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Distribution with Applications to Lifetime Data

Broderick O. Oluyede1, Tiantian Yang2 and Bernard Omolo3

Abstract

In this paper, we propose a new class of generalized distributions
called the Exponentiated Kumaraswamy Lindley (EKL) distribution,
as well as related sub-distributions. This class of distributions contains
the Kumaraswamy Lindley (KL), generalized Lindley (GL), and Lindley
(L) distributions as special cases. A series expansion of the density is
obtained. Statistical properties of this class of distributions, including
the hazard and reverse hazard functions, monotonicity property, shapes,
moments, reliability, quantile function, mean deviations, Bonferroni and
Lorenz curves, entropy and Fisher information are derived among oth-
ers. The method of maximum likelihood is adopted for estimating the
model parameters. Two applications to real data sets demonstrate the
usefulness and importance of the proposed distribution.
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1 Introduction

Jones [7] explored the background and genesis of the Kumaraswamy (Kum)

distribution (Kumaraswamy [8]) and, more importantly, made clear some sim-

ilarities and differences between the beta and Kum distributions. Among the

advantages are: simple normalizing constant; the distribution and quantile

functions have simple explicit formula which do not involve special functions;

explicit formula for moments of order statistics and L-moments. However, com-

pared to Kum distribution, the beta distribution has the following advantages:

simpler formula for moments and moment generating function (mgf); a one-

parameter sub-family of symmetric distributions; simpler moment estimation

and more ways of generating the distribution via physical processes. Gupta

and Kundu [6] provided a review and recent developments on the exponenti-

ated exponential distribution. Cordeiro et al. [3] studied the Kumaraswamy

Weibull (KW) distribution and applied it to failure time data.

Lindley [9] used a mixture of exponential and length-biased exponential

distributions to illustrate the difference between fiducial and posterior distri-

butions. This mixture is called the Lindley (L) distribution. Ghitany et al.

[4] studied the statistical properties of the Lindley distribution. Sankaran [16]

obtained and studied the Poisson-Lindley distribution.

Motivated by the advantages of the generalized or exponentiated Lindley

distribution with respect to having a hazard function that exhibits increasing,

decreasing and bathtub shapes, as well as the versatility and flexibility of the

Kum distribution in modeling lifetime data, we propose and study a new class

of distributions that inherit these very important and desirable properties, and

also contains several sub-models with quite a number of shapes.

In this article, we propose a new distribution, called Exponentiated Ku-

maraswamy Lindley (EKL) distribution which generalizes the exponentiated

Lindley or generalized Lindley distribution. We discuss some structural prop-

erties of this distribution, derive the Fisher information matrix and estimate

the parameters via the method of maximum likelihood. In section 2, some gen-
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eralized Lindley distributions, Kum distribution, Kum-G distribution, and the

corresponding probability density functions are presented. Section 3 contains

results on the generalized and EKL distributions, including the hazard and re-

verse hazard functions, monotonicity property, and various sub-distributions.

In section 4, we present the moment of the EKL distribution. Reliability and

quantile function are given in sections 5 and 6, respectively. Mean devia-

tions are presented in section 7. Section 8 contains results on Bonferroni and

Lorenz curves. Measures of uncertainty, Fisher information and distribution of

order statistics are presented in section 9. Maximum likelihood estimates of the

model parameters and asymptotic confidence intervals are given in section 10.

Section 11 contains applications of the proposed model to real data, followed

by concluding remarks in section 12.

2 Some Basic Utility Notions

In this section, some generalized Lindley distributions and the Kumaraswamy

generalized distribution are presented. The following series expansion is useful

in subsequent sections: For |ω| < 1 and b > 0 a real non-integer, we have

(1− ω)b−1 =
∞∑

j=0

(−1)j

(
b− 1

j

)
ωj.

2.1 Some Generalized Lindley Distributions

Nadarajah et al. [12] studied the mathematical and statistical properties

of the generalized Lindley (GL) distribution. The cumulative distribution

function (cdf) and probability density function (pdf) of the GL distribution

are given by

GGL(x; α, λ) =

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]α

, (1)

and

gGL(x; α, λ) =
αλ2

1 + λ
(1 + x)

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]α−1

exp(−λx), (2)



30 Exponentiated Kumaraswamy Lindley Distribution

respectively, for x > 0, λ > 0, α > 0. This distribution is essentially the ex-

ponentiated Lindley distribution. Zakerzadeh and Dolati [18] presented and

studied another generalization of the Lindley distribution. These generaliza-

tions of the Lindley distribution are considered to be useful life distributions

and are suitable for modeling data with different types of hazard rate func-

tions: increasing, decreasing, bathtub and unimodal. These models constitute

flexible family of distributions in terms of the varieties of shapes and hazard

functions.

The one parameter cdf of the Lindley distribution [9] is given by

GL(x; λ) = 1− 1 + λ + λx

1 + λ
e−λx, for x > 0, and λ > 0. (3)

The corresponding Lindley pdf is given by

gL(x; λ) =
λ2(1 + x)

1 + λ
e−λx, for x > 0, and λ > 0. (4)

Lindley distribution is a mixture of exponential and gamma distributions,

that is f(x; λ) = (1 − p)fG(x; λ) + pfE(x; λ) with p = λ
1+λ

, where fG(x; λ) ≡
GAM(2, λ), and fE(x; λ) ≡ EXP (λ). Now, let Y1 and Y2 be two independently

gamma distributed random variables with parameters (α, λ) and (α+1, λ), re-

spectively. For γ > 0, let X = Y1 with probability λ
λ+γ

and X = Y2 with

probability γ
λ+γ

, then the pdf of X (see Zakerzadeh and Dolati [18]) is given

by

fGL(x; α, λ, γ) =
λ2(λx)α−1(α + γx)e−λx

(λ + γ)Γ(α + 1)
,

for x > 0, λ > 0, α > 0, γ > 0. Note that when α = γ = 1, we obtain the

Lindley pdf given in equation (4). When γ = 0 we have the gamma pdf with

parameters α and λ. If α = 1 and γ = 0 the resulting pdf is the exponential

pdf with parameter λ.

2.2 Kum-Generalized Distribution

Kumaraswamy [8] in his paper proposed a two-parameter distribution (Kum

distribution) defined in (0, 1). Its cdf and pdf are given by:

F (x; a; b) = 1− (1− xa)b , and f(x; a, b) = abxa−1(1− xa)b−1,
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respectively, for x ∈ (0, 1), a > 0, b > 0. The parameters a and b are the

shape parameters. Let G(x), be an arbitrary baseline cdf in the interval (0, 1).

Kum-G distribution has cdf F (x; a, b) and pdf f(x; a, b) defined by

F (x; a, b) = 1− (1− [G(x)]a)b, (5)

and

f(x; a, b) = abg(x)[G(x)]a−1(1− [G(x)]a)b−1 for a > 0, b > 0, (6)

where g(x) = dG(x)
dx

is the pdf corresponding to the baseline cdf G(x).

3 Exponentiated Kumaraswamy Lindley Dis-

tribution

Exponentiated distributions are very important in statistics as indicated

by Mudholkar and Srivastava [10] who proposed and studied the exponenti-

ated Weibull distribution to analyze bathtub failure data. Gupta et al. [5]

introduced and developed the general class of exponentiated distributions.

The authors defined and studied the exponentiated exponential distribution.

Nadarajah and Kotz [13] introduced the exponentiated Fréchet distribution,

and Nadarajah [11] proposed and developed the exponentiated Gumbel distri-

bution. For a baseline cdf G(x), in general the exponentiated version F (x) =

[G(x)]δ is quite different and flexible to accommodate both monotone and non-

monotone hazard rate functions. Exponentiated distributions are indeed quite

different from the baseline cdf G(x). In particular, F (x) = [1 − exp(−λx)]δ

has a constant hazard rate λ when δ = 1, increasing hazard rate if δ > 1 and

decreasing hazard rate if δ < 1.

Now, with the choice of G(x) in the Kum-generalized distribution as the

GL distribution, we obtain the KGL distribution. The four-parameter KGL

cdf and pdf are given by

FKGL(x; α, λ, a, b) = 1−
{

1−
[
1− 1 + λ + λx

1 + λ
exp(−λx)

]aα}b

, (7)
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and

fKGL(x; α, λ, a, b) =
abαλ2

1 + λ
(1 + x) exp(−λx)

×
[
1− 1 + λ + λx

1 + λ
exp(−λx)

]aα−1

×
{

1−
[
1− 1 + λ + λx

1 + λ
exp(−λx)

]aα}b−1

, (8)

for x > 0, α > 0, λ > 0, a > 0, b > 0, respectively. We can set the dependent

parameter aα = θ, so the KGL cdf and pdf reduce to Kumaraswamy Lindley

(KL) distribution with cdf and pdf given by:

FKL(x; λ, θ, b) = 1−

{
1−

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ
}b

, (9)

and

fKL(x; λ, θ, b) =
bθλ2

1 + λ
(1 + x) exp(−λx)

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ−1

×

{
1−

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ
}b−1

, (10)

for x > 0, λ > 0, θ > 0, b > 0, respectively.

Consider the exponentiated Kumaraswamy Lindley (EKL) distribution with

cdf and pdf given by:

FEKL(x; λ, θ, b, δ) =

1−

{
1−

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ
}b


δ

, (11)

and

fEKL(x; λ, θ, b, δ) = δ[FKL(x)]δ−1fKL(x)

=
δbθλ2

1 + λ
(1 + x) exp(−λx)

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ−1

×

{
1−

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ
}b−1

×

1−

{
1−

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ
}b


δ−1

, (12)
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for x > 0, λ > 0, θ > 0, b > 0, δ > 0, respectively.

