5 respectively and we conclude 

in Section 6. 

 

2 The Generalized Hyperbolic Family of Distributions 

We start with an exposition of the univariate Generalized Hyperbolic (GH) 

Distribution introduced in the literature by Ole Barndorff-Nielsen in 1977 while 

modeling particle size from a diamond mine (see, e.g., Barndorff-Nielsen, [10]) 

and the subclasses which have been listed in Section 1. The distribution is well 

applied in economics particularly in the fields of modeling financial markets and 

risk management due to its semi-heavy tails. A random variable X  is said to 

follow a GH distribution if it is of the form  

( )~ , , , ,X GH λ α β δ µ
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where x ∈ ℝ  the parameters µ ,δ , β ,α respectively determine the location, 

scale, skewness and shape of the distribution while λ  influences the kurtosis and 

characterizes the classification of the GH distribution.  

2.1 The Generalized Hyperbolic Distribution 

A random variable X  is said to follow a Generalized Hyperbolic (GH) 

distribution if its probability density function is given by  
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where 
22 βαγ −= , the domain of variation of the parameters is  ,µ α ∈ ℝ , 

0δ ≥  and, 0 β α≤ <  while λK is the modified Bessel function of the third 

kind with indexλ .  

Special cases of the generalized hyperbolic distribution (see, e.g., Jørgensen [11], 

Barndorff-Nielsen and Stelzer [12]) are 

(i) when 1 2λ = − , the GH specializes to the Normal Inverse Gaussian (NIG), 

(ii) when 1=λ , the GH becomes the Hyperbolic distribution and 

(iii) when 2, 0 and 2 ,α β δ σ→ ∞ = = the GH converges to the normal 

distribution with mean µ  and variance 2.σ   

Definition 1 (Modified Bessel Function of the Third Kind with Indexλ ) 

The integral representation of the modified Bessel function of the third kind with 

index λ  can be found in Barndorff-Nielsen et al. [13] and Abramowitz and 

Stegun [14], 
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The substitution y x χ ψ= can be used to obtain the following relation which 

allows one to bring the GH (1) into a closed-form expression 

 ( )
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Asymptotic relations for small arguments x can be used for calculating the 

densities of special cases of the GH density as follows 

 ( ) ( ) 12  as 0 and 0K x x xλ λ

λ
λ λ− −Γ ↓ >∼                (4) 

and 

 ( ) ( ) 12  as 0 and 0K x x xλ λ

λ
λ λ− −Γ − ↓ <∼ .             (5) 

2.2 The Normal Inverse Gaussian  

A random variable X follows a Normal Inverse Gaussian (NIG) distribution with 

parameter vector ( ), , ,α β µ δ  if its probability density function is  
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where ( ) ( ) ( )22 2 2( ) , ( )p x x q r xδ α β β µ µ δ= − + − = − +  and 
1
K is the 

modified Bessel function of the third kind with order one (see e.g., Abramowitz 

and Stegun, [14]). Here ,µ β ∈R  but if 0β < , the NIG is  negatively skewed; 

α β≥  measures the heaviness of the tails (shape of the distribution). The NIG is 

a very flexible member of the family of distributions enjoying the convolution 

property as shown in Kalemanova and Werner [15].   

Property 1 

The NIG is a mixture of normal and inverse Gaussian distributions. 

Let 
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then ( ), , ,X NIG α β µ δ∼ and is denoted by the density function 
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Property 2 

The NIG distribution is closed under convolution. In fact, it is the only member of 

the family of generalized hyperbolic distributions to have the property that for 

independent random variables, ( ), , ,
X X

X NIG α β µ δ∼ and 

( ), , ,
Y Y

Y NIG α β µ δ∼ ,  their sum is NIG distributed, that is, 

( ) ( ) ( ), , , * , , , , , ,
X X Y Y X Y X Y

X Y NIG NIG NIGα β µ δ α β µ δ α β µ µ δ δ+ = + +∼  (9) 

2.3 The Hyperbolic Distribution 

The random variable X is said to have a Hyperbolic (HYP) distribution if its 

probability density function is given by 
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where ( ) ( )( )22u x xδ µ= + −  and .x−∞≤ ≤∞ The domain of variation of the 

parameters is , 0, 0 .andµ δ β α∈ > ≤ <R  

Aas and Haff [16] derived a probability density function as a limiting case of the 

GH distribution ( )2 and  λ ν α β= − →  in (1); they referred to it as GH skew 

Student’s t-distribution. The main attraction of this distribution is that unlike any 

other member of the GH family, it has one tail determined by a polynomial and 

the other by exponential behaviour. In addition, it is almost as analytically 
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tractable as the NIG distribution. Therefore, the GH skew Student’s t-distribution 

has one heavy and one semi-heavy tail. 