If δ = b = 1, the EKL distribution is exactly identical to the beta gen-

eralized Lindley (BGL) distribution (Oluyede and Yang [14]) with pdf given

by

fBGL(x; λ, θ) =
θλ2

1 + λ
(1 + x) exp(−λx)

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ−1

,

for x > 0, λ > 0, θ > 0. Figure 1 illustrates some possible shapes of the pdf of

the EKL distribution.

Figure 1: Plots of the pdf of EKL distribution for selected values of the pa-

rameters

3.1 Expansion of Density

In this section, the series expansion of the EKL pdf is presented. When

b > 0 and δ > 0 are real non-integer, we use the following series representations

[1−GGL(x)]b−1 =
∞∑
i=0

(−1)i

(
b− 1

i

)
[GGL(x)]i,
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and

{1− [1−GGL(x)]b}δ−1 =
∞∑

j,r=0

(−1)j+r

(
δ − 1

j

)(
bj

r

)
[GGL(x)]r.

From the above expansions and equation (12), we can write the EKL density

as

fEKL(x; λ, θ, b, δ) =
δbθλ2

1 + λ
(1 + x) exp(−λx)

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ−1

×
∞∑
i=0

(−1)i

(
b− 1

i

)
[GGL(x)]i

×
∞∑

j,r=0

(−1)j+r

(
δ − 1

j

)(
bj

r

)
[GGL(x)]r

=
δbθλ2

1 + λ
(1 + x) exp(−λx)

×
∞∑

i,j,r=0

wi,j,r

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ(i+r+1)−1

, (13)

where the coefficient wi,j,r is

wi,j,r = wi,j,r(b, δ) = (−1)i+j+r

(
b− 1

i

)(
δ − 1

j

)(
bj

r

)
,

and
∑∞

i=0 wi,j,r = 1, for x > 0, λ > 0, θ > 0, b > 0, δ > 0. Consequently,

the EKL density is given by three infinite weighted power series sums of the

baseline distribution function GGL(x).

Note here that we have considered the case when b > 0 and δ > 0 are

non-integer, however the other cases can be similarly derived.

3.2 Some Sub-models of EKL Distribution

In this section, we present the sub-models of EKL distribution for selected

values of the parameters θ, b, and δ.

1. δ = 1

If δ = 1, this is the Kumaraswamy Lindley (KL) distribution with cdf

and pdf given by

FKL(x; λ, θ, b) = 1−

{
1−

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ
}b

,
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and

fKL(x; λ, θ, b) =
bθλ2

1 + λ
(1 + x) exp(−λx)

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ−1

×

{
1−

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ
}b−1

,

for x > 0, λ > 0, θ > 0, b > 0, respectively.

2. θ = 1

If θ = 1, the EKL cdf and pdf reduces to:

FEKL(x; λ, b, δ) =

{
1−

[
1 + λ + λx

1 + λ
exp(−λx)

]b
}δ

,

and

fEKL(x; λ, b, δ) =
δbλ2

1 + λ
(1 + x) exp(−λx)

×
[
1 + λ + λx

1 + λ
exp(−λx)

]b−1

×

{
1−

[
1 + λ + λx

1 + λ
exp(−λx)

]b
}δ−1

,

for x > 0, λ > 0, b > 0, δ > 0, respectively.

3. b = 1

If b = 1, this is the generalized Lindley (GL) distribution. The GL cdf

and pdf are given by

FGL(x; α, λ) =

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]α

,

and

fGL(x; α, λ) =
αλ2

1 + λ
(1 + x)

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]α−1

exp(−λx),

where α = θδ in this case, for x > 0, λ > 0, α > 0, respectively.

4. δ = θ = 1

If δ = θ = 1, the EKL cdf and pdf reduces to:

FEKL(x; λ, b) = 1−
[
1 + λ + λx

1 + λ
exp(−λx)

]b

,
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and

fEKL(x; λ, b) =
bλ2

1 + λ
(1 + x) exp(−λx)

[
1 + λ + λx

1 + λ
exp(−λx)

]b−1

,

for x > 0, λ > 0, b > 0, respectively.

5. δ = θ = b = 1

If δ = θ = b = 1, ten we have the Lindley (L) distribution given by

equation (3).

3.3 Hazard and Reverse Hazard Functions

In this section, the hazard and reverse hazard functions of the EKL dis-

tribution are presented. Graphs of these functions for selected values of the

parameters λ, θ, b, and δ are also presented. The hazard and reverse hazard

functions of EKL distribution are given by

h
EKL

(x; λ, θ, b, δ) =
fEKL(x; λ, θ, b, δ)

F̄EKL(x; λ, θ, b, δ)

=
δbθλ2

1 + λ
(1 + x) exp(−λx)

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ−1

×

{
1−

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ
}b−1

×

1−

{
1−

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ
}b


δ−1

×

1−

1−

{
1−

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ
}b


δ

−1

,
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and

τ
EKL

(x; λ, θ, b, δ) =
fEKL(x; λ, θ, b, δ)

FEKL(x; λ, θ, b, δ)

=
δbθλ2

1 + λ
(1 + x) exp(−λx)

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ−1

×

{
1−

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ
}b−1

×

1−

{
1−

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ
}b


−1

,

for x > 0, λ > 0, θ > 0, b > 0, δ > 0, respectively. The graphs of hazard

function of EKL distribution are shown in Figure 2. These graphs show the

variety of shapes for the EKL hazard function including bathtub, deceasing,

and increasing hazard rate functions.

Figure 2: Plots of the hazard function of EKL distribution for selected values

of the parameters
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3.4 Monotonicity Property

In this section, we discuss the monotonicity properties of the EKL distri-

bution. Let

V (x) = GL(x; λ) = 1− 1 + λ + λx

1 + λ
exp(−λx), (19)

then from equation (12), we can rewrite EKL pdf as

fEKL(x; λ, θ, b, δ) =
δbθλ2

1 + λ
(1 + x) exp(−λx)[V (x)]θ−1

× [1− [V (x)]θ]b−1{1− [1− [V (x)]θ]b}δ−1, (20)

for x > 0, λ > 0, θ > 0, b > 0, δ > 0. It follows that

log fEKL(x) = log

(
δbθλ2

1 + λ

)
+ log (1 + x)− λx + (θ − 1) log V (x)

+ (b− 1) log [1− [V (x)]θ]

+ (δ − 1) log
(
1− [1− [V (x)]θ]b

)
, (21)

and

d log fEKL(x)

dx
=

1

1 + x
− λ +

θ − 1 + (1− bθ)[V (x)]θ

V (x)[1− [V (x)]θ]
V ′(x)

+ bθ(δ − 1)
[1− [V (x)]θ]b−1[V (x)]θ−1V ′(x)

1− [1− [V (x)]θ]b
, (22)

where V (x) = 1− 1+λ+λx
1+λ

exp(−λx), and V ′(x) = d V (x)
dx

= λ2

1+λ
(1+x) exp(−λx).

Analysis: We know that x > 0, λ > 0, θ > 0, b > 0, and δ > 0, so that

V ′(x) =
d V (x)

dx
=

λ2

1 + λ
(1 + x) exp(−λx) > 0,∀x > 0.

If x → 0,

V (x) = 1− 1 + λ + λx

1 + λ
exp(−λx) → 0.

If x →∞,

V (x) = 1− 1 + λ + λx

1 + λ
exp(−λx) → 1,

since

lim
x→∞

(1 + λ + λx) exp(−λx) = lim
x→∞

1 + λ + λx

exp(λx)
= lim

x→∞

λ

λ exp(λx)
= 0.
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Thus, V (x) is monotonically increasing from 0 to 1. Now, as 0 < V (x) < 1,

we get 0 < [V (x)]θ < 1,∀ θ > 0, [V (x)]θ−1 > 0,∀ θ > 0, 0 < 1 − [V (x)]θ <

1,∀ θ > 0, 0 < [1 − [V (x)]θ]b < 1,∀ θ > 0, [1 − [V (x)]θ]b−1 > 0,∀ θ > 0, and

0 < 1− [1− [V (x)]θ]b < 1,∀ θ > 0. Then, we have

V ′(x)

V (x)[1− [V (x)]θ]
> 0, and

[1− [V (x)]θ]b−1[V (x)]θ−1V ′(x)

1− [1− [V (x)]θ]b
> 0.

Also, from x > 0, we have 0 < 1
1+x

< 1.

If λ ≥ 1, 0 < θ ≤ 1, bθ ≥ 1, and 0 < δ ≤ 1, we get d log fKGL(x)
dx

< 0, since
1

1+x
− λ < 0, θ − 1 + (1 − bθ)[V (x)]θ ≤ 0, and bθ(δ − 1) ≤ 0. In this case,

fEKL(x; λ, θ, b, δ) is monotonically decreasing for all x.

If λ < 1, fEKL(x; λ, θ, b, δ) could attain a maximum, a minimum or a point

of inflection according to whether

d2 log fEKL(x)

dx2
< 0,

d2 log fEKL(x)

dx2
> 0, or

d2 log fEKL(x)

dx2
= 0,

respectively.

3.5 Shape of Hazard Function

Note that if x →∞, then 1+λ+λx
1+λ

exp(−λx) → 0. Also,[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ−1

=
∞∑
i=0

(
θ − 1

i

) [
−1 + λ + λx

1 + λ
exp(−λx)

]i

≈ 1− (θ − 1)
1 + λ + λx

1 + λ
exp(−λx).

Consequently,

fEKL(x; λ, θ, b, δ) ∼ δbθbλb+1

(1 + λ)b
xb exp(−λbx). (23)

If x → 0, then

fEKL(x; λ, θ, b, δ) ∼ δbδθλ2θδ

(1 + λ)θδ
xθδ. (24)

The cdf of EKL distribution is

FEKL(x; λ, θ, b, δ) =

1−

{
1−

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ
}b


δ

,
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for x > 0, λ > 0, θ > 0, b > 0, δ > 0.

If x →∞, then 1+λ+λx
1+λ

exp(−λx) → 0. Also,[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ

=
∞∑
i=0

(
θ

i

) [
−1 + λ + λx

1 + λ
exp(−λx)

]i

≈ 1− θ
1 + λ + λx

1 + λ
exp(−λx),

so that

FEKL(x; λ, θ, b, δ) ≈ 1− δ

[
θ
1 + λ + λx

1 + λ
exp(−λx)

]b

.

Also,

1− FEKL(x; λ, θ, b, δ) ≈ δ

[
θ
1 + λ + λx

1 + λ
exp(−λx)

]b

=
δθb

(1 + λ)b
(1 + λ + λx)b[exp(−λx)]b

∼ δθb

(1 + λ)b
(λx)b[exp(−λx)]b

=
δθbλb

(1 + λ)b
xb exp(−λbx).

That is,

1− FEKL(x; λ, θ, b, δ) ∼ δθbλb

(1 + λ)b
xb exp(−λbx). (25)

If x → 0, then 1+λ+λx
1+λ

exp(−λx) → 1, and 1− 1+λ+λx
1+λ

exp(−λx) → 0, so that[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ

→ 0,

and{
1−

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ
}b

=
∞∑
i=0

(
b

i

)

×

{
−

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ
}i

≈ 1− b

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ

.
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Thus,

FEKL(x; λ, θ, b, δ) ∼ bδλ2θδ

(1 + λ)θδ
xθδ. (26)

The hazard functions of EKL is given by

hEKL(x; λ, θ, b, δ) =
fEKL(x;λ,θ,b,δ)

F̄EKL(x; λ, θ, b, δ)
=

fEKL(x; λ, θ, b, δ)

1− FEKL(x; λ, θ, b, δ)
, (27)

for x > 0, λ > 0, θ > 0, b > 0, δ > 0.

If x →∞, with equations (23) and (25) in equation (27), we get

hEKL(x; λ, θ, b, δ) ∼ δbθbλb+1xb exp(−λbx)/(1 + λ)b

δθbλbxb exp(−λbx)/(1 + λ)b

= bλ.

If x → 0, with equations (24) and (26) in equation (27), we get

hEKL(x; λ, θ, b, δ) ∼ δbδθλ2θδxθδ/(1 + λ)θδ

1− bδλ2θδxθδ/(1 + λ)θδ

∼ δbδθλ2θδ

(1 + λ)θδ
xθδ,

since bδλ2θδ

(1+λ)θδ x
θδ → 0, as x → 0.

4 Moments of EKL Distribution

In this section, moments of the EKL distribution are presented. The fol-

lowing lemma is proved by using the result given by Nadarajah et al. [12].

Lemma 1

Let

K(m, n, p, q) =

∫ ∞

0

xp(1 + x)

[
1− 1 + n + nx

1 + n
exp(−nx)

]m−1

exp(−qx) dx.

1. If m is non-integer, we have

K(m, n, p, q) =
∞∑
l=0

l∑
k=0

k+1∑
w=0

(
m− 1

l

)(
l

k

)(
k + 1

w

)
(−1)lnkΓ(p + w + 1)

(1 + n)l(nl + q)p+w+1
.
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2. If m is an integer, we have

K(m, n, p, q) =
m−1∑
l=0

l∑
k=0

k+1∑
w=0

(
m− 1

l

)(
l

k

)(
k + 1

w

)
(−1)lnkΓ(p + w + 1)

(1 + n)l(nl + q)p+w+1
.

Proof. 1. If m is non-integer, then[
1− 1 + n + nx

1 + n
exp(−nx)

]m−1

=
∞∑
l=0

(
m− 1

l

)
(−1)l

×
(

1 + n + nx

1 + n
exp(−nx)

)l

,

and

K(m, n, p, q) =
∞∑
l=0

(
m− 1

l

)
(−1)l

(1 + n)l

×
∫ ∞

0

xp(1 + x)(1 + n + nx)l exp[−(nl + q)x] dx.

Furthermore, l is an integer, so that

(1 + n + nx)l =
l∑

k=0

(
l

k

)
(n + nx)k =

l∑
k=0

(
l

k

)
nk(1 + x)k,

and

K(m, n, p, q) =
∞∑
l=0

(
m− 1

l

)
(−1)l

(1 + n)l

l∑
k=0

(
l

k

)
nk

×
∫ ∞

0

xp(1 + x)k+1 exp[−(nl + q)x] dx.

Now, k is an integer, so that

(1 + x)k+1 =
k+1∑
w=0

(
k + 1

w

)
xw,

and

K(m,n, p, q) =
∞∑
l=0

(
m− 1

l

)
(−1)l

(1 + n)l

l∑
k=0

(
l

k

)
nk

k+1∑
w=0

(
k + 1

w

)
×

∫ ∞

0

xp+w exp[−(nl + q)x] dx

=
∞∑
l=0

l∑
k=0

k+1∑
w=0

(
m− 1

l

)(
l

k

)(
k + 1

w

)
(−1)lnkΓ(p + w + 1)

(1 + n)l(nl + q)p+w+1
.

(28)
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2. If m is an integer, the index l in equation (28) stops at m− 1, so that

K(m,n, p, q) =
m−1∑
l=0

l∑
k=0

k+1∑
w=0

(
m− 1

l

)(
l

k

)(
k + 1

w

)
(−1)lnkΓ(p + w + 1)

(1 + n)l(nl + q)p+w+1
.

The sth moment of the EKL distribution, say µ′s, is given by

µ′s =

∫ ∞

0

xsfEKL(x; λ, θ, b, δ) dx.

Let b > 0 and δ > 0 be real non-integer, then from equation (13), we obtain

µ′s =
δbθλ2

1 + λ

∞∑
i,j,r=0

(−1)i+j+r

(
b− 1

i

)(
δ − 1

j

)(
bj

r

) ∫ ∞

0

xs(1 + x) exp(−λx)

×
[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θ(i+r+1)−1

dx.

Now, using Lemma 1 with m = θ(i + r + 1), n = λ, p = s, q = λ, we have

µ′s =
δbθλ2

1 + λ

∞∑
i,j,r=0

(−1)i+j+r

(
b− 1

i

)(
δ − 1

j

)(
bj

r

)
× K(θ(i + r + 1), λ, s, λ). (29)

If θ > 0 is non-integer, then the sth moment of the EKL is given by

µ′s = δbθ

∞∑
i,j,r,l=0

l∑
k=0

k+1∑
w=0

×
(

b− 1

i

)(
δ − 1

j

)(
bj

r

)(
θ(i + r + 1)− 1

l

)(
l

k

)(
k + 1

w

)
× (−1)i+j+r+lΓ(s + w + 1)

(1 + λ)l+1λs+w−k−1(1 + l)s+w+1
. (30)

If θ > 0 is an integer, then θ(i + r + 1) is an integer, so that the index l in

equation (30) stops at θ(i + r + 1)− 1.

Note here that we have considered the case when b > 0 and δ > 0 are

non-integer, however the other cases can be similarly derived.
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5 Reliability

In reliability and related areas, the stress-strength model describes the life

of a component with random strength X, that is subjected to a random stress

Y. The component will fail at the instant that the applied stress exceeds the

strength, and the component will function satisfactorily whenever X > Y.

We derive R = P (X > Y ), a measure of component reliability, when X and

Y have independent EKL(λ1, θ1, b1, δ1) and EKL(λ2, θ2, b2, δ2) distributions,

respectively. Note from equations (11) and (12) that

R = P (X > Y )

=

∫ ∞

0

fX(x; λ1, θ1, b1, δ1)FY (x; λ2, θ2, b2, δ2) dx

=

∫ ∞

0

δ1b1θ1λ
2
1

1 + λ1

(1 + x) exp(−λ1x)

[
1− 1 + λ1 + λ1x

1 + λ1

exp(−λ1x)

]θ1−1

×

{
1−

[
1− 1 + λ1 + λ1x

1 + λ1

exp(−λ1x)

]θ1
}b1−1

×

1−

{
1−

[
1− 1 + λ1 + λ1x

1 + λ1

exp(−λ1x)

]θ1
}b1


δ1−1

×

1−

{
1−

[
1− 1 + λ2 + λ2x

1 + λ2

exp(−λ2x)

]θ2
}b2


δ2

dx. (31)

Applying the series expansions[
1− 1 + λ1 + λ1x

1 + λ1

exp(−λ1x)

]θ1−1

=
∞∑

k=0

k∑
m=0

(
θ1 − 1

k

)(
k

m

)
× (−1)kλm

1 xm exp(−λ1kx)

(1 + λ1)m
, (32)

{
1−

[
1− 1 + λ1 + λ1x

1 + λ1

exp(−λ1x)

]θ1
}b1−1

=
∞∑

l,p=0

p∑
n=0

(
b1 − 1

l

)(
θ1l

p

)(
p

n

)
× (−1)l+pλn

1x
n exp(−λ1px)

(1 + λ1)n
,

(33)
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
{

1−
[
1− 1 + λ1 + λ1x

1 + λ1

exp(−λ1x)

]θ1
}b1


δ1−1

=
∞∑

q,e,f=0

f∑
g=0

(
δ1 − 1

q

)(
b1q

e

)(
θ1e

f

)