2.4 The Skew Student’s t-distribution 

A random variable X is said to follow a GH skew Student’s t-distribution (SSt) if 

its (Aas and Haff, [16]) probability density function is given by 
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It can be recognized that the density in (11) is that of a non-central (scaled) 

Student’s t-distribution with ν  degrees of freedom when 0.β =  

 

2.5 The Variance-Gamma distribution 

Let X  be a continuous random variable. X is said to be distributed as the 

Variance-Gamma (VG) distribution if its probability density function of the form 
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where x−∞ < > ∞ , µ (location parameter), α , β (asymmetry parameter) 

are real and 0.λ > ( ).Γ  denotes the Gamma function and K
λ

 the Bessel 

function of the second kind. 

The class of Variance-Gamma distributions is closed under convolution in the 
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following sense that if 1X and 2X are independent random variables that are 

variance-gamma distributed with the same values of the parameters α and β, but 

possibly different values of the other parameters, 1 1,λ µ and 2 2,λ µ  respectively, 

then 1 2X X+  is variance-gamma distributed with parameters 1 2, ,α β λ λ+ and 

1 2µ µ+ . 

 

3 Procedures for Model Selection  

Having reviewed the different competing models from the family of generalized 

hyperbolic distributions, we now outline different methods for choosing the best 

fitting model to our given dataset. Suppose there are two families, say, 

( ){ }F ; ; pf x θ θ= ∈ ℝ  and ( ){ }G ; ; qg x ϕ ϕ= ∈ ℝ , the problem is to choose 

the correct family for a given dataset { }1 2
, ,..., .

n
x x x The methods we describe in 

the following Subsections are used for model discrimination in the Section 4. 

 

3.1 Maximum Likelihood Criterion 

Suppose a random variable X has a density function ( )1 2
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k
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on k parameters. Let ˆ
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likelihood function ( )L , .X θ′  The maximum likelihood principle proposed in 

Cox [17] is a maximum likelihood ratio test procedure 
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where ˆ ˆ and  θ θ′ are maximum likelihood estimators of parameter vectors of 
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competing models. Because the estimators provide the best explanation of the 

observed data, we choose the density ℱ if 0>T , otherwise choose �. The 

solution T  is sometimes called the Cox’s statistic. Lu et al. [18] observed that 

the statistic Tln should be asymptotically normally distributed when properly 

normalized.  

3.2 The Akaike Information Criterion 

Suppose X is a continuous random variable as defined in Subsection 3.1 

representing a model, say,  

( ),X h t q ε= +  (14) 

where h is a mathematical model, in our case, a probability density function; ε  is 

a random error term that is independent and identically distributed with 

probability distribution such as the normal. This criterion known as the Akaike 

Information Criterion (AIC) is generally regarded as the first and still continues to 

be the most widely known model selection criterion because of its utilization of 

the relationship between the maximum likelihood and the Kullback-Leibler 

information. The motivation of this criteria is outlined in Akaike [19] and we 

summarize the procedure for implementation based on AIC value as follows: 

(i) The loss of information when a fitted model is used rather than the best 

approximating model is given by the AIC differences 

                   
mini i

AIC AIC∆ = −                          (15) 

        where AICmin is AIC value for the best model in the set. 

(ii) The likelihood of a model being useful in making inference concerning 

the relative strength of evidence for each of the models in the set is 

given by  

          ( ) ( )1
2

exp .
i i
g y ∝ − ∆L                      (16) 

(iii) The Akaike weight of evidence in favour of model i being the best 

approximating model in the set is  
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       ( ) ( )1 1
2 2

1

exp exp
R

i i r
r

w
=

= − ∆ − ∆∑               (17) 

where R is the total number of models in the set. Readers interested in AIC are 

referred to Akaike [19] and Burnham and Anderson [20] for details.   

 

3.3 The Normality Hypothesis   

We discuss possible skewness in a model because it is fundamental to mainstream 

financial modeling, portfolio investment decisions, and in many statistical testing 

procedures relating to asset returns. Skewness is defined as follows 

                3 3

1 2
.γ µ µ=                         (21) 

where ( )33 ,
i

E xµ µ= − E is the expectation operator, µ  is the mean of random 

return variable ix  and 
2

2
µ σ≡  is the variance. For normal distribution 1 0,γ =  

otherwise, the distribution is asymmetric. Skewness is positive when right hand 

tail is heavier and negative when left hand tail is heavier.  