×
(

f

g

)
(−1)q+e+fλg

1x
ge(−λ1fx)

(1 + λ1)g
,(34)


{

1−
[
1− 1 + λ2 + λ2x

1 + λ2

exp(−λ2x)

]θ2
}b2


δ2

=
∞∑

t,h,i=0

i∑
j=0

(
δ2

t

)(
b2t

h

)(
θ2h

i

)(
i

j

)

× (−1)t+h+iλj
2x

j exp(−λ2ix)

(1 + λ2)j
, (35)

and substituting equations (32), (33), (34), and (35) into equation (31), we get

R =

∫ ∞

0

δ1b1θ1λ
2
1

1 + λ1

(1 + x) exp(−λ1x)

×
∞∑

k=0

k∑
m=0

(
θ1 − 1

k

)(
k

m

)
(−1)kλm

1 xm exp(−λ1kx)

(1 + λ1)m

×
∞∑

l,p=0

p∑
n=0

(
b1 − 1

l

)(
θ1l

p

)(
p

n

)
(−1)l+pλn

1x
n exp(−λ1px)

(1 + λ1)n

×
∞∑

q,e,f=0

f∑
g=0

(
δ1 − 1

q

)(
b1q

e

)(
θ1e

f

)(
f

g

)
(−1)q+e+fλg

1x
g exp(−λ1fx)

(1 + λ1)g

×
∞∑

t,h,i=0

i∑
j=0

(
δ2

t

)(
b2t

h

)(
θ2h

i

)(
i

j

)
(−1)t+h+iλj

2x
j exp(−λ2ix)

(1 + λ2)j
dx

= δ1b1θ1

∞∑
k,l,p,q,e,f,t,h,i=0

k∑
m=0

p∑
n=0

f∑
g=0

i∑
j=0

(
θ1 − 1

k

)(
k

m

)(
b1 − 1

l

)(
θ1l

p

)(
p

n

)
×

(
δ1 − 1

q

)(
b1q

e

)(
θ1e

f

)(
f

g

)(
δ2

t

)(
b2t

h

)(
θ2h

i

)(
i

j

)
× (−1)k+l+p+q+e+f+t+h+iλm+n+g+2

1 λj
2

(1 + λ1)m+n+g+1(1 + λ2)j

×
∫ ∞

0

(1 + x)xm+n+g+j exp(−[λ1(k + p + f + 1) + λ2i]x) dx. (36)
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We use the following gamma functions in equation (36)∫ ∞

0

(1 + x)xm+n+g+je−[λ1(k+p+f+1)+λ2i]x dx

=

∫ ∞

0

xm+n+g+je−[λ1(k+p+f+1)+λ2i]x dx

+

∫ ∞

0

xm+n+g+j+1e−[λ1(k+p+f+1)+λ2i]x dx

=
(m + n + g + j)!

[λ1(k + p + f + 1) + λ2i]m+n+g+j+1

×
[
1 +

m + n + g + j + 1

λ1(k + p + f + 1) + λ2i

]
,

to get

R = δ1b1θ1

∞∑
k,l,p,q,e,f,t,h,i=0

k∑
m=0

p∑
n=0

f∑
g=0

i∑
j=0

(
θ1 − 1

k

)(
k

m

)(
b1 − 1

l

)(
θ1l

p

)(
p

n

)
×

(
δ1 − 1

q

)(
b1q

e

)(
θ1e

f

)(
f

g

)(
δ2

t

)(
b2t

h

)(
θ2h

i

)(
i

j

)
× (−1)k+l+p+q+e+f+t+h+iλm+n+g+2

1 λj
2

(1 + λ1)m+n+g+1(1 + λ2)j

(m + n + g + j)!

[λ1(k + p + f + 1) + λ2i]m+n+g+j+1

×
[
1 +

m + n + g + j + 1

λ1(k + p + f + 1) + λ2i

]
.

6 Quantile Function

The quantile function, say Q(p), is defined by F (Q(p)) = p. Now, from the

cdf of the EKL distribution, we have

FEKL(Q(p)) =

1−

{
1−

[
1− 1 + λ + λQ(p)

1 + λ
exp(−λQ(p))

]θ
}b


δ

= p,

and we can obtain Q(p) as the root of the following equation

−1 + λ + λQ(p)

1 + λ
exp(−λQ(p)) =

[
1− (1− p

1
δ )

1
b

] 1
θ − 1, (37)
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for 0 < p < 1. Substituting Z(p) = −(1 + λ + λQ(p)), we can rewrite equation

(37) as
Z(p)

1 + λ
exp(1 + λ + Z(p)) =

[
1− (1− p

1
δ )

1
b

] 1
θ − 1,

so that

Z(p) exp(Z(p)) = (1 + λ) exp(−1− λ)

{[
1− (1− p

1
δ )

1
b

] 1
θ − 1

}
,

for 0 < p < 1. As the defining equation for Lambert W function W (x) is

x = W (x) exp(W (x)), we get

Z(p) = W

(
(1 + λ) exp(−1− λ)

{[
1− (1− p

1
δ )

1
b

] 1
θ − 1

})
,

for 0 < p < 1. Then, we obtain

Q(p) = −1− 1

λ
−

W

(
(1 + λ) exp(−1− λ)

{[
1− (1− p

1
δ )

1
b

] 1
θ − 1

})
λ

, (38)

for 0 < p < 1. Since the Taylor series of W (x) around x = 0 is given by

W (x) =
∑∞

i=1
(−i)i−1

i!
xi, a series expansion for equation (38) around p = 1 can

be obtained as

Q(p) = −1− 1

λ
− 1

λ

∞∑
i=1

(−i)i−1

i!
(1+λ)i exp(−i−λi)

{[
1− (1− p

1
δ )

1
b

] 1
θ − 1

}i

.

(39)

7 Mean Deviations

The mean deviation about the mean and the mean deviation about the

median are defined by

δ1(X) =

∫ ∞

0

|x− µ|f(x) dx, and δ2(X) =

∫ ∞

0

|x−M |f(x) dx,

respectively, where µ = E(X), and M = Median(X) denotes the median.

The measures δ1(X) and δ2(X) can be calculated as follows:

δ1(X) = 2µF (µ)− 2µ + 2

∫ ∞

µ

xf(x) dx, (40)
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and

δ2(X) = −µ + 2

∫ ∞

M

xf(x) dx, (41)

respectively. By using the moments for EKL distribution and the results in

Lemma 2 (Nadarajah et al. [12]), we can calculate equations (40) and (41).

Note that

K(m, n, p, q) =

∫ ∞

0

xp(1 + x)

[
1− 1 + n + nx

1 + n
exp(−nx)

]m−1

exp(−qx) dx,

and

L(m,n, p, q, t) =

∫ ∞

t

xp(1 + x)

[
1− 1 + n + nx

1 + n
exp(−nx)

]m−1

exp(−qx) dx.

We consider the case when b and δ are real non-integer. From equation (29)

and Lemma 2 (Nadarajah et al. [12]), we know that

µ =
δbθλ2

1 + λ

∞∑
i,j,r=0

(−1)i+j+r

(
b− 1

i

)(
δ − 1

j

)(
bj

r

)
K(θ(i + r + 1), λ, 1, λ),

∫ ∞

µ

xf(x) dx =
δbθλ2

1 + λ

∞∑
i,j,r=0

(−1)i+j+r

(
b− 1

i

)(
δ − 1

j

)(
bj

r

)
× L(θ(i + r + 1), λ, 1, λ, µ), (42)

and ∫ ∞

M

xf(x) dx =
δbθλ2

1 + λ

∞∑
i,j,r=0

(−1)i+j+r

(
b− 1

i

)(
δ − 1

j

)(
bj

r

)
× L(θ(i + r + 1), λ, 1, λ, M),

so that

δ1(X) = 2µF (µ)− 2µ

+
2δbθλ2

1 + λ

∞∑
i,j,r=0

(−1)i+j+r

(
b− 1

i

)(
δ − 1

j

)(
bj

r

)
× L(θ(i + r + 1), λ, 1, λ, µ),
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and

δ2(X) = −µ
2δbθλ2

1 + λ

∞∑
i,j,r=0

(−1)i+j+r

(
b− 1

i

)(
δ − 1

j

)(
bj

r

)
× L(θ(i + r + 1), λ, 1, λ,M).

Note here that we have considered the case when b and δ are non-integer,

however the other cases can be similarly derived.

8 Bonferroni and Lorenz Curves

Bonferroni and Lorenz curves are defined by

B(p) =
1

pµ

∫ q

0

xf(x) dx, and L(p) =
1

µ

∫ q

0

xf(x) dx,

respectively, where µ = E(X), and q = F−1(p).

Now, we obtain Bonferroni and Lorenz curves for EKL distribution as fol-

lows: If b and δ are real non-integer, then from equation (42), we have

B(p) =
1

p
− δbθλ2

pµ(1 + λ)

∞∑
i,j,r=0

(−1)i+j+r

(
b− 1

i

)(
δ − 1

j

)(
bj

r

)
× L(θ(i + r + 1), λ, 1, λ, q),

and

L(p) = 1− δbθλ2

µ(1 + λ)

∞∑
i,j,r=0

(−1)i+j+r

(
b− 1

i

)(
δ − 1

j

)(
bj

r

)
× L(θ(i + r + 1), λ, 1, λ, q),

respectively. Note here that we have considered the case when b and δ are

non-integer, however the other cases can be similarly derived.

The equivalent definitions of Bonferroni and Lorenz curves are as follows:

B(p) =
1

pµ

∫ p

0

F−1(x) dx, and L(p) =
1

µ

∫ p

0

F−1(x) dx,

respectively, where µ = E(X). From equation (39), we know that

F−1(x) = −1− 1

λ
− 1

λ

∞∑
i=1

(−i)i−1

i!
(1 + λ)ie−i(1+λ)

{[
1− (1− x

1
δ )

1
b

] 1
θ − 1

}i

.

(43)
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By using the series expansion{[
1− (1− x

1
δ )

1
b

] 1
θ − 1

}i

= (−1)i

i∑
j=0

∞∑
k,m=0

(
i

j

)( j
θ

k

)(
k
b

m

)
(−1)j+k+mx

m
δ ,

(44)

and substituting equation (44) into equation (43), we get

F−1(x) = −1− 1

λ
+

1

λ

∞∑
i=1

i∑
j=0

∞∑
k,m=0

(
i

j

)( j
θ

k

)(
k
b

m

)

× ii−1(−1)j+k+m(1 + λ)ie−i(1+λ)

i!
x

m
δ ,

so that

B(p) =
1

pµ

∫ p

0

(
−1− 1

λ

)
dx

+
1

pµλ

∞∑
i=1

i∑
j=0

∞∑
k,m=0

(
i

j

)( j
θ

k

)(
k
b

m

)

× ii−1(−1)j+k+m(1 + λ)ie−i(1+λ)

i!

∫ p

0

x
m
δ dx

=
1

µ

(
−1− 1

λ

)
+

1

µλ

∞∑
i=1

i∑
j=0

∞∑
k,m=0

(
i

j

)( j
θ

k

)(
k
b

m

)
ii−1(−1)j+k+m(1 + λ)ie−i(1+λ)p

m
δ

i!(m
δ

+ 1)
,

(45)

and

L(p) =
p

µ

(
−1− 1

λ

)
+

p

µλ

∞∑
i=1

i∑
j=0

∞∑
k,m=0

(
i

j

)( j
θ

k

)(
k
b

m

)
ii−1(−1)j+k+m(1 + λ)ie−i(1+λ)p

m
δ

i!(m
δ

+ 1)
.

(46)

The Bonferroni and Gini indices are defined by

B = 1−
∫ 1

0

B(p) dp, and G = 1− 2

∫ 1

0

L(p) dp,
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respectively. By using equations (45) and (46), we obtain

B = 1− 1

µ

(
−1− 1

λ

)
− 1

µλ

∞∑
i=1

i∑
j=0

∞∑
k,m=0

(
i

j

)( j
θ

k

)(
k
b

m

)
ii−1(−1)j+k+m(1 + λ)ie−i(1+λ)

i!(m
δ

+ 1)2
,

and

G = 1− 1

µ

(
−1− 1

λ

)
− 2

µλ

∞∑
i=1

i∑
j=0

∞∑
k,m=0

(
i

j

)( j
θ

k

)(
k
b

m

)
ii−1(−1)j+k+m(1 + λ)ie−i(1+λ)

i!(m
δ

+ 1)(m
δ

+ 2)
.

9 Order Statistics, Measures of Uncertainty,

and Information

In this section, the distribution of the kth order statistic, measures of uncer-

tainty, and information for the EKL distribution are presented. The concept

of entropy plays a vital role in information theory. The entropy of a random

variable is defined in terms of its probability distribution and can be shown to

be a good measure of randomness or uncertainty.

9.1 Distribution of Order Statistics

Suppose that X1, · · · , Xn is a random sample of size n from a continuous

pdf, f(x). Let X1:n < X2:n < · · · < Xn:n denote the corresponding order

statistics. If X1, · · · , Xn is a random sample from EKL distribution, it follows

from the equations (11) and (12) that the pdf of the kth order statistic, say
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Yk = Xk:n, is given by

fk(yk) =
n!

(k − 1)!(n− k)!

n−k∑
l=0

(
n− k

l

)
(−1)l[FEKL(yk)]

k−1+lfEKL(yk)

=
δbθλ2n!(1 + yk) exp(−λyk)

(1 + λ)(k − 1)!(n− k)!

n−k∑
l=0

∞∑
p,q,i,j,r=0

(
n− k

l

)(
δ(k − 1 + l)

p

)
×

(
bp

q

)(
b− 1

i

)(
δ − 1

j

)(
bj

r

)
(−1)l+p+q+i+j+r[V (yk)]

θ(q+i+r+1)−1,

where V (yk) = 1− 1+λ+λyk

1+λ
exp(−λyk). The corresponding cdf of Yk is

Fk(yk) =
n∑

j=k

n−j∑
l=0

(
n

j

)(
n− j

l

)
(−1)l

∞∑
p,q=0

(
δ(j + l)

p

)(
bp

q

)
(−1)p+q[V (yk)]

θq

=
n∑

j=k

n−j∑
l=0

∞∑
p,q=0

(
n

j

)(
n− j

l

)(
δ(j + l)

p

)(
bp

q

)
(−1)l+p+q[V (yk)]

θq.

The sth moment of the kth order statistic Yk from EKL distribution is

obtained as follows: If b and δ are real non-integer, then

E(Y s
k ) =

∫ ∞

0

ys
kfk(yk; λ, θ, b, δ) dyk

=
δbθλ2n!

(1 + λ)(k − 1)!(n− k)!

n−k∑
l=0

∞∑
p,q,i,j,r=0

(
n− k

l

)(
δ(k − 1 + l)

p

)
×

(
bp

q

)(
b− 1

i

)(
δ − 1

j

)(
bj

r

)
(−1)l+p+q+i+j+r

× K(θ(q + i + r + 1), λ, s, λ).

Note here that we have considered the case when b and δ are non-integer,

however the other cases can be similarly derived.

9.2 Renyi Entropy

Renyi entropy [15] is an extension of Shannon entropy. Renyi entropy is

defined to be Hγ(fEKL(x)) = Hγ(fEKL(x; λ, θ, b, δ)) =
log(

∫∞
0 fγ

EKL(x;λ,θ,b,δ) dx)
1−γ

,

where γ > 0, and γ 6= 1. Renyi entropy tends to Shannon entropy as γ → 1.
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Now,∫ ∞

0

fγ
EKL(x) dx =

(
δbθλ2

1 + λ

)γ

×
∫ ∞

0

(1 + x)γ exp(−λγx)[V (x)]θγ−γ[1− [V (x)]θ]bγ−γ

×
{
1− [1− [V (x)]θ]b

}δγ−γ
dx. (47)

Note that

[V (x)]θγ−γ =

[
1− 1 + λ + λx

1 + λ
exp(−λx)

]θγ−γ

=
∞∑

k=0

(−1)k

(
θγ − γ

k

)∑k
j=0

(
k
j

)
λj(1 + x)j

(1 + λ)k
exp(−λkx), (48)

[1− [V (x)]θ]bγ−γ =
∞∑

m=0

(−1)m

(
bγ − γ

m

)
×

∞∑
n=0

(−1)n

(
θm

n

)∑n
e=0

(
n
e

)
λe(1 + x)e

(1 + λ)n
exp(−λnx),(49)

and{
1− [1− [V (x)]θ]b

}δγ−γ
=

∞∑
q=0

(−1)q

(
δγ − γ

q

) ∞∑
p=0

(−1)p

(
bq

p

)

×
∞∑
l=0

(−1)l

(
θp

l

)∑l
t=0

(
l
t

)
λt(1 + x)t

(1 + λ)l
exp(−λlx).

(50)

Substituting equations (48), (49) and (50) into equation (47), we get∫ ∞

0

fγ
KGL(x) dx =

(
δbθλ2

1 + λ

)γ

×
∞∑

k,m,n,q,p,l=0

k∑
j=0

n∑
e=0

l∑
t=0

(
θγ − γ

k

)(
k

j

)(
bγ − γ

m

)(
θm

n

)(
n

e

)
×

(
δγ − γ

q

)(
bq

p

)(
θp

l

)(
l

t

)
× (−1)k+m+n+q+p+l exp(λ(γ + k + n + l))

(1 + λ)k+n+l(γ + k + n + l)γ+j+t+1λγ+1

× Γ(γ + j + e + t + 1, λ(γ + k + n + l)). (51)
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Consequently, Renyi entropy for EKL distribution reduces to :

Hγ(fEKL(x)) =
γ

1− γ
log

(
δbθλ2

1 + λ

)
+

1

1− γ
log

{ ∞∑
k,m,n,q,p,l=0

k∑
j=0

n∑
e=0

l∑
t=0

(
θγ − γ

k

)(
k

j

)(
bγ − γ

m

)
×

(
θm

n

)(
n

e

)(
δγ − γ

q

)(
bq

p

)(
θp

l

)(
l

t

)
× (−1)k+m+n+q+p+l exp(λ(γ + k + n + l))

(1 + λ)k+n+l(γ + k + n + l)γ+j+t+1λγ+1

× Γ(γ + j + e + t + 1, λ(γ + k + n + l))

}
,

for γ > 0, and γ 6= 1.

From equation (21), we obtain Shannon entropy for EKL distribution as

follows:

E[− log fEKL(X; λ, θ, b, δ)] = − log

(
δbθλ2

1 + λ

)
− E[log(1 + X)] + λE(X)

+ (1− θ)E[log V (X)]

+ (1− b)E[log(1− [V (X)]θ)]

+ (1− δ)E[log
{
1− [1− [V (X)]θ]b

}
].