An undisputable exception from the classical asset returns normality assumption is 

that empirical returns distributions indicate substantial excess kurtosis. A large 

positive value for kurtosis indicates that the tails of the distribution are longer 

(heavier) than those of a normal distribution are while a negative value indicates 

shorter tails (becoming like those of a box-shaped uniform distribution). The 

kurtosis is defined as  

                      4 2

2 2
3 3kγ µ µ= − = −                    (22) 

where ( )44 .
i

E xµ µ= −  For normal distribution, the value of k is three. When 

the 2 0γ > ,  the distribution is referred to as leptokurtic and called platykurtic if 

2 0.γ <   
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4 Implementation and simulation studies 

The energy dataset we study is the Daily Electricity Prices for Pennsylvania State 

(PJMW) from January 01, 2002 to October 28, 2010 corresponding to 1,900 

observations. If we let tP  represent electricity prices at time, t , we define log 

returns as ( )1log , 1,2, ,t t tr P P t T−= = … and tr ∈R . The log returns tr  is 

assumed to be i.i.d. random variable. 

Implementation of these models is based on the R packages (e.g., fBasics, 

SkewHyperbolic, generalizedHyperbolic, HyperbolicDist and 

VarianceGamma) available from the Comprehensive R Archive Network 

(CRAN). With special statistical functions in these packages we implement 

density, cumulative distribution functions, quantiles and random seed generation. 

Other functions implement simulation for maximum likelihood estimates (mle) 

(especially the Nelder and Mead algorithm) of parameters and tests making 

descriptive statistics of data and comparative study of various classes of models 

possible. The mle of the parameter vector ( ), , , ,λ α β δ µΦ =  from the given 

dataset for each distribution under study was used in the simulation study when 

n = 50, 100, 500, 1000, 5000 and 10000. This simulation was made possible 

through the algorithms provided in Atkinson [21] and Rydberg [22] and 

implemented in HyperbolicDist by exploiting the normal variance-mean mixture 

structure of the GH variables. 

 

5 Estimation Results and Discussion 

In this section we discuss the estimation results of each subclass of the 

Generalized Hyperbolic family of distributions reviewed in Section 2. The results 

including that of the Gaussian distribution are presented in Table 1. Using the 

likelihood criterion, the GH and the NIG have the highest LLH of -2497.952 and 

-2497.955, respectively. From Table 1 also, the GH and the NIG have the least 
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AIC value of 5003.904 and 5003.910 with Akaike weight of evidence of 0.4978 

(or 49.8%) and 0.4963 (or 49.6%) respectively for being the best fitting models. 

Only GH and NIG out of the six competing models took up 99.4% weight of 

evidence for fitting the returns dataset. To discriminate between GH and NIG or to 

what extent GH is better than NIG we resort to evidence ratio (ER) 

0.4978 0.4963 1.0030NIG GHw w = = , an insignificant difference, which shows that 

any of the two models is good enough in fitting the dataset among other candidate 

models. Use of the rule of the thumb given in Burnham and Anderson [20], a 

2i∆ < suggest substantial evidence for model i, values within the interval 

3 7i≤ ∆ ≤  indicate that the model has considerably less support whereas a  

Table 1: Parameter* estimation and Model selection criteria 

Parameter 
Model 

GH HYP NIG SSt VG GAUSS 

λ  -0.4631 1.0000 -0.5000 - 1.0270 - 

α  0.7418 1.4871 0.7239 2.9923 0.9736 - 

β  0.0570 0.0771 0.0566 0.0412 0.0699 - 

/δ σ  0.7061 0.1072 0.7199 1.0947 0.9690 1.0002 

µ  -0.0567 -0.0717 -0.0564 -0.0450 -0.0695 -0.0000 

LLH -2497.952 -2504.520 -2497.955 -2502.537 -2505.855 -2694.396 

AIC 5003.904 5017.040 5003.910 5013.073 5019.710 5392.792 

i∆ 0.000 13.136 0.006 9.170 15.806 388.888 

iw 0.4978 0.0007 0.4963 0.0051 0.0002 0.0000 

* Shape; skewness/asymmetry; scale/spread; locationα β δ µ→ → → →  

10i∆ >  indicates that the model is very unlikely to fit the data well. With this rule, 

only GH and NIG qualify and other models especially GAUSS have no support in 

fitting the return series of electricity price contract. 

The tail behaviours of the six models are highlighted in Figure 1. The duo of GH 

and the NIG are indistinguishable in their tail behaviours fitting the empirical data 

best in both tails. The VG and the HYP underestimates the probability distribution 

of both the left and right tail while the SSt overestimates the probability function.  
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Figure1: Tail plots for returns: left tail (left panel) and right tail (right panel) 
 

This implies that better events in the electricity market tend to occur more often 

than the HYP and VG distributions predict. Similarly, such events occur less often 

than the SSt distribution predicts. The Gaussian distribution overstates the 

probability distribution on both sides within the ranges (-2, 0) on the left tail and 

(0, 2) on the right tail (for the negative and positive returns respectively) and 

thereafter systematically understates the probabilities on both tails. The Gaussian 

distribution is therefore not a good predictor of the returns series of electricity 

futures prices. 