Now, as 0 < [V (x)]θ < 1,

log(1− [V (x)]θ) = −
∞∑

k=1

[V (x)]θk

k
,

log[V (x)] = −
∞∑

k=1

k∑
l=0

(
k

l

)
λl

k(1 + λ)l
xl exp(−λkx),

and

log
{
1− [1− [V (x)]θ]b

}
= −

∞∑
n=1

∞∑
m=0

(
bn

m

)
(−1)m

n
[V (x)]θm,

we have

E[log(1− [V (X)]θ)] = −
∞∑

k=1

1

k
E([V (X)]θk), (52)
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E[log(V (X))] = −
∞∑

k=1

k∑
l=0

(
k

l

)
λl

k(1 + λ)l
E[X l exp(−λkX)], (53)

and

E[log
{
1− [1− [V (X)]θ]b

}
] = −

∞∑
n=1

∞∑
m=0

(
bn

m

)
(−1)m

n
E[[V (X)]θm]. (54)

By using the expansion of density for EKL distribution and the results in

Lemma 1 (Nadarajah et al. [12]), we can calculate equations (52), (53), and

(54). Now, we obtain Shannon entropy for EKL distribution as follows: When

b and δ are real non-integer, we have

E[− log fEKL(X; λ, θ, b, δ)] = − log

(
δbθλ2

1 + λ

)
+

∞∑
n=1

(−1)n

n
E(Xn) + λE(X)

+ (θ − 1)
∞∑

k=1

k∑
l=0

(
k

l

)
λl

k(1 + λ)l
E[X l exp(−λkX)]

+ (b− 1)
∞∑

k=1

1

k
E([V (X)]θk)

+ (δ − 1)
∞∑

n=1

∞∑
m=0

(
bn

m

)
(−1)m

n
E[[V (X)]θm],

where

E(Xn) =
δbθλ2

1 + λ

∞∑
i,j,r=0

(−1)i+j+r

(
b− 1

i

)(
δ − 1

j

)(
bj

r

)
K(θ(i + r + 1), λ, n, λ),

E(X) =
δbθλ2

1 + λ

∞∑
i,j,r=0

(−1)i+j+r

(
b− 1

i

)(
δ − 1

j

)(
bj

r

)
K(θ(i + r + 1), λ, 1, λ),

E[X l exp(−λkX)] =
δbθλ2

1 + λ

∞∑
i,j,r=0

(−1)i+j+r

(
b− 1

i

)(
δ − 1

j

)(
bj

r

)
× K(θ(i + r + 1), λ, l, λ(1 + k)),

E([V (X)]θk) =
δbθλ2

1 + λ

∞∑
i,j,r=0

(−1)i+j+r

(
b− 1

i

)(
δ − 1

j

)(
bj

r

)
× K(θ(i + r + k + 1), λ, 0, λ),
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and

E([V (X)]θm) =
δbθλ2

1 + λ

∞∑
i,j,r=0

(−1)i+j+r

(
b− 1

i

)(
δ − 1

j

)(
bj

r

)
× K(θ(i + r + m + 1), λ, 0, λ).

Note here that we have considered the case when b and δ are non-integer,

however the other cases can be similarly derived.

9.3 s-Entropy

The s-entropy for EKL distribution is defined by

Hs(fEKL(x; λ, θ, b, δ)) =

 1
s−1

[1−
∫∞

0
f s

EKL(x; λ, θ, b, δ) dx] if s 6= 1, s > 0,

E[− log f(X)] if s = 1.

Consequently, if s 6= 1, s > 0, then from equation (51), we have

Hs(fEKL(x)) =
1

s− 1
− 1

s− 1

( (
δbθλ2

(1 + λ)

)s

×
∞∑

k,m,n,q,p,l=0

k∑
j=0

n∑
e=0

l∑
t=0

(
θs− s

k

)(
k

j

)(
bs− s

m

)(
θm

n

)(
n

e

)
×

(
δs− s

q

)(
bq

p

)(
θp

l

)(
l

t

)
× (−1)k+m+n+q+p+l exp(λ(s + k + n + l))

(1 + λ)k+n+l(s + k + n + l)s+j+t+1λs+1

× Γ(s + j + e + t + 1, λ(s + k + n + l))

)
.

If s = 1, then s-entropy is Shannon entropy.

9.4 Fisher Information Matrix

This section presents a measure for the amount of information. This infor-

mation measure can be used to obtain bounds on the variance of estimators,

and as well as approximate the sampling distribution of an estimator obtained
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from a large sample. Furthermore, it can be used to obtain approximate con-

fidence intervals in case of large sample.

Let X be a random variable (rv) with the EKL pdf fEKL(.;Θ), where

Θ = (θ1, θ2, θ3, θ4)
T = (λ, θ, b, δ)T . Then, Fisher information matrix (FIM) is

the 4× 4 symmetric matrix with elements:

Iij(Θ) = EΘ

[
∂ log(fEKL(X;Θ))

∂θi

∂ log(fEKL(X;Θ))

∂θj

]
.

If the density fEKL(.;Θ) has a second derivative for all i and j, then an alter-

native expression for Iij(Θ) is

Iij(Θ) = −EΘ

[
∂2 log(fEKL(X;Θ))

∂θi∂θj

]
.

For the EKL distribution, all second derivatives exist, therefore the formula

above is appropriate and simplifies the computations. The elements of the

observed information matrix of the EKL distribution are given in Appendix.

10 Maximum Likelihood Estimation

In this section, the maximum likelihood estimates (MLEs) of the param-

eters λ, θ, b, and δ of the EKL distribution are presented. If x1, · · · , xn is

a random sample from EKL distribution, then the log-likelihood function is

given by

log(L(λ, θ, b, δ)) = n log

(
δbθλ2

1 + λ

)
+

n∑
i=1

log(1 + xi)− λ

n∑
i=1

xi

+ (θ − 1)
n∑

i=1

log(V (xi)) + (b− 1)
n∑

i=1

log[1− [V (xi)]
θ]

+ (δ − 1)
n∑

i=1

log
{
1− [1− [V (xi)]

θ]b
}

.

The partial derivatives of log L(λ, θ, b, δ) with respect to the parameters λ, θ,
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b and δ are:

∂ log L(λ, θ, b, δ)

∂θ
=

n

θ
+

n∑
i=1

log(V (xi)) + (1− b)
n∑

i=1

[V (xi)]
θ log(V (xi))

1− [V (xi)]θ

+ b(δ − 1)
n∑

i=1

[1− [V (xi)]
θ]b−1[V (xi)]

θ log(V (xi))

1− [1− [V (xi)]θ]b
,

∂ log L(λ, θ, b, δ)

∂b
=

n

b
+

n∑
i=1

log[1− [V (xi)]
θ]

+ (1− δ)
n∑

i=1

[1− [V (xi)]
θ]b log[1− [V (xi)]

θ]

1− [1− [V (xi)]θ]b
,

∂ log L(λ, θ, b, δ)

∂δ
=

n

δ
+

n∑
i=1

log
{
1− [1− [V (xi)]

θ]b
}

,

and

∂ log L(λ, θ, b, δ)

∂λ
= n

1 + λ

δbθλ2

∂
(

δbθλ2

1+λ

)
∂λ

−
n∑

i=1

xi + (θ − 1)
n∑

i=1

∂V (xi)/∂λ

V (xi)

+ θ(1− b)
n∑

i=1

[V (xi)]
θ−1(∂V (xi)/∂λ)

1− V (xi)θ

+ bθ(δ − 1)
n∑

i=1

[1− [V (xi)]
θ]b−1[V (xi)]

θ−1(∂V (xi)/∂λ)

1− [1− [V (xi)]θ]b
.

Note that

∂
(

δbθλ2

1+λ

)
∂λ

= δbθ
2λ + λ2

(1 + λ)2
,

and

∂V (xi)

∂λ
=

[
1 + λ + λxi

1 + λ
− 1

(1 + λ)2

]
xi exp(−λxi).
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Substituting equations
∂
(

δbθλ2

1+λ

)
∂λ

and ∂V (xi)
∂λ

into equation ∂ log L(λ,θ,b,δ)
∂λ

, we get

∂ log L(λ, θ, b, δ)

∂λ
=

n(2 + λ)

λ(1 + λ)
−

n∑
i=1

xi

+
n∑

i=1

λ(2 + λ + xi + λxi)xi exp(−λxi)

1 + λ

×
[

θ − 1

(1 + λ)V (xi)
+

θ(1− b)[V (xi)]
θ−1

(1 + λ)(1− [V (xi)]θ)

]
+ bθ(δ − 1)

n∑
i=1

[1− [V (xi)]
θ]b−1[V (xi)]

θ−1xi exp(−λxi)

1− [1− [V (xi)]θ]b

×
[
1 + λ + λxi

1 + λ
− 1

(1 + λ)2

]
.

When all the parameters are unknown, numerical methods must be used to

obtain estimates of the model parameters since the system does not admit any

explicit solution, therefore the MLE (λ̂, θ̂, b̂, δ̂) of (λ, θ, b, δ) can be obtained

only by means of numerical procedures. The MLEs of the parameters, denoted

by Θ̂ is obtained by solving the nonlinear equation (∂ log L
∂λ

, ∂ log L
∂θ

, ∂ log L
∂b

, ∂ log L
∂δ

)T =

0, using a numerical method such as Newton-Raphson procedure. The Fisher

information matrix given by I(Θ) = [Iθi,θj
]4X4 = E(−∂2 log L

∂θi∂θj
), i, j = 1, 2, 3, 4,

can be numerically obtained by MATLAB, MAPLE or R software. The total

Fisher information matrix In(Θ) = nI(Θ) can be approximated by

Jn(Θ̂) ≈
[
− ∂2 log L

∂θi∂θj

∣∣∣∣
Θ=Θ̂

]
4X4

, i, j = 1, 2, 3, 4. (56)

For real data, the matrix given in equation (56) is obtained after the conver-

gence of the Newton-Raphson procedure in MATLAB or R software.

10.1 Asymptotic Confidence Intervals

In this section, we present the asymptotic confidence intervals for the pa-

rameters of the EKL distribution. The expectations in the FIM can be ob-

tained numerically. Let Θ̂ = (λ̂, θ̂, b̂, δ̂)T be the MLE of Θ = (λ, θ, b, δ)T .

Under the conditions that the parameters are in the interior of the parameter

space, but not on the boundary, the asymptotic distribution of
√

n(Θ̂−Θ) is

N4(0, I−1(Θ)).
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The multivariate normal distribution with mean vector (0, 0, 0, 0)T and

covariance matrix I−1(Θ) can be used to construct confidence intervals for the

model parameters. That is, the approximate 100(1−η)% two-sided confidence

intervals for λ, θ, b and δ are given by:

λ̂±Z η
2

√
I−1
λλ (Θ̂), θ̂±Z η

2

√
I−1
θθ (Θ̂), b̂±Z η

2

√
I−1
bb (Θ̂) and δ̂±Z η

2

√
I−1
δδ (Θ̂),

respectively, where I−1
λλ (Θ̂), I−1

θθ (Θ̂), I−1
bb (Θ̂), and I−1

δδ (Θ̂) are the diagonal ele-

ments of I−1
n (Θ̂) = (nI(Θ̂))−1, and Z η

2
is the upper η

2
th percentile of a standard

normal distribution.

11 Applications

In this section, applications of the EKL distribution including the estima-

tion of the parameters via the method of maximum likelihood and likelihood

ratio (LR) test for comparison of the EKL distribution with its sub-models for

given sets of data are presented. The examples illustrate the flexibility of the

EKL distribution in contrast to other models including the Kumaraswamy

Lindley (KL), GL, L, Kumaraswamy Weibull (KW), weighted generalized

gamma (WGG) and gamma (GAM) distributions for data modeling. The

pdf of the four-parameter weighted generalized gamma distribution with the

weight function w(x) = xa used in the comparisons is given by

fWGG(x; λ, α, a, b) =
bλbα+a

Γ(α + a/b)
xbα+a−1e−(λx)b

, for λ > 0, α > 0, a > 0, b > 0.

The KW pdf [3] was also used to model these data. The KW pdf is given by

fKW (x; λ, α, a, b) = abαλαxα−1 exp(−(λx)α)[1− exp(−(λx)α)]a−1

× [1− (1− exp(−(λx)α))a]b−1,

where a, b > 0 are additional shape parameters that pertains to skewness and

kurtosis.

The MLEs of the EKL parameters λ, θ, b and δ are computed by maximiz-

ing the objective function via the subroutine NLMIXED in SAS. The estimated

values of the parameters (standard error in parenthesis), -2log-likelihood statis-

tic, Akaike Information Criterion, AIC = 2p− 2 log(L), Bayesian Information
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Criterion, BIC = p log(n)− 2 log(L), and Consistent Akaike Information Cri-

terion, AICC = AIC + 2 p(p+1)
n−p−1

, where L = L(Θ̂) is the value of the likelihood

function evaluated at the parameter estimates, n is the number of observa-

tions, and p is the number of estimated parameters are presented in Table 3.

The EKL distribution is fitted to the data sets and these fits are compared to

the fits using the KL, GL, L, KW, WGG and GAM distributions.

We can use the LR test to compare the fit of the EKL distribution with

its sub-models for a given data set. For example, to test a = b = 1, the LR

statistic is ω = 2[log(L(λ̂, θ̂, b̂, δ̂))− log(L(λ̃, θ̃, 1, 1))], where λ̂, θ̂, b̂, and δ̂, are

the unrestricted estimates, and λ̃, and θ̃ are the restricted estimates. The LR

test rejects the null hypothesis if ω > χ2
d
, where χ2

d
denotes the upper 100d%

point of the χ2 distribution with 2 degrees of freedom.

Specifically, we consider two data sets. The first set of data comes from

R software package “faraway” data. See R software package for a detailed

description of the data. The data is given in Table 1. The second set of data

consists of the estimated time since given growth hormone medication until

the children reached the target age in the Programa Hormonal de Secretaria

de Saude de Minas Gerais [1]. The data set is given in Table 2. The MLEs

of the parameters with standard errors in parenthesis and the values of the

statistics (-2ln(L), AIC, AICC and BIC) are given in Table 3. The starting

points of the iterative processes for the data sets I and II for the EKL(λ, θ, b, δ)

distribution are (0.476, 0.53, 0.061, 2) and (0.476, 0.051, 0.061, 2), respectively.

3.1 3.5 3.5 3.5 3.6 4.0 4.0 4.0 4.1 4.4 4.4

4.4 4.5 4.5 4.5 4.5 4.5 4.7 5.0 5.0 5.3 5.5

5.6 6.0 6.2 6.5 7.0 7.5 8.1 8.5 8.5 8.5 8.8

9.0 11.2 11.5 17.5 17.5 - - - - - -

Table 1: R software package “faraway” data

2.15 2.20 2.55 2.56 2.63 2.74 2.81 2.90 3.05 3.41 3.43

3.43 3.84 4.16 4.18 4.36 4.42 4.51 4.60 4.61 4.75 5.03

5.10 5.44 5.90 5.96 6.77 7.82 8.00 8.16 8.21 8.72 10.40

13.20 13.70 - - - - - - - - -

Table 2: Growth Hormone Data [1]
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Data set Model λ θ δ b −2 ln(L) AIC AICC BIC SS

I (n=38) EKL(λ, θ, b, δ) 2.2252 2318.58 0.4581 0.1127 164.1 172.1 173.3 178.7 0.04981686

(0.03933) (1087.36) (0.1322) (0.03264)

KL(λ, θ, b, 1) 2.2429 613.23 1 0.1610 167.8 173.8 174.5 178.7 0.09244024

(0.04603) (249.44) (0.02759)

GL(λ, θ, 1, 1) 0.5749 5.9602 1 1 179.0 183.0 183.3 186.3 0.2372781

(0.08189) (2.2876)

L(λ, 1, 1, 1) 0.2793 1 1 1 202.0 204.0 204.2 205.7 0.672952

(0.03243)

λ α a b

KW (λ, α, a, b) 0.3093 2.1075 1.6332 0.1967 187.4 195.4 196.6 201.9 0.3868952

(0.05690) (0.2275) (0.7170) (0.03991)

WGG(λ, α, a, b) 57.4440 7.2804 6.2870 0.5089 179.0 187.0 188.3 193.6 0.2197302

(130.85) (1.9494) (2.6966) (0.1185)

GAM(λ, α) 0.7829 3.9939 1 1 182.2 186.2 186.6 189.5 0.2602691

(0.1830) (1.1095)

I (n=35) EKL(λ, θ, b, δ) 2.8396 338.10 0.8768 0.1202 152.9 160.9 162.2 167.1 0.03427661

(0.05063) (181.58) (0.2493) (0.02854)

KL(λ, θ, b, 1) 2.1379 75.0012 1 0.1759 153.8 159.8 160.6 164.5 0.03290961

(0.07884) (33.6119) (0.03324)

GL(λ, θ, 1, 1) 0.5926 3.9478 1 1 159.3 163.3 163.7 166.4 0.0901124

(0.0878) (1.3624)

L(λ, 1, 1, 1) 0.3303 1 1 1 174.9 176.9 177.1 178.5 0.3855236

(0.04009)

λ α a b

KW (λ, α, a, b) 1.2868 1.2417 54.9279 0.1370 153.8 161.8 163.2 168.1 0.03925958

(0.2911) (0.09659) (35.3591) (0.02506)

WGG(λ, α, a, b) 3210.85 0.02566 11.4986 0.3589 157.9 165.9 167.3 172.2 0.06756737

(0.000473) (0.7120) (1.9839) (0.01570)

GAM(λ, α) 0.7798 4.1381 1 1 160.2 164.2 164.6 167.3 1.13915

(0.1907) (0.9520)

Table 3: Parameters Estimates, Log-likelihood, AIC, AICC, BIC, and SS

Probability plots (Chambers et al [2]) consists of plots of the observed

probabilities against the probabilities predicted by the fitted model are also

presented in Figures 3 and 4. For the EKL distribution, we plotted for example,

FEKL(yk; λ̂, θ̂, b̂, δ̂) =

1−

1−

[
1− 1 + λ̂ + λ̂yk

1 + λ̂
exp(−λ̂yk)

]θ̂


b̂


δ̂

,

against k−0.375
n+0.25

, k = 1, 2, · · · , n, where yk are the ordered values of the observed
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data. A measure of closeness of the plot to the diagonal line given by the sum

of squares

SS =
n∑

k=1

[
FEKL(yk; λ̂, θ̂, b̂, δ̂)−

(
k − 0.375

n + 0.25

)]2

,

was calculated for each plot. The plot with the smallest SS corresponds to

the model with points that are closer to the diagonal line. The EKL model

performs very well in this regard.