The shape parameter which controls the decay in the tails is ( ]0,2α ∈ , 

sometimes called the tail exponent. From Table 1 we infer that these five models 

belong to the class of heavy tail distributions. We defined a leptokurtic 

distribution (see equation (22)) as any distribution whose kurtosis is greater than 

zero, and by implication, all these distributions we compare in Table 3 have heavy 

tails.  

The result of the simulation study is shown in Table 2. Again using the LLH and 

the AIC as criteria for selection, the GH is clearly the most consistent in the fit of 

the data under varying sample sizes especially when the sample size is large. This 
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study confirms HYP and VG to be out of contention as a model for this type of 

data set. 

Table 2: Selection criteria based upon simulation results 

n Criteria GH HYP NIG SSt VG Gauss 

5
0
 

LLH -76.1753 -60.4157 -47.8386 -66.0349 -74.9982 -62.6272 

AIC 160.3506 128.8314 103.6772 140.0698 157.9964 133.2544 

 wi 0.0 0.0 1.0 0.0 0.0 0.0 

1
0
0
 LLH -122.6249 -128.0804 -128.5928 -137.1527 -129.9325 -149.7984 

AIC 253.2498 264.1608 265.1856 282.3054 267.865 303.5968 

wi 0.9926 0.0042 0.0025 0.0 0.0007 0.0 

5
0
0
 LLH -640.4953 -704.5216 -663.4552 -634.9737 -666.7313 -726.2924 

AIC 1288.991 1417.043 1334.91 1277.947 1341.463 1456.585 

 wi 0.0040 0.0 0.0 0.9960 0.0 0.0 

1
0
0
0
 LLH -1222.445 -1289.924 -1346.708 -1316.855 -1338.404 -1390.847 

AIC 2452.89 2587.848 2701.416 2641.71 2684.808 2785.694 

 wi 1.0 0.0 0.0 0.0 0.0 0.0 

5
0
0
0
 LLH -6394.304 -6524.074 -6529.522 -6734.06 -6600.381 -7027.758 

AIC 12796.61 13056.15 13067.04 13476.12 13208.76 14059.52 

wi 1.0 0.0 0.0 0.0 0.0 0.0 

1
0
0
0
0
 LLH -12920.07 -12995.03 -13015.28 -13152.71 -13092.94 -14159.72 

AIC 25848.14 25998.06 26038.56 26313.42 26193.88 28323.44 

 wi 1.0 0.0 0.0 0.0 0.0 0.0 

 

The empirical and the estimated central moments of the returns are presented in 

Table 3. The estimated values of the main statistical indicators used in financial 

theory to access the returns distribution (i.e., mean, variance, skewness and 

kurtosis) are compared with the empirical values (i.e., computed values of the 

indicators from data) as a benchmark. Values show that the GH and NIG have 

estimates of the four indicators very close to empirical values. 
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Table 3: Empirical and estimated centered moments of the returns 

 Moments 

Model Mean Variance Skewness Kurtosis 

Empirical 0.0000 1.0003 0.3346 4.9209 

GH 9.29x10
-05

 1.0025 0.3213 4.7995 

HYP 1.92x10
-05

 0.9351 0.2123 2.8983 

NIG 6.01x10
-05

 1.0037 0.3254 5.9155 

SSt 0.0048 0.4000 0.0404 1.2016 

VG 4.00x10
-04

 0.9437 0.2098 5.9502 

Gauss -0.0000 1.0002 0.0000 0.0000 

 

6 Conclusion 

In order to analyze energy futures prices of the deregulated Pennsylvania 

electricity market, we assumed that the log return series of the prices are driven by 

Levy process of the generalized hyperbolic type. We compared five members of 

this family (the generalized hyperbolic (GH), hyperbolic (HYP), normal inverse 

Gaussian (NIG), variance-gamma (VG) and hyperbolic skew Student t (SSt) 

distributions) along with the normal distribution as the benchmark.  

Comparisons based upon the likelihood function (equation (13)), the Akaike 

information criteria (AIC) and some statistical indicators (i.e., the first four central 

moments) as criteria for selection are given in Table 1. Results in the table show 

that GH and NIG control 99.4% weight of evidence for being best two models 

among the six candidate probability distribution functions in the family. The two 

models are, however, indistinguishable in fitting the dataset.  

Results from simulation study fovour GH as the best candidate probability model 

at varying sample sizes especially in large sample size situations. These 

distributions under study have shown substantial evidence of being heavy tailed 

using the values of the shape parameter,α , kurtosis, 2γ  and by visual inspection 

of Figure 1.   
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