For the ”faraway” data, the LR statistics for the test of the hypotheses

H0 : L(λ, 1, 1, 1) against Ha : KL(λ, θ, b, 1), and H0 : GL(λ, θ, 1, 1) against

Ha : KL(λ, θ, b, 1) are 34.2 (p − value < 1 × 10−7) and 11.2 (p − value <

0.001), respectively. Consequently, we reject the null hypothesis in favor of the

KL distribution. The test of the hypotheses H0 : KL(λ, θ, b, 1) against Ha :

EKL(λ, θ, b, δ) is 3.7 (p − value = 0.0544), so we reject the null hypothesis

in favor of the EKL distribution at 5.5% level. We conclude that the EKL

distribution is significantly better than KL, GL and L distributions based on

the LR statistic. The EKL distribution is also better than the KW, WGG and

GAM distributions based on the values of the statistics AIC, AICC and BIC.

The plots of the fitted EKL distribution and sub-models are shown in Figure

4. Also, the value of sum of squares for EKL distribution is SS=0.04981686,

which is the smallest.

For the growth hormone data, the LR statistics for the test of the hypothe-

ses H0 : L(λ, 1, 1, 1) against Ha : EKL(λ, θ, b, δ), and H0 : GL(λ, θ, 1, 1) against

Ha : EKL(λ, θ, b, δ) are 22 (p − value < 0.0001) and 6.4 (p − value < 0.05),

respectively. Consequently, we reject the null hypothesis in favor of the EKL

distribution. However, there is no difference between the EKL(λ, θ, b, δ) distri-

bution and KL(λ, θ, b, 1) distribution. We conclude that the KL distribution is

significantly better than the GL and L distributions based on the LR statistic.

The EKL and KL distributions are also better than the KW, WGG and GAM

distributions based on the values of the statistics AIC, AICC and BIC. The

plots of the fitted EKL distribution and sub-models are shown in Figure 3.

Also, the values of sum of squares, are SS=0.03427661 and SS=0.03290961 for

EKL and KL distributions, respectively.

Based on the values of these statistics, we conclude that the EKL and KL

distributions provide better fit than the generalized gamma, Kumaraswamy

Weibull, and generalized Lindley models. In the cases considered, the EKL,
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Figure 3: Fitted densities and probability plots of EKL distribution and sub-

models for “faraway” data

and KL performed far better than the generalized Lindley, Lindley, Kumaraswamy

Weibull, and gamma distributions.

12 Concluding Remarks

A new class of generalized Lindley distribution referred to as exponentiated

Kumaraswamy Lindley (EKL) distribution with flexible and desirable proper-

ties is proposed. Properties of the EKL distribution and sub-distributions were

presented. The pdf, cdf, moments, hazard function, reverse hazard function,

reliability, quantile function, mean deviations, Bonferroni and Lorenz curves

were presented. Entropy measures including Renyi entropy, s- entropy as well

as Fisher information matrix for EKL distribution were also derived. Estimate

of the model parameters via the method of maximum likelihood obtained and

applications to illustrate the usefulness of the proposed model to real data

given.
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Figure 4: Fitted densities and probability plots of EKL distribution and sub-

models for growth hormone data
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Appendix FIM for EKL distribution

Let ` = L(λ, θ, b, δ), and V (x) = GL(x; λ) = 1− 1+λ+λx
1+λ

exp(−λx). We note

here that we have considered the case when b > 0 and δ > 0 are non-integer,

however the other cases can be similarly derived.

Elements of the observed information matrix of the EKL distribution are

given by

∂2`

∂δ∂λ
= bθ

n∑
i=1

[1− [V (xi)]
θ]b−1[V (xi)]

θ−1xi exp(−λxi)

1− [1− [V (xi)]θ]b

×
[
1 + λ + λxi

1 + λ
− 1

(1 + λ)2

]
,

∂2`

∂δ∂θ
= b

n∑
i=1

[1− [V (xi)]
θ]b−1[V (xi)]

θ log(V (xi))

1− [1− [V (xi)]θ]b
,

∂2`

∂δ∂b
= −

n∑
i=1

[1− [V (xi)]
θ]b log[1− [V (xi)]

θ]

1− [1− [V (xi)]θ]b
,

∂2`

∂δ2
= − n

δ2
,

∂2`

∂b∂λ
= −θ

n∑
i=1

[V (xi)]
θ−1xi exp(−λxi)

1− [V (xi)]θ

[
1 + λ + λxi

1 + λ
− 1

(1 + λ)2

]
+ θ(δ − 1)

n∑
i=1

[1− [V (xi)]
θ]b−1[V (xi)]

θ−1xi exp(−λxi)

[1− [1− [V (xi)]θ]b]2

×
[
1 + λ + λxi

1 + λ
− 1

(1 + λ)2

]{
b log[1− [V (xi)]

θ] + 1− [1− [V (xi)]
θ]b

}
,

∂2`

∂b∂θ
= −

n∑
i=1

[V (xi)]
θ log(V (xi))

1− [V (xi)]θ

+ (δ − 1)
n∑

i=1

[1− [V (xi)]
θ]b−1[V (xi)]

θ log(V (xi))

[1− [1− [V (xi)]θ]b]2

×
{
b log[1− [V (xi)]

θ] + 1− [1− [V (xi)]
θ]b

}
,

∂2`

∂b2
= − n

b2
+ (1− δ)

n∑
i=1

[1− [V (xi)]
θ]b[log[1− [V (xi)]

θ]]2

[1− [1− [V (xi)]θ]b]2
,
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∂2`

∂λ2
= −n

λ2 + 4λ + 2

λ2(1 + λ)2

+
n∑

i=1

(2 + xi + 2λ− x2
i λ + λ2 − 2xiλ

2 − 2x2
i λ

2 − xiλ
3 − x2

i λ
3)xi exp(−λxi)

(1 + λ)2

×
[

θ − 1

(1 + λ)V (xi)
+

θ(1− b)[V (xi)]
θ−1

(1 + λ)(1− [V (xi)]θ)

]
+ (1− θ)λ

n∑
i=1

(2 + λ + xi + λxi)xi exp(−λxi)

(1 + λ)2[V (xi)]2

[
1 + λ + λxi

1 + λ
− 1

(1 + λ)2

]
+ (1− θ)λ

n∑
i=1

(2 + λ + xi + λxi)xi exp(−λxi)

(1 + λ)3V (xi)

+ θ(1− b)λ
n∑

i=1

[V (xi)]
θ−2[θ − 1 + [V (xi)]

θ](2 + λ + xi + λxi)x
2
i exp(−2λxi)

(1 + λ)2(1− [V (xi)]θ)2

×
[
1 + λ + λxi

1 + λ
− 1

(1 + λ)2

]
− θ(1− b)λ

n∑
i=1

[V (xi)]
θ−1[1− [V (xi)]

θ](2 + λ + xi + λxi)xi exp(−λxi)

(1 + λ)3(1− [V (xi)]θ)2

+ b(1− b)θ2(δ − 1)
n∑

i=1

[1− [V (xi)]
θ]b−2[V (xi)]

2θ−2x2
i exp(−2λxi)

[1− [1− [V (xi)]θ]b]2

×
[
1 + λ + λxi

1 + λ
− 1

(1 + λ)2

]2

− bθ2(δ − 1)
n∑

i=1

[1− [V (xi)]
θ]2b−2[V (xi)]

2θ−2x2
i exp(−2λxi)

[1− [1− [V (xi)]θ]b]2

×
[
1 + λ + λxi

1 + λ
− 1

(1 + λ)2

]2

+ bθ(θ − 1)(δ − 1)
n∑

i=1

[1− [V (xi)]
θ]b−1[V (xi)]

θ−2x2
i exp(−2λxi)

[1− [1− [V (xi)]θ]b]2

×
[
1 + λ + λxi

1 + λ
− 1

(1 + λ)2

]2

− bθ(δ − 1)
n∑

i=1

[1− [V (xi)]
θ]b−1[V (xi)]

θ−1x2
i exp(−λxi)

[1− [1− [V (xi)]θ]b]2

×
[
1 + λ + λxi

1 + λ
− 1

(1 + λ)2

]
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+ bθ(1− θ)(δ − 1)
n∑

i=1

[1− [V (xi)]
θ]2b−1[V (xi)]

θ−2x2
i exp(−2λxi)

[1− [1− [V (xi)]θ]b]2

×
[
1 + λ + λxi

1 + λ
− 1

(1 + λ)2

]2

+ bθ(δ − 1)
n∑

i=1

[1− [V (xi)]
θ]2b−1[V (xi)]

θ−1x2
i exp(−λxi)

[1− [1− [V (xi)]θ]b]2

×
[
1 + λ + λxi

1 + λ
− 1

(1 + λ)2

]
+ bθ(δ − 1)

n∑
i=1

[1− [V (xi)]
θ]b−1[V (xi)]

θ−1xi exp(−λxi)[xi(1 + λ) + 2]

[1− [1− [V (xi)]θ]b](1 + λ)3
,

and

∂2`

∂θ∂λ
=

n∑
i=1

xi exp(−λxi)

V (xi)

[
1 + λ + λxi

1 + λ
− 1

(1 + λ)2

]
+ (1− b)

n∑
i=1

[V (xi)]
θ−1

[
θ log(V (xi)) + 1− [V (xi)]

θ
]
xi exp(−λxi)

[1− [V (xi)]θ]2

×
[
1 + λ + λxi

1 + λ
− 1

(1 + λ)2

]
+ b(δ − 1)

n∑
i=1

[1− [V (xi)]
θ]b−2[V (xi)]

θ−1xi exp(−λxi)

[1− [1− [V (xi)]θ]b]2

×
[
1 + λ + λxi

1 + λ
− 1

(1 + λ)2

]
×

{
− θb[V (xi)]

θ log(V (xi))

+
[
θ log(V (xi)) + 1− [V (xi)]

θ
] [

1− [1− [V (xi)]
θ]b

]}
.


